
EP 2827: Thermodynamics

Final Exam (100 marks, 3 hrs.)

March 15, 2019

Instructions

• Duration of the exam is 3 hours

• Use of books, class notes, laptops or phone is not allowed

• Use of a formula sheet is permitted (2 sides of an A4 sheet), however exchange of formula sheet is
not permitted

• Please provide your answer in the blank space following/ next to the question in the exam paper
itself

• Scratch papers for rough work should be included/attached at the back of the paper.

Problem No. 1 2 3 4 5 6 7 8 9 10 11 12 Total Score
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1. Write down the four laws of thermodynamics. (No points for writing down the versions of the first
and second law which you learned in high school e.g. conservation of energy as the first law or the
Kelvin-Planck or Clausius versions of the second law). For the first and second law write down the
mathematical versions in terms of infinitesimal work done, heat exchanged and change in internal
energy (in the general case, not a pure hydrostatic system). State both versions of the third law
taught in the class.

( 2 + 4 + 4 + 4 = 14 points)

Solution:

Zeroth law: Two bodies (say A and B) which are (simultaneously) in thermal equilibrium with a
third body (say C), then they (A and B) are in thermal equilibrium with each other.

First law: The work done in taking a system from a state to another state by solely adiabatic
processes (adiabatic means) is independent of the path. (Equivalently, infinitesimal amount of
adiabatic work done is an exact differential

d̄Wadiabatic = dU

where U is a state function, the internal energy. For general processes, not necessarily adiabatic

dU = d̄Q+d̄W

= d̄Q+
∑
i

YidXi

where d̄Q is the heat transferred to the system, and d̄W =
∑

i YidXi is work done on the system -
Xi’s are generalized displacements and Yi’s are generalized forces.

Second law: In every open connected neighborhood of a point in the space of thermodynamic
equilibrium states (say P ), there always exist points which cannot be joined to P by purely re-
versible adiabatic paths/processes. (Equivalently, in the space of thermodynamic equilibrium states
two reversible adiabatic (hyper)surfaces can never intersect). Reversible adiabatic (hyper)surfaces
are characterized by constant values of the entropy, S and for two neighboring equilibrium states,
the difference of entropies are related by,

TdS = dU −
∑
i

YidXi.

Third law:
Planck Statement - As T → 0, the contribution to the entropy of a system in thermodynamic
equilibrium from each degree of freedom vanishes1 in a differentiable way.
Unattainability statement - One cannot lower the absolute temperature of a system to zero in
a finite number of operations.

1or equivalently the total entropy attains a limiting value independent of the process by which T is being made to approach
zero.
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2. Consider a composite system consisting of a nonmagnetic gas, a paramagnetic solid and a reversible
cell separated by diathermic partitions.
(a) What are the thermodynamic coordinates for this composite system ?
(b) How many equations of state are there ?
(c) Write down the expression for d̄W.

( 1 + 1 + 1 = 3 points)

Solution:
(a) T, P, V,H,M, E , Z
(b) 3
(c) d̄W = −PdV + µ0H dM + E dZ.

3. Complete the following sentences

A. In the Joule free expansion experiment, the initial and final states of the gas have identical
Internal energy.

B. In the Joule-Kelvin throttling experiment, the initial and final states of the gas have identi-
cal enthalpy.

C. The Joule coefficient is defined by the expression, η =
(
∂T
∂V

)
U
.

D. The Joule-Kelvin coefficient is defined by the expression, µ =
(
∂T
∂P

)
H

( 1 + 1 + 1 + 1 = 4 points)

4. Complete the following sentences by indicating which state function increases or decreases

A. For an isolated system undergoing an irreversible process the entropy increases and the final
equilibrium configuration has maximum entropy.

B. For a system undergoing a spontaneous isothermal process, the Helmholtz potential decreases
and the final equilibrium configuration has minimum Helmholtz potential.

C. For a system undergoing a spontaneous process under isothermal and isobaric conditions, the
Gibbs potential decreases and the final equilibrium configuration has minimum Gibbs potential.

D. The maximal amount of work that can be extracted out of a system under isothermal con-
ditions is equal to the decrease in the Helmholtz free energy.

E. The maximal amount of work that can be extracted out of a system under isothermal and
isobaric conditions is equal to the decrease in the Gibbs free energy.

( 1 + 1 + 1 + 1 + 1 = 5 points)
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5. Increase of boiling point with pressure: Consider the situation when a liquid boils to form
gaseous vapor. Treat the vapor as an ideal gas and show that the boiling curve is given by the
equation,

ln
P

P0
=

l

R

(
1

T0
− 1

T

)
Thus if P > P0, then T > T0 i.e. the boiling point temperature T at pressure P is higher than the
boiling point temperature T0 at a lower pressure, P0. Here l is the molar latent heat of vaporization.
(Hint: Use the Clausius-Clapeyron equation for first order phase transitions and neglect the molar
volume of the liquid compared to the molar volume of the gas).

(3 points)

Solution:

We begin from the Clausius-Clapeyron equation for the liquid-gas phase transition,

dP

dT
=

l

T (vg − vl)

where l is the molar latent heat of vaporization, vg and vl are the molar volumes in the gas phase
and liquid phase respectively. Since the distance of separation of the molecules is far larger than the
separation of molecules in the liquid phase, we have vg >> vl and we can approximate vg − vl ≈ vg.
Thus we have,

dP

dT
=

l

T (vg − vl)

≈ l

T vg
.

Then using the ideal gas law for the vapor, Pvg = RT , we have,

dP

dT
=

l

T (RT/P )

=
l

R

(
P

T 2

)
⇒ dP

P
=

l

R

dT

T 2

⇒ ln
P

P0
= − l

R

(
1

T
− 1

T0

)
.

Here we have used the boundary condition P (T0) = T0 to fix
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6. Derive the enthalpy equations for a hydrostatic system(
∂H

∂P

)
T

= −T
(
∂V

∂T

)
P

+ V

(
∂H

∂V

)
T

= T

(
∂P

∂T

)
V

+ V

(
∂P

∂V

)
T

(3 + 3 = 6 points)

Solution:

We start with the second law in terms of enthalpy change

dH = TdS + V dP. (1)

Dividing both sides by dP with T held fixed, we get,

dH

dP

∣∣∣∣
T fixed

= T
dS

dP

∣∣∣∣
T fixed

+ V,

or, (
∂H

∂P

)
T

= T

(
∂S

∂P

)
T

+ V

and then using the Maxwell relation
(
∂S
∂P

)
T

= −
(
∂V
∂T

)
P

to replace the underlined term in the rhs ,
we get, (

∂H

∂P

)
T

= −T
(
∂V

∂T

)
P

+ V.

This is the first enthalpy equation.

Next we divide both sides (1) by dV with T held fixed and obtain,

dH

dV

∣∣∣∣
T fixed

= T
dS

dV

∣∣∣∣
T fixed

+ V
dP

dV

∣∣∣∣
T fixed

,

or, (
∂H

∂V

)
T

= T

(
∂S

∂V

)
T

+ V

(
∂P

∂V

)
T

.

Then we use the Maxwell relation,
(
∂S
∂V

)
T

=
(
∂P
∂T

)
V

to replace the underlined term in the rhs of the
above equation to obtain, (

∂H

∂V

)
T

= T

(
∂P

∂T

)
V

+ V

(
∂P

∂V

)
T

.

This is the second enthalpy equation.
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7. For a hydrostatic system, starting from the first Maxwell relation, namely,(
∂T

∂V

)
S

= −
(
∂P

∂S

)
V

derive the other three Maxwell relations using properties of multi-variable differential calculus.
(3 + 3 + 3 = 9 points)

Solution:

Second Maxwell relation from the first:(
∂T

∂V

)
S

= −
(
∂P

∂S

)
V

,

⇒
(
∂T

∂P

)
S

(
∂P

∂V

)
S

= −
(
∂P

∂S

)
V

,

⇒
(
∂T

∂P

)
S

=
−
(
∂P
∂S

)
V(

∂P
∂V

)
S

= −
(
∂P

∂S

)
V

(
∂V

∂P

)
S

= −
(
∂P

∂S

)
V

(
∂V

∂P

)
S

(
∂S

∂V

)
P︸ ︷︷ ︸

=−1

(
∂V

∂S

)
P

⇒
(
∂T

∂P

)
S

=

(
∂V

∂S

)
P

.

Third Maxwell relation from the first:(
∂T

∂V

)
S

= −
(
∂P

∂S

)
V

⇒
(
∂T
∂V

)
S

(
∂V
∂S

)
T

(
∂S
∂T

)
V(

∂V
∂S

)
T

(
∂S
∂T

)
V

= −
(
∂P

∂S

)
V

⇒
(
∂S
∂V

)
T(

∂S
∂T

)
V

=

(
∂P

∂S

)
V

⇒
(
∂S

∂V

)
T

=

(
∂P

∂S

)
V

(
∂S

∂T

)
V

⇒
(
∂S

∂V

)
T

=

(
∂P

∂T

)
V

.

Fourth Maxwell relation from the first:

This is best done in two steps, first derive the second Maxwell relation from the first and then
in turn derive the fourth from the second. The first step has been done before, so we just show the
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second step i.e. starting from the second (
∂T

∂P

)
S

=

(
∂V

∂S

)
P

⇒⇒
(
∂T

∂P

)
S

(
∂P

∂S

)
T

(
∂S

∂T

)
P︸ ︷︷ ︸

=−1

(
∂S

∂P

)
T

(
∂T

∂S

)
P

=

(
∂V

∂S

)
P

⇒
(
∂S

∂P

)
T

= −
(
∂V

∂S

)
P

(
∂S

∂T

)
P

⇒
(
∂S

∂P

)
T

= −
(
∂V

��∂S
·�

�∂S

∂T

)
P

⇒
(
∂S

∂P

)
T

= −
(
∂V

∂T

)
P

.

Hence proved.
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8. Thermodynamics of Blackbody radiation: Consider EM waves (radiation) trapped inside a
container with perfectly absorbing walls at temperature T (walls in turn radiate back). This is a
hydrostatic system because EM radiation applies pressure on the absorbing surface due to transfer
of momentum. From EM theory the pressure of the radiation on the walls of the cavity is given by,

P =
1

3
u

where u = U/V is the (internal) energy density of the radiation. Further, experiments reveal that
the internal energy density is purely a function of T , i.e.

u = u(T ).

Using these two inputs, and applying thermodynamics, show the following

A. the internal energy (density) is
u = a T 4.

This is the Stefan-Boltzmann law.

B. the entropy density (s ≡ S/V ) is given by

s =
4

3
a T 3.

C. the Gibbs potential G = 0. (This implies the chemical potential of photons, µ = G
N is zero!)

D. Cp =∞.
(3 + 2 + 1 + 1 = 7 points)

Solution:

A. We substitute,

U = u(T ) V, P =
1

3
u(T )

in the first internal energy equation for a hydrostatic system,(
∂U

∂V

)
T

= T

(
∂P

∂T

)
V

− P,

to get,

u =
T

3

du

dT
− 1

3
u,

or,
du

dT
= 4

u

T
.

This can be easily integrated to give,
u = a T 4.

B. Next we use the Euler relation,
U = TS − PV,
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and divide both sides by V to get,
u = T s− P,

or,

s =
u+ P

T
.

Since for radiation, P = (1/3)u, we get,

s =
4

3

u

T
.

Substituting, u = a T 4 we get,

s =
4

3
a T 3.

C. From the Euler relation, U = TS − PV , it is obvious that,

G = U − TS + PV = 0!

D. By definition,

CP =

(
d̄Q

dT

)
P fixed

.

But here P = 1
3u = a

3T
4. This means dT |P fixed = 0! Thus the vanishing denominator in the above

expression gives CP =∞.
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9. Show that for an ideal gas CV and CP are purely functions of T . (Hint: Regard CV as a function

of independent variables T, V and then show
(
∂CV
∂V

)
T

= 0. Next regard CP = CP (T, P ) and repeat

the same logic).
(4 + 4 = 8 points)

Solution: Regarding CV is a function of two independent variables V, T , we will show
(
∂CV
∂V

)
T

= 0.

Since CV = T
(
∂S
∂T

)
V

we have, (
∂CV
∂V

)
T

= T

(
∂

∂V

(
∂S

∂T

)
V

)
T

= T

 ∂

∂T

(
∂S

∂V

)
T︸ ︷︷ ︸

=( ∂P
∂T )

V


V

= T

(
∂2P

∂T 2

)
V

.

Here in going from the first to second step we have interchanged order of derivatives and in going
from the second to third we have used the third Maxwell relation. Now, for an ideal gas

P = nRT/V,

⇒
(
∂2P

∂T 2

)
V

= 0.

Thus,
(
∂CV
∂V

)
T

= 0 i.e. CV is independent of V and purely a function of T .

Next, regarding CP as a function of two independent variables T, P , we will show
(
∂CP
∂V

)
T

= 0.

Since CP = T
(
∂S
∂T

)
P

we have, (
∂CP
∂P

)
T

= T

(
∂

∂P

(
∂S

∂T

)
P

)
T

= T

 ∂

∂T

(
∂S

∂P

)
T︸ ︷︷ ︸

=( ∂V
∂T )

P


P

= T

(
∂2V

∂T 2

)
P

.

For an ideal gas

V = nRT/P,

⇒
(
∂2V

∂T 2

)
P

= 0.

Thus,
(
∂CP
∂P

)
T

= 0 i.e. CP is independent of P and purely a function of T .
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10. If we start with n0 moles of NH3 dissociates according to the reaction,

NH3 �
1

2
N2 +

3

2
H2.

Show that at equilibrium,

K =

√
27

4

ε2

1− ε2
P,

where ε is the degree of dissociation at equilibrium (fraction of NH3 dissociated).
(4 points)

Solution:

At equilibrium, in terms of ε, the number of moles of various species are,

nNH3 = n0(1− ε),

nN2 =
n0ε

2
,

nH2 =
3n0ε

2
.

The total number of moles are, n = n0(1 + ε). So the mole fractions at equilibrium are,

xNH3 =
1− ε
1 + ε

, xN2 =
ε

2(1 + ε)
, xH2 =

3ε

2(1 + ε)
.

The stoichiometric coefficients are,

νNH3 = −1, νN2 =
1

2
, νH2 =

3

2

The law of mass action,

(xH2)νH2 (xN2)νN2 (xNH3)νNH3 P (νNH3
+νN2

+νH2
) = K,

or, (
3ε

2(1 + ε)

)3/2( ε

2(1 + ε)

)1/2(1− ε
1 + ε

)−1

P (−1+ 1
2

+ 3
2) = K

or,

33/2

(
ε

2(1 + ε)

)2(1 + ε

1− ε

)
P = K,

or, √
27

4

ε2

1− ε2
P = K.

11



11. A very small amount of sugar is dissolved in water, and the solution is in equilibrium with pure
water vapor.

(a) Show that the equation of phase equilibrium is,

g′′′ = g′′ +RT ln(1− x)

where g′′′ is the molar Gibbs potential of water vapor and, g′′ is the molar Gibbs function of pure
liquid water, and x is the mole fraction of the sugar in solution.
(b) For an infinitesimal change in concentration, x, at constant temperature. show that(

v′′′ − v′′
)
dP = RTd ln (1− x) .

(c) Assume that vapor behaves like an ideal gas and regard v′′ as constant (since the molar volume
of in liquid phase is many orders of magnitude less than in gaseous phase and its change can be
neglected). Find the relation expressing the change in vapor pressure due to dissolving sugar, i.e.
from x = 0, P = P (0)to final state, x = x, P = P (x)

ln
P (x)

P (0)
= ln(1− x) +

v′′

RT
[P (x)− P (0)] .

(d) Justify that the last term can be dropped and then show that you obtain the experimentally
observed result known as Raoult’s law

P (x) = P (0) (1− x)

(2 + 3 + 3 + 2 = 10 points)
Solution:

(a) The vapor phase can be taken to be an ideal gas in pure (unmixed state), while the liquid
phase can be assumed to be a gaseous mixture of the solute (sugar) and the mixture. We know for
chemical equilibrium the chemical potentials of water in the two phases must be equal,

µ′′′ = µ′′

And we also know that in the pure state the chemical potential is equal to the (molar) Gibbs
potential,

µ′′′ = g′′′

while in the mixture state, the chemical potential is equal to the partial Gibbs potential (molar),

µ′′ = g
′′
H2O.

The expression for the partial Gibbs potential is,

g
′′
H2O = RT (φH2O + lnPH2O)

where φH2O is some pure function of T and PH2O is the partial pressure of water in the solution. If
x is the mole fraction of the sugar solution, PH2O = (1− x)P where P s the total pressure

g
′′
H2O = RT (φH2O + ln [(1− x)P ])

= RT (φH2O + lnP + ln (1− x))

= g′′ +RT ln(1− x),
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where g′′ = RT (φH2O + lnP ) is the Gibbs potential of pure water, i.e. if the sugar concentration
vanishes, x = 0. Thus, at equilibrium we have,

g′′′ = g′′ +RT ln (1− x) .

(b) For an infinitesimal change in the concentration at unchanged temperature, one has,

dg′′′T − dg′′T = RT d [ln (1− x)]

where the subscript means fixed T . But, according to second law,

dg = −sdT + vdP =⇒ dgT = vdP.

Thus for infinitesimal change in concentration we get,(
v′′′ − v′′

)
dP = RT d [ln (1− x)] .

(c) Integrating the above equation holding v′ approximately constant, and taking ideal gas equation
of state for vapor i.e. v′′′ = RT/P ,∫ P (x)

P0

RT

P
dP − v′′

∫ P (x)

P0

dP = RT

∫ x

x=0
d [ln (1− x)] ,

or,

RT ln
P (x)

P0
− v′′ (P (x)− P0) = RT ln (1− x) ,

or,

ln
P (x)

P0
= ln (1− x) +

v′′

RT
[P (x)− P0] .

(d) Using the ideal gas law for the vapor state,

v′′

RT
[P (x)− P0] =

v′′

v′′′

[
1− P0

P (x)

]
Now the quantity 1− P0/P (x) is an order 1 quantity but since the molar volume in gaseous phase
is way larger than the molar volume in the liquid phase,

v′′

v′′′

[
1− P0

P (x)

]
� 1

and can be ignored. Thus we have the equation,

ln
P (x)

P0
= ln (1− x)

or,
P (x) = P0(1− x).
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12. For a paramagnetic system with coordinates (T ,H,M) starting from the mathematical form of the
second law, obtain the following:
A. Maxwell relations (

∂T

∂M

)
S

= µ0

(
∂H
∂S

)
M

,(
∂T

∂H

)
S

= −µ0

(
∂M

∂S

)
H
,(

∂S

∂M

)
T

= −µ0

(
∂H
∂T

)
M

,(
∂S

∂H

)
T

= µ0

(
∂M

∂T

)
H

B. The TdS equations

TdS = CMdT − µ0T

(
∂H
∂T

)
M

dM,

TdS = CHdT + µ0T

(
∂M

∂T

)
H
dH,

TdS = CH

(
∂T

∂M

)
H
dM + CM

(
∂T

∂H

)
M

dH.

C. The heat capacity equations,

CH − CM = µ0
TMα2

χ

CH
CM

=
χ

χS

where we have introduced the response functions, thermal magnetizability α = 1
M

(
∂M
∂T

)
H and

χ ≡ 1
M

(
∂M
∂H
)
T

is the isothermal magnetic susceptibility and χS ≡ 1
M

(
∂M
∂H
)
S

is the isentropic (adia-
batic) magnetic susceptibility.

D. Internal energy equations, (
∂U

∂M

)
T

= µ0

[
H− T

(
∂H
∂T

)
M

]
,

(
∂U

∂H

)
T

= µ0

[
H
(
∂M

∂H

)
T

+ T

(
∂M

∂T

)
H

]
.

E. An ideal paramagnet is one which obeys Curie’s law, namely, M = Cc
H
T where Cc is the Curie

constant. Show that for an ideal paramagnet,

CH − CM = µ0
M2

CC

and U = U(T ) i.e. the internal energy is purely a function of temperature.

(8 + 6 + 4 + 4 + 5 = 27 points)
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Solution:

(A) Maxwell relations: The second law for the paramagnet is,

dU = TdS + µ0HdM (2)

In the entropy representation, U = U(S,M) and,

dU =

(
∂U

∂S

)
M

dS +

(
∂U

∂M

)
S

dM

So we have, (
∂U

∂S

)
M

= T,

(
∂U

∂M

)
S

= µ0H.

Equating the mixed second derivatives of U ,(
∂

∂M

(
∂U

∂S

)
M

)
S

=

(
∂

∂S

(
∂U

∂M

)
S

)
M

we get the first Maxwell relation, (
∂T

∂M

)
S

= µ0

(
∂H
∂S

)
M

. (3)

Next we Legendre transform the internal energy, U(S,M) to a new state function, magnetic enthalpy
E(S,H) = U − µ0HM . The second law (2) for this function looks like,

dE = TdS − µ0M dH.

This implies, (
∂E

∂S

)
H

= T,

(
∂E

∂H

)
S

= −µ0M.

Again, equating second derivatives,(
∂

∂H

(
∂E

∂S

)
H

)
S

=

(
∂

∂S

(
∂E

∂H

)
S

)
H

we get, (
∂T

∂H

)
S

= −µ0

(
∂M

∂S

)
H
. (4)

Next, we Legendre transform the internal energy U(S,M) again but this time wrt to the variable
S and construct the state function, the Helmholtz potential, F (T,M) = U − TS. The second law
(2) for F looks like,

dF = −SdT + µ0HdM.

This implies, (
∂F

∂T

)
M

= −S,
(
∂F

∂M

)
T

= µ0H.

Again, equating second derivatives,(
∂

∂M

(
∂F

∂T

)
M

)
T

=

(
∂

∂T

(
∂F

∂M

)
T

)
M
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we get, (
∂S

∂M

)
T

= −µ0

(
∂H
∂T

)
M

. (5)

Finally, we Legendre transform the internal energy U(S,M) simultaneously wrt S as well as M , to
construct the new state function, namely the Gibbs potential, G(T,H) = U − TS − µ0HM . The
second law (2) for this function looks like,

dG = −SdT − µ0M dH.

This implies, (
∂G

∂T

)
H

= −S,
(
∂G

∂H

)
T

= −µ0M.

Equating second derivatives, (
∂

∂H

(
∂G

∂T

)
H

)
T

=

(
∂

∂T

(
∂G

∂H

)
T

)
H

we get, (
∂S

∂H

)
T

= µ0

(
∂M

∂T

)
H
. (6)

(B) TdS equations: For the first equation, we regard S = S(T,M). Then the differential of S,

dS =

(
∂S

∂T

)
M

dT +

(
∂S

∂M

)
T

dM,

or,

TdS = T

(
∂S

∂T

)
M

dT + T

(
∂S

∂M

)
T

dM

Now we substitute, T
(
∂S
∂T

)
M

= CM and from the third Maxwell relation,
(
∂S
∂M

)
T

= −µ0

(
∂H
∂T

)
M

to
obtain,

TdS = CMdT − µ0T

(
∂H
∂T

)
M

dM. (7)

This is the first TdS equation. For the second TdS equation, we regard S = S(T,H). Then,

TdS = T

(
∂S

∂T

)
H
dT + T

(
∂S

∂H

)
T

dH

By definition, CH = T
(
∂S
∂T

)
H and from the fourth Maxwell relation,

(
∂S
∂H
)
T

= µ0

(
∂M
∂T

)
H. Substi-

tuting these in the previous equation, we get,

TdS = CHdT + µ0T

(
∂M

∂T

)
H
dH. (8)

To get the third TdS equation, we regard, S = S(H,M). Then the differential of S is given by,

dS =

(
∂S

∂H

)
M

dH+

(
∂S

∂M

)
H
dM

=

(
∂S

∂T
· ∂T
∂H

)
M

dH+

(
∂S

∂T

∂T

∂M

)
H
dM

=

(
∂S

∂T

)
M

(
∂T

∂H

)
M

dH+

(
∂S

∂T

)
H

(
∂T

∂M

)
H
dM

16



or,

TdS = T

(
∂S

∂T

)
M

(
∂T

∂H

)
M

dH+ T

(
∂S

∂T

)
H

(
∂T

∂M

)
H
dM

= CM

(
∂T

∂H

)
M

dH+ CH

(
∂T

∂M

)
H
dM. (9)

(C ) Heat Capacity equations: First we use the definition of thermal magnetizability, α =
1
M

(
∂M
∂T

)
H and isothermal magnetic susceptibility, χ = 1

M

(
∂M
∂H
)
T

to obtain the result,(
∂T

∂H

)
M

(
∂H
∂M

)
T

(
∂M

∂T

)
H

= −1

=⇒
(
∂T

∂H

)
M

= −
(
∂M
∂H
)
T(

∂M
∂T

)
H

= −χ
α
.

Thus, (
∂M

∂T

)
H

= αM,

(
∂T

∂H

)
M

= −χ
α
. (10)

Next, equating both sides of the first and second TdS equations, we get,

CMdT − µ0T

(
∂H
∂T

)
M

dM = CHdT + µ0T

(
∂M

∂T

)
H
dH,

rearranging which we get,

CH − CM = −µ0T

(
∂H
∂T

)
M

dM

dT
− µ0T

(
∂M

∂T

)
H

dH
dT

.

For constant H, this becomes,

CH − CM = −µ0T

(
∂H
∂T

)
M

(
∂M

∂T

)
H

Using the relations (10) this becomes,

CH − CM =
µ0α

2M

χ
. (11)

This is the first heat capacity equation.
From third TdS equation (9) we get using the relations (10),

TdS = −χCM
α

dH+
CH
Mα

dM.

For an isentropic process, dS = 0 and this equation becomes,

0 = −χCM
α

dHS +
CH
Mα

dMS ,

rearranging which we get,

CH
CM

=
χ

1
M (dMS/dHS)

=
χ

1
M

(
∂M
∂H
)
S

=
χ

χS
. (12)
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This is the second heat capacity equation.

(D). Internal energy equations: The second law once again,

dU = TdS + µ0H dM

Dividing both sides by dM while holding T constant we get,(
∂U

∂M

)
T

= T

(
∂S

∂M

)
T

+ µ0H.

Using the third Maxwell equation (5) to replace the underlined term, we get,(
∂U

∂M

)
T

= µ0

[
H− T

(
∂H
∂T

)
M

]
.

This is the first internal energy equation. Next we divide both sides the second law for the param-
agnet by dH and hold T constant to get,(

∂U

∂H

)
T

= T

(
∂S

∂H

)
T

+ µ0H
(
∂M

∂H

)
T

.

Now we use the fourth Maxwell equation to replace the underlined term to get,(
∂U

∂H

)
T

= µ0

[
T

(
∂M

∂T

)
H

+H
(
∂M

∂H

)
T

]
.

This is second internal energy equation.
Alternate method: Using the first TdS equation (7) to replace the TdS term we get,

dU = CMdT + µ0

[
H− T

(
∂H
∂T

)
M

]
dM

But since we can regard, U = U(T,M), we can also write,

dU =

(
∂U

∂T

)
M

dT +

(
∂U

∂M

)
T

dM.

Comparing the two expressions for dU , we get,(
∂U

∂M

)
T

= µ0

[
H− T

(
∂H
∂T

)
M

]
.

Similarly using the second TdS equation (8) to replace the TdS term in the second law, we get,

dU = CHdT + µ0T

(
∂M

∂T

)
H
dH+ µ0H dM

Further since we can regard M = M(T,H), we can replace,

dM =

(
∂M

∂T

)
H
dT +

(
∂M

∂H

)
T

dH

and obtain,

dU =

[
CH +

(
∂M

∂T

)
H

]
dT + µ0

[
T

(
∂M

∂T

)
H

+H
(
∂M

∂H

)
T

]
dH.
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Regarding U = U(T,H) we get, dU =
(
∂U
∂T

)
H dT +

(
∂U
∂H
)
T
dH. Comparing both expressions we get,(

∂U

∂H

)
T

= µ0

[
T

(
∂M

∂T

)
H

+H
(
∂M

∂H

)
T

]
.

(E). Using the equation of state for an ideal paramagnet, M = CC
H
T , we compute, α = 1

M

(
∂M
∂T

)
H =

−CC H
MT 2 = − 1

T , and χ = 1
M

(
∂M
∂H
)
T

= CC
MT . Using these expressions for α and χ in the RHS of the

first heat capacity equation (11) gives,

CH − CM =
M2

CC
.

Next, using the first internal energy equation,(
∂U

∂M

)
T

= µ0

[
H− T

(
∂H
∂T

)
M

]
= µ0

[
H− T ∂

∂T

(
MT

CC

)
M

]
= µ0

[
H− TM

C

]
= 0.

Then using the second internal energy equation,(
∂U

∂H

)
T

= µ0

[
T

(
∂M

∂T

)
H

+H
(
∂M

∂H

)
T

]
= µ0

[
T

(
∂ (CCH/T )

∂T

)
H

+H
(
∂ (CCH/T )

∂H

)
T

]
= µ0

[
−CCH

T
+ (CCH/T )

]
= 0.

Since both ∂U
∂M = 0, and ∂U

∂H = 0, i.e. the internal energy is independent of M,H. It then follows
that U = U(T ).
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