
Public-key Encryption November 4, 2012

Lecture 1

Lecturer: Dominique Schröder

1 Introduction

These notes should only supplement the lectures giving in class. They consist mainly of the
technical aspects and do not cover all discussions and ideas.

2 Preliminaries

We review some basic notations and definitions that we will use during the entire course.
The security parameter λ is an additional input to all algorithms. To guarantee that the
algorithms run in polynomial time in their input length, we provide λ in unary and it is
denoted by 1λ.

Definition 1 An algorithm A that gets as input a string of size λ is a polynomial-time
algorithm, if it runs in time O(λc) for some constant c. We write y ← A(x) to denote the
output of A on input x. ♦

Now, we define algorithms that run in polynomial-time, but make random choices during
their executions. Although these algorithms make random choices, they always terminate
after a polynomial number of steps.

Definition 2 A polynomial-time algorithm A, often dented by ppt, is a probabilistic
polynomial-time algorithm, if it gets as input a string x and some randomness r. We write
y ← A(x; r) to denote the output of A on input x using randomness r. ♦

2.1 Negligible Functions

In many cases, we need to bound the probability that some undesired event happens. Such
an event could be that the adversary guesses a message or a secret key. In cryptography, we
often cannot prevent these events, but the probability that they happen is so small that one
could never notice it. To bound this probability, we recall the notion of negligible functions.
A function f is negligible if it grows smaller than any inverse polynomial. We formalize this
notion as follows:

Definition 3 A function f is negligible in terms of λ, denoted by negl(λ), if for all integer
c, there exists a λ′, such that for all λ > λ′ it holds that f(λ) < 1/λc. ♦

Example 4 The following functions are all negligible in λ:

• δ(λ) = 2−λ

• δ(λ) = λ− log λ.

1-1



These functions are not negligible in λ:

• δ(λ) = const > 0

• δ(λ) = 1/p(λ).

♦

Negligible functions fulfill the following properties:

Proposition 1 Let f1 and f2 be negligible functions. Then,

1. The function f3 defined by f3(λ) = f1(λ) + f2(λ) is negligible.

2. For any positive polynomial p, the function f4 defined by f4(λ) = p(λ) · f1(λ) is
negligible.

The second property is important for cryptographic applications as it implies that repeating
the algorithm polynomially many times (in the input length) yields an algorithm that has
also negligible success probability.

3 One-Way and Trapdoor Functions

We review the well known definitions of one-way functions, permutations, and trapdoor
permutations.

3.1 One-Way Functions and Permutations

A one-way function (OWF) is a function that is easy to compute, but hard to invert. OWFs
are the most basic primitive and they are necessary to realize most cryptographic schemes.
Unfortunately, researchers have not been able to prove that one-way functions exist. Hence,
the existence of one-way functions is a necessary assumption. We begin with a syntactic
definition of a function family and define one-wayness afterwards.

Definition 5 A function family is a tuple of algorithms (Gen,Sample,Eval), where

Gen(1λ): The generation algorithm is a ppt algorithm that takes as input the security
parameter. It outputs a value i (one could think of i as indexing a function fi over
some domain Di).

Sample(i): If i was generated by Gen, then the probabilistic sampling algorithm outputs
an element x that is uniformly distributed in Di. Formally, this means that the
distribution {Sample(i)} is equal to the uniform distribution over Di.

Eval(i, x): If i was generated by Gen and x ∈ Di, then the deterministic evaluation algorithm
outputs an element y ∈ Di.

♦

Definition 6 A function family (Gen,Sample,Eval) is one-way if for all ppt algorithms A
the probability that the experiment OWA evaluates to 1 is negligible in λ, where

1-2



Experiment OWA(λ)
i← Gen(1λ)
x← Sample(i)
y ← Eval(i, x)
x′ ← A(i, y)

Return 1 iff Eval(i, x′) = y.

♦

We will use the notation of experiments extensively throughout this course. The exper-
iment represents the probability that a particular event happens after a certain sequence
of executions. The first step of the experiment is to pick an index i of the function and
to seelect a random element x from the set {0, 1}λ. In particular, x ← {0, 1}λ denotes
selecting x uniformly at random from {0, 1}λ (or more general, from an arbitrary set S).
The adversary A is run with uniformly-chosen randomness r. We often use A(y) as an
abbreviation of A(y; r).

Remark 7 Even moderate assumptions, such as P 6= NP, are (currently) not sufficient to
prove the existence of one-way functions. However, it is widely believed the OWF exist and
there is no a-priori reason to believe that they do not exist. A long sequence of outstanding
results shows that one-way functions are sufficient to realize all primitives belonging to
Impagliazzo’s minicrypt world, including private-key encryption, messages authentication
codes, and signature schemes. In the following we will discuss some (good) candidates. ♦

A slightly stronger primitive are one-way permutations (OWP). Loosely speaking, a one-
way permutation is a one-way function with the property that every image y has a unique
pre-image.

Definition 8 A function f is a one-way permutation if f is a one-way function and f is a
permutation. ♦

3.2 Trapdoor Permutations

Trapdoor permutations (TDP) are similar to one-way permutations, but TDPs have the
additional property that there exists a secret information, the trapdoor, that allows the
efficient inversion of the function. Following [1], we give two different definitions of TDPs.
The first definition is rather formal, but maps to all known TDP candidates. The second
definition is somewhat easier to understand and work with, but does not necessarily cover
the (conjectured) instantiations. The generic constructions that we discuss in this class,
however, can easily be modified to hold for the first definition as well.

Definition 9 A trapdoor permutation family F is a tuple of ppt algorithms (Gen, Sample,Eval,
Invert) such that:

Gen(1λ): The key generation algorithm outputs a pair (i, td), where i defines a particular
permutation fi over some domain Di and td represents some “trapdoor”.

Sample(i): is defined analogously to Definition 3.1.

1-3



Eval(i, x): The deterministic evaluation algorithm outputs an element y ∈ Di (assuming i
was output by Gen and x ∈ Di). Furthermore, for all i output by Gen, the function
Eval(i, ·) : Di 7→ Di is a permutation. (Thus, one can view Eval(i, ·) as corresponding
to a permutation fi mentioned above.)

Invert(td, y): The deterministic inversion algorithm returns an element xi ∈ Di, where (i, td)
is a possible output of Gen.

The correctness condition is as follows: We require that for all λ, all (i, td)← Gen(1λ), and
all x ∈ Di we have Invert(td,Eval(i, x)) = x. ♦

Note that the correctness condition guarantees that the inverse function f−1i is efficiently
computable given the trapdoor td. In general, however, computing the inversion function
without the trapdoor is not possible in polynomial-time.

The following definition formalizes the intuition of being hard to invert.

Definition 10 A trapdoor function family F = (Gen,Sample,Eval, Invert) is one-way if for
all ppt algorithms A the probability that the experiment OWA evaluates to 1 is negligible
in λ, where

Experiment OWA(λ)
(i, td)← Gen(1λ)
x← Sample(i)
y ← Eval(i, x)
x← A(i, y)

Return 1 iff Eval(i, x) = y.

♦

3.3 A Simplified Definition of TDPs

In the following, we give a second definition of trapdoor permutations that is simpler to
work with. While this definition maps our intuition for trapdoor permutations, it sometimes
does not cover the trapdoor permutations that are used in practice.

The first simplification is that we assume that all Di are the same for a given security
parameter λ and that Di = {0, 1}λ (i.e., the set of strings with length λ). The second
simplification is to let the key generation algorithm return the function f and it’s inverse
f−1 instead of an index i that maps to fi. Technically, one could think of f as being a
description of the function). Also, even if we abuse the notations writing f−1 it should
be clear that the mathematical inversion function is not efficiently computable without
knowing the trapdoor (i.e., the function exists, but it cannot be computed in polynomial
time without the trapdoor).

Definition 11 A trapdoor permutation family F is a tuple of ppt algorithms F = (Gen,Eval,
Invert) such that:

Gen(1λ): The key generation algorithm outputs a pair (f, f−1), where f is a permutation
over {0, 1}λ.

1-4



Eval(f, x): The deterministic evaluation algorithm outputs an element y ∈ {0, 1}λ (assuming
f was output by Gen and x ∈ {0, 1}λ). We often write f(x) instead of Eval(f, x).

Invert(f−1, y): The deterministic inversion algorithm returns an element xi ∈ {0, 1}λ, where
(·, f−1) is a possible output of Gen and we will write often f−1(y) instead of Invert(f−1, y).

The correctness condition is as follows: We require that for all λ, all (f, f−1) ← Gen(1λ),
and all x ∈ {0, 1}λ we have f−1(f(x)) = x. ♦

With this simplified definition, we also obtain a simpler definition of one-wayness that
looks as follows.

Definition 12 A trapdoor function family (Gen,Eval, Invert) is one-way if for all ppt al-
gorithms A the probability that the experiment OWA evaluates to 1 is negligible in λ,
where

Experiment OWA(λ)
(f, f−1)← Gen(1λ)
x← {0, 1}λ
y ← f(x)
x← A(i, y)

Return 1 iff f(x) = y.

♦

Further Reading

We discussed in class the relation between OWF and TDP. For additional reading about it,
I suggest the paper [2].

References

[1] Jonathan Katz, Lecture Notes on Advanced Topics in Cryptography, University of
Maryland, USA.

[2] Russel Impagliazzo, A Personal View of Average-Case Complexity, SCT ’95 Proceed-
ings of the 10th Annual Structure in Complexity Theory Conference (SCT’95).

1-5


