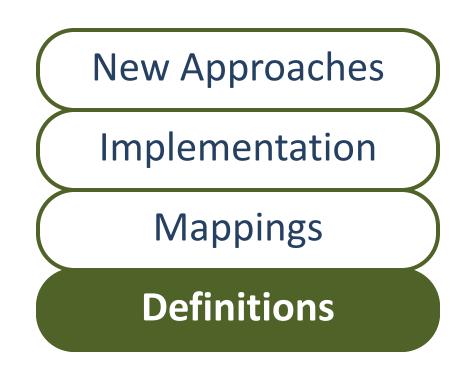


L3 – Names, Addresses, and Routes by T.S.R.K. Prasad

EA C451 Internetworking Technologies

<u>References / Acknowledgements</u>



- [Shoch] A note on Inter-Network Naming, Addressing, and Routing by John F. Shoch, Internet Experiment Note # 19, Notebook Section 2.3.3.5, Xerox PARC, January 1978.
- [Hauzeur] Hauzeur, Bernard M., A Model for Names, Addressing, and Routing, ACM Transactions on Office Information Systems, Vol. 4, No. 4, October 1986, Pages 293 - 311.
- [Clark-Address] David D. Clark, Karen Sollins, John Wroclawski, and Ted Faber, Addressing Reality: An Architectural Response to Real-World Demands on the Evolving Internet, SIGCOMM-2003. (Read Sec 3.4)

Presentation Overview

The Key Terms

THE WAR ACT.

- Name
- Route / Path
- Address
- Service
- User Description

Definition: A name is a linguistic object that singles out a particular entity from among a collection of entities; A collection of entities that defines the naming domain.

Ex: photon, gmail.com

- Not always a human-readable string
- Three interesting attributes structure, time, and number

SSL Certificate - Name

- Used by the websites for secure exchange of information
- Name follows
 X.400 naming
 convention

Certificate Viewer:"warrior.bits-goa.ac.in"		
General Details Could not verify this certificate for unknown reasons.		
Issued By Common Name (CN) Organization (O) Organizational Unit (OU)	warrior.bits-goa.ac.in Zimbra Collaboration Suite Zimbra Collaboration Suite	
Validity Issued On Expires On	11/01/2011 10/31/2012	
Fingerprints SHA1 Fingerprint MD5 Fingerprint	11:E9:0F:FA:7E:D4:2E:FA:6E:35:FE:36:44:9E:E4:68:FA:7D:DB:6B 73:C2:5C:8E:11:8E:AF:F9:7E:0E:AF:37:86:B7:AD:6C	

Definition: A route is a list of names representing the path from source to destination. Ex: proxy → google.com → plus.google.com $10.1.1.25 \rightarrow 74.125.236.[65 - 73],78 \rightarrow 74.125.236.[65 - 73],78$

Routes changes possible for a named destination

Definition: An address is an intermediate form between a name and a route;

- it is oriented to machine processing and used to generate the route.
- Ex: 10.1.1.25, 24:b6:fd:35:2e:7d
- Name vs Address

entity is denoted by name; communication object of the entity gets the address.

<u>Hierarchical vs Flat Address</u> <u>Space</u>

- Flat Address Space
 - Globally unique
 - (Global) Routing table is long
- Hierarchical Address Space
 - Sub-optimal routes
 - Easy maintenance

Conclusions applicable to name space as well

A Simple traceroute

Origin:67.222.132.196 [network-tools.com]Destination:74.125.227.96 [google.com]

Path:

- Hop IP Address
- 1 8.9.232.73
- 2 4.69.145.140
- 3 4.59.36.14
- 4 72.14.233.65
- 5 209.85.240.91
- 6 74.125.227.96

Trace complete

Host name xe-5-3-0.edge3.dallas1.level3.net ae-3-80.edge2.dallas3.level3.net google-inc.edge2.dallas3.level3.net

dfw06s16-in-f0.1e100.net

Definition: service refers to a set of related software functionalities that can be reused for different purposes, together with the policies that should control its usage.

Ex: email, voip, web hosting, DNS

• Typically deployed on servers (in cloud??)

User Description

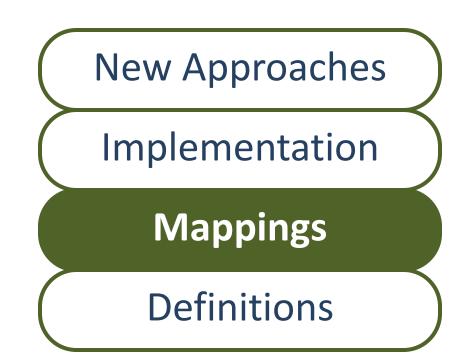
- User requirement
 - Phone call
 - Video conferencing
 - File exchange
 - Website on www
- Multiple services may satisfy user requirement
 Ex: FTP, μTorrent, DC++ all provide file tranfer
- Very dynamic

Example – BITS Student Scenario

- User requirement: file transfer to anywhere on the web
- Service providers: dropbox, rapidshare, BITS network
- Services: FTP, P2P, email, www
- Servers/nodes: ftp.bits-goa.ac.in, rapidshare.com, ... (names)
- $127.0.0.1 \rightarrow 10.1.1.25 \rightarrow 80.239.151.4, \dots$ Paths:
- Addresses:

10.1.1.223, 80.239.151.4, ...

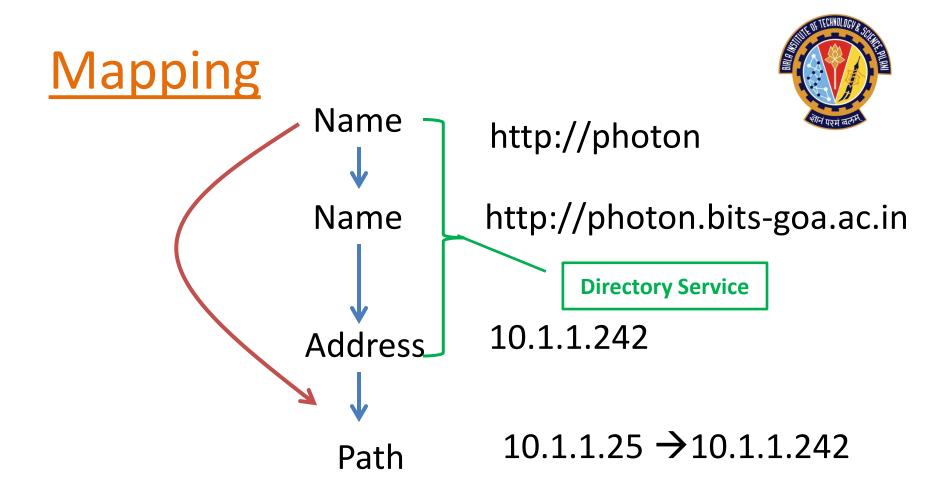
Home Work



Which category – name, address, path, server, service, user description - do the following concepts fall into:

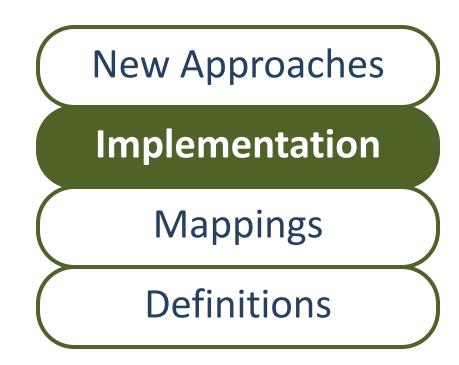
- URL (Uniform Resource Locator)
- URI (Uniform Resource Identifier)
- URN (Uniform Resource Number)
- URC (Uniform Resource Characterization)
- Magnet link
- Torrent

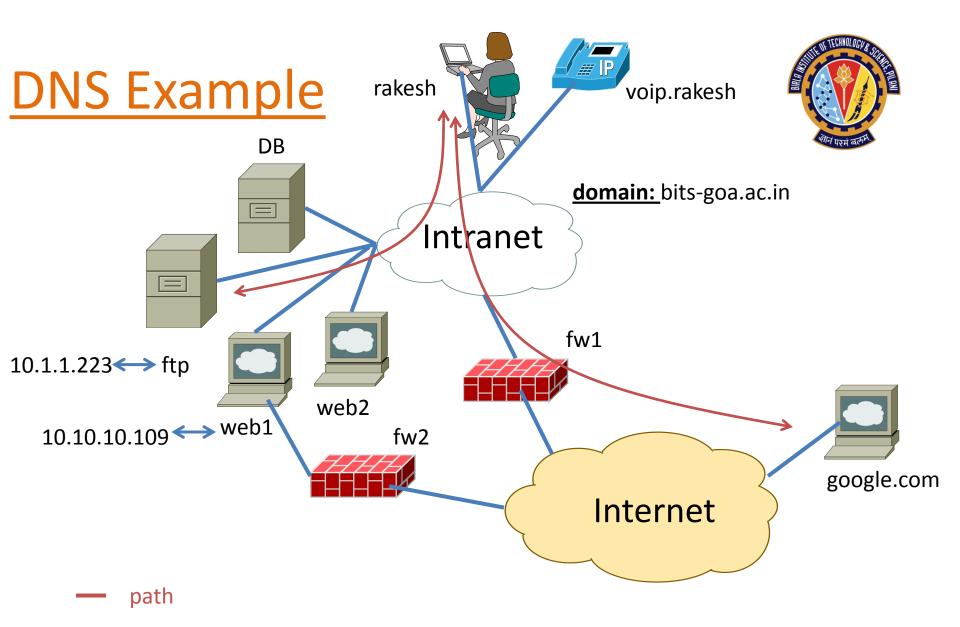
Presentation Overview



The 'name' of a resource indicates *what* we seek, an 'address' indicates *where* it is, and a 'route' tells us *how to get there*. - John F. Shoch, Internet Experiment Note #19

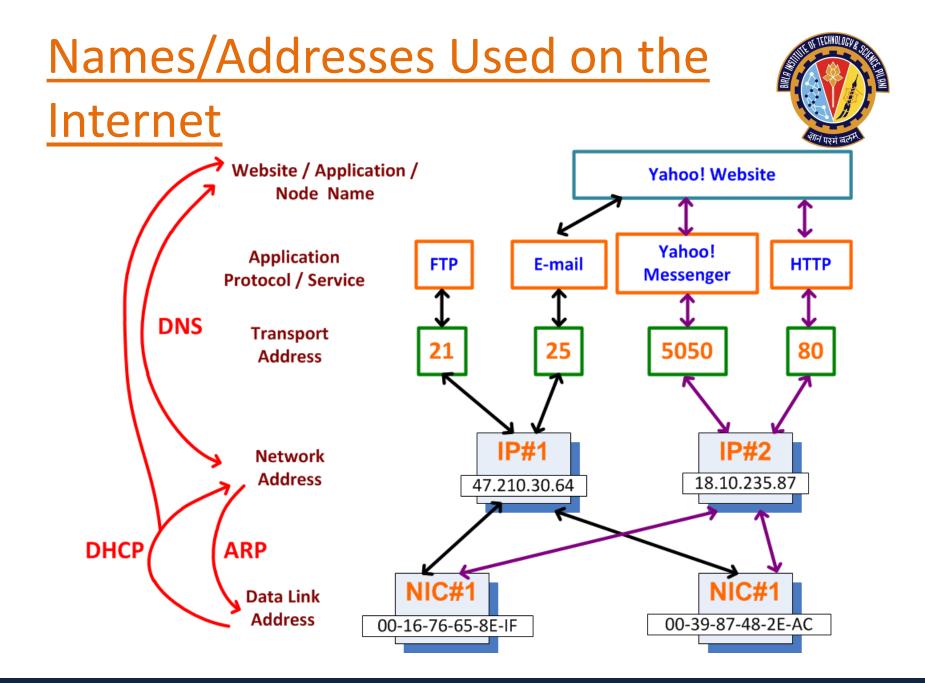
a *name* may be used to derive an *address*, which may then be used to derive a *route*.


A name at one layer may generate a route at a lower layer.



• This translation is possible at the following nodes: user, service, and server/node

Presentation Overview



Implementation \rightarrow DNS

The Participants According to rfc1498

- 1. Service and Users.
- 2. Nodes.
- 3. Network attachment points.
 - the term "ip address" is an identifier of a network attachment point.
- 4. Paths.
 - These run between network attachment points, traversing forwarding nodes and communication links.

Implementation \rightarrow Names and Addresses on the Internet

EA C451 INET TECH

Names and Addresses for Layers


Application	Domain Name
Layer	
Transport	
Layer	
Network	IP
Layer	
LLC	
MAC Layer	MAC
PHY	

Where are the ports??

Names and Addresses at Layer

Boundaries

What is the scenario for 3G connection??

Ideas from Real World

- 1. Widgets / Mashups (WebApps) for:
 - User requirements
- 2. URIs for:
 - Resource and web service descriptions
- 3. Domain names and extensions for:
 - Servers / Nodes
- 4. Ports for:
 - Services on a particular server
- 5. Addresses for:
 - IP, Ethernet and translations
- 6. Mapping service for:
 - Domain name to IP translation

The Connectivity Scenario

- Service on multiple nodes
- Multiple services on single node
- Nodes with multiple network attachments
- Multiple nodes with same network attachment
- Multiple paths between any two network attachments

*network attachment ~ IP address

Complications With IPv4

- Addresses are no longer globally (spatially) unique locators
 - NAT, Cloud Computing
- Addresses are no longer all temporally unique locators
 - DHCP, Mobile IP
- Multicast and Anycast
- Switching of service providers

Presentation Overview

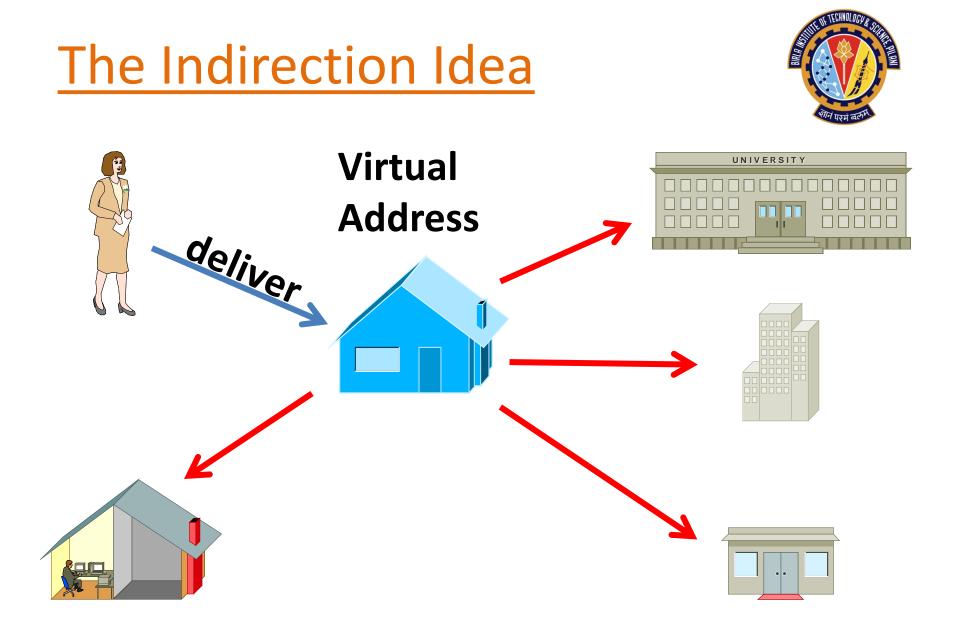
Implementation

Mappings

Definitions

Names (Identifiers) should be assigned at birth, never change, and never be re-used.

Addresses (Locators) should describe the host's position in the network's topology, and should change whenever the topology changes.



All problems in computer science can be solved by another level of <u>indirection</u>

- David Wheeler

... Except for the problem of too many layers of indirection

- Kevlin Henney

New Approaches -> Indirection

The Indirection Implementation

user-level descriptor (ULD) lookup (e.g., e-mail address, search string, etc.)

App obtains SIDs corresponding to ULD using a lookup or search service

SID resolution

App's session protocol (e.g., HTTP) resolves SID to EIDs using SID resolution service

EID resolution

Transport protocol resolves EID to IP addresses using EID resolution service

IP address "resolution" (routing)