
Public-key Encryption December 19, 2012

Lecture 8

Lecturer: Dominique Schröder

1 Towards the Cramer-Shoup Encryption Scheme

1.1 Preliminaries

In this lecture, we are making the first step towards the efficient CCA2 secure encryption
scheme that has been suggested by Cramer and Shoup [1]. Our construction and proof
follows [2]. All schemes are secure under the DDH assumption:

Definition 1 The DDH problem is hard relative to G if for all ppt algorithms A there exists
a negligible function ε(λ) such that

|Prob[A(G, q, g, gx, gy, gz) = 1]− Prob[A(G, q, g, gx, gy, gxy) = 1] | ≤ ε(λ)

where the probability is taken over the random coins of G and over the random choices of
x, y, z ∈ Zq. ♦

Recall a variant of the El Gamal encryption scheme that has been discussed in Problem
Set 5:

Gen(1λ)

(G, q, g1, g2)← G(1λ)

x, y ← Zp
h← gx1g

y
2

dk := (G, q, g1, g2, x, y)

ek := (G, q, g1, g2, h)

return (dk, ek)

Enc(ek,m)

Parse ek as (G, q, g, h)

r ← Zq
C := (gr1, g

r
2, h

r ·m)

return C

Dec(dk,C)

parse dk as (G, q, g1, g2, x, y)

parse C as (u, v, e)

output e
ux·vy

1.2 A Lite Version

We modify the scheme even further in order to obtain an encryption scheme that is CCA1
secure, i.e., secure against non-adaptive chosen-ciphertext attacks. The modified encryp-
tion scheme PKEcca1 = (Gencca1,Enccca1,Deccca1) is defined as follows (where we assume
that (G, q) are system parameters, which are known to everybody):

8-1

Gencca1(1
λ)

(G, q, g1, g2)← G(1λ)

x, y ← Zp
a, b← Zp
h← gx1g

y
2

c← ga1g
b
2

dk := (g1, g2, x, y, a, b)

ek := (g1, g2, h, c)

return (dk, ek)

Enccca1(ek,m)

parse ek as (g, h, c)

r ← Zq
C := (gr1, g

r
2, h

r ·m, cr)
return C

Deccca1(dk,C)

parse dk as (g1, g2, x, y, a, b)

parse C as (u, v, e, w)

if w = ua · vb

output e
ux·vy

else ⊥

The scheme is complete, because for every honestly generated key and chiphertext the
validity check holds

w = cr = (ga1 · gb2)r = (ga1)r · (gb2)r = (gr1)a · (gr2)b = ua · vb.

Now, if the validity check holds, then the decryption algorithm returns the message:

e

ux · vy
=

hr ·m
(gr1)x · (gr2)y

=
(gx1g

y
2)r ·m

(gr1)x · (gr2)y
= m.

Theorem 1 If the DDH assumption holds relative to G, then the public-key encryption
scheme PKEcca1 = (Gencca1,Enccca1,Deccca1) has indistinguishable encryption under non-
adaptively chosen ciphertext attacks.

Proof The proof is similar to the one from the problem set, with the difference that we
have to show that the access to the decryption oracle in the first stage of the game, does
not help to distinguish two ciphertexts.

More formally, assume towards contradiction that there exists an efficient adversary A =
(A0,A1) that predicts the bit b in the IND-CCA1PKEA (λ) game with probability 1/2 + δ(λ),
where δ is non-negligible. Then, we show how to construct a distinguisher D against the
DDH assumption. Recall that the distinguisher against the DDH assumption gets as input
a tuple (g, gx, gy, gz) and it has to decide if z is a random element, or if z = xy. By real we
denote the event that z = xy and fake is the event that z is a random element.

The main idea of the reduction is to create an honestly computed ciphertext whenever
the reduction’s input is a real DDH tuple, and to run A1 on a ciphertext that information
theoretically hides the message otherwise. More formally:

8-2

D(g1, g2, g3, g4)

x, y, a, b← Zp
h← gx1g

y
2

c← ga1g
b
2

ek := (g1, g2, h, c)

dk := (x, y, a, b)

(m0,m1)← AD(dk,·)0 (ek)

b← {0, 1}
C ← (g3, g4, g

x
3 · g

y
4 ·mb, g

a
3 · gb4)

b′ ← A1(C)

if b = b′ return 1, else 0.

Claim 2 |Prob[D outputs 1 | real]− Prob[D outputs 1 | fake]| ≈ 0.

Proof This claim follows directly from the DDH assumption.

We analyze both cases independently. The next claim shows that if (g1, g2, g3, g4) is a
DDH tuple, i.e., the event real happens, then D simulates the CCA1 game perfectly.

Claim 3 Prob[D outputs 1 | real] = Prob
[
IND-CCA1PKEA (λ) = 1

]
.

Proof Both the encryption and the decryption key are identical to the ones in the real
scheme. Thus, D can simulate the decryption oracle perfectly and A0’s view is identical to
its view when it is run against the real encryption scheme. Now, we claim that the challenge
ciphertext has the same distribution as an honestly generated one, if D’s input is a real
DDH tuple. To see this observe that there exists a pair (α, r) such that:

(g1, g2 := gα1 , g3 := gr1, g4 := gαr1 = gr2).

Therefore, we can re-write the public key as

ek = (g1, g2, h = gx1 · g
y
2 , c = ga1 · gb2)

and the ciphertext as

C = (gr1, g
r
2, (g

r
1)x(gr2)y ·m, (gr1)a(gr2)b) = (gr1, g

r
2, (g

x
1g

y
2)r ·m, (ga1gb2)r)

for some r uniformly distributed in Zq.

The next claim considers the case where D is given a random DDH tuple.

Claim 4 Prob[D outputs 1 | fake] = 1
2 .

8-3

Proof If D′s input is a fake DDH tuple, then there exists a tuple (α, r, β) chosen at
random such that:

(g1, g2 := gα1 , g3 := gr1, g4 := gβ1).

Since (α, r, β) are chosen uniformly at random, it follows that β 6= αr (mod q) and α 6= 0
with all but negligible probability. Thus, in the following we assume that this is the case
and we can re-write the equation such that there exists two distinct values r, r′ ∈ Zq such
that

(g1, g2 := gα1 , g3 := gr1, g4 := gr
′

2).

Now, we analyze the probability that D outputs 1. It follows from our construction that D
outputs 1 whenever A1 outputs 1, thus Prob[D outputs 1] = Prob[A1 outputs 1]. In the
following, we show that A1 outputs 1 with probability 1/2 even if A is a computationally
unbounded adversary that queries the decryption oracle polynomially many times. The
input ofA0 is a public key ek = (g1, g2, h, c), where h = gx1g

y
2 . We argue that the information

that A learns from ek about x, y is not sufficient to learn which message was encrypted.
Since A is computationally unbounded, it can compute discrete logarithms and it learns
from the public key that logg1 g2 = α and that

logg1 h = x+ yα. (1)

Since α is fixed, this collapses the space of (x, y) into q possible pairs, one for each value x
and y, respectively. In the following, we analyze the amount of information that A0 learns
about (x, y) from its decryption queries. Let (µ, ν, e, w) be an arbitrary query by A0 to its
decryption oracle. For this query, we distinguish between two cases:

Valid ciphertexts: We say that if a ciphertext is valid, then there exists a value r′′ such
that µ = gr

′′
1 and ν = gr

′′
2 ;

Invalid ciphertexts: otherwise, the ciphertext is invalid.

Our proof now proceeds with two claims. The first one shows that the distribution of the
bit b is independent of A’s view, if the decryption oracle rejects all invalid ciphertexts. This
means that the adversary does not learn any information from valid ciphertext queries. The
second claim then shows that all invalid ciphertext queries are rejected.

Claim 5 The adversary A0 learn additional information about (x, y) only if it queries
(µ, ν, e, w) to the decryption oracle such that

1. logg1 µ 6= logg2 ν and

2. D(dk, ·) does not return ⊥.

Proof If D(dk, ·) returns ⊥, then this happens whenever w 6= µa · νb. Since this check
only involves (a, b) the attacker does not learn any information about (x, y).

Now, assume that A0 submits a valid ciphertext, i.e., there exists a value r′′ such that
logg1 µ 6= logg1 ν = r′′. In this case, the adversary obtains

m =
e

µxνy

8-4

from the decryption oracle. Taking logarithms on both sides of the equation yields the
information that A0 learn. In fact, A0 learns the following linear constraint on x and y

logg1 m = logg1 e− (logg1 µ)x− (α logg2 ν)y

= logg1 e− r
′′x− αr′′y,

where (x, y) are the only variables, because m and e are known. Since equation is linear
dependent on the equation (1), it does not introduce any additional constraint on (x, y) and
thus, the attacker A0 does not learn any information about (x, y).

The next claim shows that with all but negligible probability the adversary cannot
submit invalid ciphertexts that pass the consistency check.

Claim 6 The probability that A0 submits a query (µ, ν, e, w) such that

1. logg1 µ 6= logg2 ν and

2. D(dk, ·) does not return ⊥

is negligible.

Proof According to the construction, the decryption oracle only answers queries if w =
µa · νb. Now, consider the information that A0 has about (a, b) from the public key. Since
A is unbounded, it can compute the discrete logarithm of c = ga1g

b
2 which constrains (a, b)

according to
logg1 c = a+ (logg1 g2) · b = a+ αb. (2)

Now, let logg1 µ = r1 and logg2 ν = r2 if w′ is an arbitrary group element, then the value

µa · νb equals to w′ if

logg1 w
′ = a logg1 µ+ b logg2 ν (3)

= r1 · a+ αr2 · b (4)

Since the equations (2) and (4) are linearly independent in the unknowns a and b over Zq,
they have solutions in terms of a and b. Thus, the value µa · νb is uniformly distributed
in G and A0 can only guess this value with probability 1/q. This, however, is only true
as long as the decryption oracle does not reject the query. In fact, whenever D returns ⊥,
then A0 learns that w 6= µa · νb. This, however, eliminates only one from the q possible
solutions for (a, b). Thus, if we assume that A0 made p of these queries (assuming they
were all rejected) means that there are still q−p possibilities left, which means that A0 can
guess the value of w with probability 1/(q − p). Now, if we assume that A0 makes a total
number of p decryption queries, then the probability that any of A’s invalid ciphertexts are
not rejected is at most p/(q − p). Thus, the probability that A0 submits such a query is
negligible because q is exponential and p is polynomially bounded.

Now, Claim 4 follows from Claims 5 and 6.

Finally, the proof of the theorem follows easily from Claims 3 and 4, because the success
probability of A when giving a real DDH tuple carries over. Thus, if A win the game in
this case with non-negligible probability better than guessing, then we have a distinguisher
against the DDH assumption (contradicting Claim 2).

8-5

References

[1] R. Cramer and V. Shoup, A Practical Public-Key Encryption Cryptosystem Prov-
ably Secure Against Adaptive Chosen Ciphertext Attack, In Adv. in Cryptology —
CRYPTO 1998. Full version available from http://eprint.iacr.org/1998/006.ps

[2] J. Katz, Lecture Notes Advanced Cryptography CMSC 858K, Spring 2004.

8-6

