
CS 170, Spring 2019 HW 5 P. Raghavendra & L. Trevisan

CS 170 HW 5

Due on 2019-02-25, at 10:00 pm

1 Study Group

List the names and SIDs of the members in your study group.

2 Updating Labels

You are given a tree T = (V,E) with a designated root node r, and for each vertex v ∈ V , a
non-negative integer label l(v). If l(v) = k, we wish to relabel v, such that lnew(v) is equal
to l(w), where w is the kth ancestor of v in the tree. We follow the convention that the root
node, r, is its own parent. Give a linear time algorithm to compute the new label, lnew(v)
for each v in V

Slightly more formally, the parent of any v 6= r, is defined to be the node adjacent to v
in the path from r to v. By convention, p(r) = r. For k > 1, define pk(v) = pk−1(p(v)) and
p1(v) = p(v) (so pk is the kth ancestor of v). Each vertex v of the tree has an associated
non-negative integer label l(v). We want to find a linear-time algorithm to update the labels
of all vertices in T according to the following rule: lnew(v) = l(pl(v)(v)).

Solution:

Main Idea When we implement DFS with a stack, the stack at any given moment will
always contain all the ancestors of the current node we’re visiting. We want to maintain the
labels of the relevant vertices currently on the stack, in a separate array. To ensure that our
array only contains vertices on our current path down the DFS tree, we’ll only add a vertex
to our array (at index equal to the current depth) when we’ve actually visited it once (not
when we first dd it to the stack). Since a path can have at most n vertices, the length of
this array is at most n. Once we’ve processed all the children of a node, we can index into
the array and set its label equal to the index of its kth ancestor. Notice that if we relabel
the vertex before processing its children, we overwrite a label that the children of the vertex
could depend on.

Runtime Analysis Since we add only a constant number of operations at each step of
DFS, the algorithm is still linear time.

3 Count Four Cycle

Given as input an undirected graph G = (V,E) design an algorithm to decide whether G
contains a four cycle (A cycle v − u1 − u2 − u3 − u4 where u1 6= u2 6= u3 6= u1 and ui 6= v).
Your algorithm should run in time O(|V |3). You may assume that the graph is given as either
an adjacency matrix or an adjacency list.

Solution: For the solution, we will assume that the input is provided to us in the form of
an adjacency matrix, A. We will now compute the matrix B = A2 and C = A4. Notice that

1



CS 170, Spring 2019 HW 5 P. Raghavendra & L. Trevisan

the entries corresponding to Bii and Cii correspond to walks of length 2 and 4 from vertex
i back to the vertex i. Furthermore, note that walks of length 4 from i back to i can either
be two walks of length 2 from i back to i of the form i − j − i − k − i or walks of the form
i− j − k − j − i or a cycle of length 4 from i to i. Therefore, the number of cycles of length
4 from i back to i, denoted by c4i is given by:

c4i = Cii −B2
ii −

∑
j 6=i

Bij

Therefore, we compute c4i for all vertices i and output, “YES”, if we find a vertex with
c4i > 0 and “NO”, otherwise. The overall running time of the algorithm is the time taken to
multiply two n × n matrices which is at most O(n3) plus the time taken to compute c4i for
all vertices, which is O(n2) giving an overall running time of O(n3).

4 Constrained Dijkstra

Given as input a directed graph G = (V,E), positive edge weights, `e, for each edge e ∈ E
and a particular vertex vo ∈ V . Compute the shortest paths between all pairs of vertices in
O((|V |+ |E|) log|E|) time with the restriction that each of these paths pass through v0.

Solution: Main Idea We start by computing the shortest paths from v0 to every other
vertex v in the graph using Dijkstra’s algorithm. For each v ∈ V , we have a shortest path
p1v from v0 to v. We now reverse the edges of the graph to obtain a new graph GR with the
same edge weights. We run Dijkstra’s algorithm on GR again starting at vertex v0 to obtain
for each vertex v ∈ V , a new path in GR, p′v from v0 to v. We now reverse the edges, p′v to
obtain paths p2v in G from v to v0 for each vertex v ∈ V . Our algorithm returns for each
vertex, v ∈ V , the pair of paths (p1v, p

2
v) and the shortest path between a pair of vertices, v1

and v2 is the concatenation of the paths p2v1 and p1v2 .
Proof of Correctness To show that our algorithm is correct, first note that a shortest

path from v1 to v2 containing v0 consists of a path from v1 to v0 and a subsequent path
from v0 to v2. Therefore, the shortest path from v1 to v2 containing the vertex v0 is the
concatenation of the shortest paths from v1 to v0 and the shortest path from v0 to v2. Our
algorithm is correct if we simply show that we compute these two shortest paths correctly.
The shortest path from v0 to v2 is correctly computed from the guarantees of Dijkstra’s
algorithm. To verify that we correctly compute the shortest path from v1 to v0 correctly,
note that for every path in G from v1 to v0, we have a path from v0 to v1 in GR. Therefore,
the path p′v1 is of length at most the length of the shortest path from v1 to v0. This proves
the correctness of the algorithm because our algorithm correctly returns a pair of paths from
v1 to v0 and from v0 to v2 which are the shortest possible paths.

Runtime Analysis Our algorithm consists of two runs of Dijkstra’s algorithm along
with a step where we reverse the edges of the graph. Therefore, our final runtime is O((|V |+
|E|) log|V |).

5 Arbitrage

Shortest-path algorithms can also be applied to currency trading. Suppose we have n cur-
rencies C = {c1, c2, . . . , cn}: e.g., dollars, Euros, bitcoins, dogecoins, etc. For any pair i, j of

2



CS 170, Spring 2019 HW 5 P. Raghavendra & L. Trevisan

currencies, there is an exchange rate ri,j : you can buy ri,j units of currency cj at the price
of one unit of currency ci. Assume that ri,i = 1 and ri,j ≥ 0 for all i, j.

The Foreign Exchange Market Organization (FEMO) has hired Oski, a CS170 alumnus,
to make sure that it is not possible to generate a profit through a cycle of exchanges; that is,
for any currency i ∈ C, it is not possible to start with one unit of currency i, perform a series
of exchanges, and end with more than one unit of currency i. (That is called arbitrage.)

More precisely, arbitrage is possible when there is a sequence of currencies ci1 , . . . , cik
such that ri1,i2 · ri2,i3 · · · · · rik−1,ik · rik,i1 > 1. This means that by starting with one unit of
currency ci1 and then successively converting it to currencies ci2 , ci3 , . . . , cik and finally back
to ci1 , you would end up with more than one unit of currency ci1 . Such anomalies last only
a fraction of a minute on the currency exchange, but they provide an opportunity for profit.

We say that a set of exchange rates is arbitrage-free when there is no such sequence, i.e.
it is not possible to profit by a series of exchanges.

(a) Give an efficient algorithm for the following problem: given a set of exchange rates
ri,j which is arbitrage-free, and two specific currencies s, t, find the most advantageous
sequence of currency exchanges for converting currency s into currency t.

Hint: represent the currencies and rates by a graph whose edge weights are real numbers.

(b) Oski is fed up of manually checking exchange rates, and has asked you for help to write
a computer program to do his job for him. Give an efficient algorithm for detecting the
possibility of arbitrage. You may use the same graph representation as for part (a).

Solution:

(a) Main Idea:
We represent the currencies as the vertex set V of a complete directed graph G and the
exchange rates as the edges E in the graph. Finding the best exchange rate from s to t
corresponds to finding the path with the largest product of exchange rates. To turn this
into a shortest path problem, we weigh the edges with the negative log of each exchange
rate. Since edges can be negative, we use Bellman-Ford to help us find this shortest path.

Pseudocode:

1: function BestConversion(s, t)
2: G← Complete directed graph, ci as vertices, edge lengths l = {− log(ri,j) | (i, j) ∈

E}.
3: dist, prev← BellmanFord(G, l, s)
4: return Best rate: e−dist[t], Conversion Path: Follow pointers from t to s in prev

Proof of Correctness:
To find the most advantageous ways to converts cs into ct, you need to find the path
ci1 , ci2 , · · · , cik maximizing the product ri1,i2ri2,i3 · · · · · rik−1,ik . This is equivalent to

minimizing the sum
∑k−1

j=1(− log rij ,ij+1). Hence, it is sufficient to find a shortest path
in the graph G with weights wij = − log rij . Because these weights can be negative, we
apply the Bellman-Ford algorithm for shortest paths to the graph, taking s as origin. The
correctness of the entire algorithm follows from the proof of correctness of Bellman-Ford.

Runtime:
Same as runtime of Bellman-Ford, O(|V |3) since the graph is complete.

3



CS 170, Spring 2019 HW 5 P. Raghavendra & L. Trevisan

(b) Main Idea:
Just iterate the updating procedure once more after |V | rounds. If any distance is up-
dated, a negative cycle is guaranteed to exist, i.e. a cycle with

∑k−1
j=1(− log rij ,ij+1) < 0,

which implies
∏k−1

j=1 rij ,ij+1 > 1, as required.

Pseudocode: This algorithm takes in the same graph constructed in the previous part.

1: function HasArbitrage(G)
2: dist, prev← BellmanFord(G, l, s)
3: dist∗ ← Update all edges one more time
4: return True if for some v, dist[v] > dist∗[v]

Proof of Correctness:
Same as the proof for the modification of Bellman-Ford to find negative edges.

Runtime:
Same as Bellman-Ford, O(|V |3).
Note:
Both questions can be also solved with a variation of Bellman-Ford’s algorithm that
works for multiplication and maximizing instead of addition and minimizing.

6 Bounded Bellman-Ford

Modify the Bellman-Ford algorithm to find the weight of the lowest-weight path from s to t
with the restriction that the path must have at most k edges.

Solution: The obvious instinct is to run the outer loop of Bellman-Ford for k steps
instead of |V |−1 steps. However, what this does is to guarantee that all shortest paths using
at most k edges would be found, but some shortest paths using more that k edges might also
be found. For example, consider a path on 10 nodes starting at s and ending at t, and set
k = 2. If Bellman-Ford processes the vertices in the order of their increasing distance from
s (we cannot guarantee beforehand that this will not happen) then just one iteration of the
outer loop finds the shortest path from s to t, which contains 10 edges, as opposed to our
limit of 2. We therefore need to limit Bellman-Ford so that results computed during a given
iteration of the outer loop are not used to improve the distance estimates of other vertices
during the same iteration.

We therefore modify the Bellman-Ford algorithm to keep track of the distances calculated
in the previous iteration.

4



CS 170, Spring 2019 HW 5 P. Raghavendra & L. Trevisan

Algorithm 1 Modified Bellman-Ford

Require: Directed Graph G = (V,E); edge lengths le on the edges, vertex s ∈ V , and an
integer k > 0.

Ensure: For all vertices u ∈ V , dist[u], which is the length of path of lowest weight from s
to u containing at most k edges.

1: for v ∈ V do
2: dist[u]←∞
3: new-dist[u]←∞
4: dist[s]← 0
5: new-dist[s]← 0
6: for i = 1, . . . , k do
7: for v ∈ V do
8: previous-dist[v]← new-dist[v]

9: for e = (u, v) ∈ E do
10: new-dist[v]← min(new-dist[v], previous-dist[u] + le

Assume that at the beginning of the ith iteration of the outer loop, new-dist[v] contains
the lowest possible weight of a path from s to v using at most i− 1 edges, for all vertices v.
Notice that this is true for i = 1, due to our initialization step. We will now show that the
statement also remains true at the beginning of the (i + 1)th iteration of the loop. This will
prove the correctness of the algorithm by induction. We first consider the case where there
is no path from s to v of length at most i. In this case, for all vertices u such that (u, v) ∈ E,
we must have new-dist[u] = ∞ at the beginning of the loop. Thus, new-dist[v] = ∞ at
the end of the loop as well. Now, suppose that there exists a path (not necessarily simple)
of length at most i from s to v, and consider such a path of smallest possible weight w. We
want to show that new-dist[v] = w.

Let u be the vertex just before v on this path. By the induction hypothesis, at the end
of the loop on line 7, previous-dist[u] stores the weight of the lowest weight path of length
at most i − 1 from s to u, so that when the edge (u, v) is proceed in the loop on line 9, we
get new-dist[v] ≤ w.

Now, we observe that at the end of the loop on line 9, we have

new-dist[v] = min

(
previous-dist[v], min

u:(u,v)∈E

(
previous-dist[u] + l(u,v)

))
.

Note that by the induction hypothesis, each term in the minimum expression represents the
length of a (not necessarily simple) path from s to v of length at most i. Thus, in particular,
none of these terms can be smaller than w, so that new-dist[v] ≥ w. Combining with
new-dist[v] ≤ w obtained above, we get new-dist[v] = w as required.

5


	Study Group
	Updating Labels
	Count Four Cycle
	Constrained Dijkstra
	Arbitrage
	Bounded Bellman-Ford

