
Public-key Encryption February 5, 2013

Lecture 12

Lecturer: Dominique Schröder

1 OAEP+

In this lecture, we are proving the security of Shoup’s modification of the original OAEP
construction that is secure for arbitrary trapdoor permutation. We denote this modified ver-
sion by OAEP+ and we discuss the construction in the following. Our exposition follows [5]
and deviates from the original proof.

1.1 The Scheme

Let F be a trapdoor one-way permutation, acting over λ bits and let λ0, λ1 be two pa-
rameters such that λ0 + λ1 ≤ λ and the functions 2−λ0 and 2−λ1 are negligible. The
public-key encryption scheme PKE = (Gen,Enc,Dec) encrypts messages m ∈ {0, 1}n with
n = λ− λ0 − λ1 and it uses the following three functions:

G : {0, 1}λ0 7→ {0, 1}n

H ′ : {0, 1}n+λ0 7→ {0, 1}λ1

H : {0, 1}n+λ1 7→ {0, 1}λ0

In the proof of security, we will model these functions as independent random oraclesl The
scheme PKE is defined as follows: The main intuition behind this scheme is similar to the

Gen(1λ)

(f, f−1)← Gentd(1λ)

dk ← f−1, ek ← f

return (dk, ek)

Enc(ek,m)

parse m ∈ {0, 1}n

x← {0, 1}λ0

s← (G(x)⊕m)‖H ′(x‖m))

t← H(s)⊕ x
y ← f(s‖t)
return y

Dec(dk, y)

s‖t← f−1(y)

where |s| = n+ k1

x← H(s)⊕ t
parse s = s1‖s2

where |s1| = n; |s2| = λ1

m← G(x)⊕ s1
if H ′(x‖m) = s2

return m

else ⊥

previous encryption schemes in the random oracle model: A simulator that does not know
the trapdoor can still simulate the decryption query only by observing the queries to the
different random oracles.

12-1



Theorem 1 If F is a trapdoor one-way permutation, then PKE = (Gen,Enc,Dec) is CCA2
in the random oracle model.

Proof The proof presented in the lecture is different from the one of [4]; our exposition
follows [5]. Assume that A is an attacker against the CCA2 security of OAEP+. This
algorithm, has black-box access to the random oracles G,H ′, and H that will be simulated
by our reduction R. The algorithm R keeps records a list of query/answer pairs for each
of the oracle, i.e., by QG, QH′ , and QH we denote the initially empty lists of query/answer
pairs to the oracle G, H ′, and H, respectively. We assume, without loss of generality, that
whenever A queries H ′ on (x‖m), it has previously queried G on x. Now, we categorize
different types of queries that A makes to the decryption oracle. Note, that any invocation
of the decryption oracle defines the values (s, t, x) and m by simply following the decryption
algorithm.

Invalid A decryption query is invalid if the output of the decryption oracle is ⊥.

Valid A decryption query that is not invalid is valid.

Likely to be Invalid IfA has not queries H ′(x‖m) orH(s) before invoking the decryption
oracle, then the query is likely to be invalid.

Exceptional If a query that is likely to be invalid turns out to be valid, then we call this
query exccptional.

The first step of the proof is to show that A even an unbounded adversary can ask excep-
tional queries only with negligible probability.

Claim 2 Let A be an unbounded adversary that asks only a polynomial number of queries
to its oracles. The probability that A asks an exceptional query is negligible.

The intuition behind this claim is that even an unbounded adversary cannot predict the
mapping of the random oracle better than guessing. Since we allow A to be unbounded, we
can simply assume that whenever A1 gets the (challenge) ciphertext, it can easily recover
s and t by computing f−1(y). We fix the following notation: y∗ is the challenge ciphertext
that defines the value s∗‖t∗ = f−1(y), s∗1, s

∗
2, x
∗, t∗ and the corresponding message m∗.

Obviously, the message m∗ is hidden in an information theoretic sense as long as A never
queries G on x∗.

Now, we focus on an arbitrary decryption query y thatAmakes after seeing the challenge
ciphertext y∗ and we assume that this query is likely to be invalid. As before, we denote
by s‖t = f−1(y), s1, s2, x, t, and m the corresponding values. Since this query is likely to
be invalid, the adversary A has either not queried H ′ on (x‖m) or H on s. The following
case-by-case analysis shows that y is invalid with all but negligible probability:

Case 1: A has not queried H ′(x‖m) and x = x∗ and m = m∗: Observe that s1 = s∗1,
because (x,m) = (x∗,m). Whenever the ciphertext is valid, then s2 = s∗2 and hence
t = t∗ as well. This, however, means that y = y∗, which makes the query not
legitimate.

12-2



Case 2: A has not queried H ′(x‖m) and x 6= x∗: Since x 6= x∗ and because A has not
queried H ′(x‖m), the value H ′(x‖m) is uniformly distributed. Thus, the probability
that A predict this value is, which is necessary in order to pass the check, is 2−‖s2‖ =
2−k1 , which is negligible.

Case 3: A has not queried H ′(x‖m) and m 6= m∗: Analogously to the second case.

Case 4: A has not queried H(s) and s = s∗: If the query is legitimate, then it must
hold that y 6= y∗, and thus, t 6= t∗ as well, which means that x 6= x′. However, in
order to pass the check performed during the decryption it must hold that H ′(x‖m) =
s2 = s∗2 = H(x∗‖m∗). Thus, in order to submit such query A needs to find a different
input to the hash function that maps to the same output. Since A only queries the
random oracle a polynomial number of times, it follows easily that this happens only
with negligible probability.

Case 5: A has not queried H(s) and s 6= s∗: Since A never queried H on s, it follows
that the value x is uniformly distributed from A’s point of view. Thus, the probability
that A queries x‖m to H ′ is negligible. Now, this case is identical to the second case.

Now, the rest of the proof is similar to the two proofs from the previous lectures and
we will only sketch (remind) the main ideas. Recall that the message is information-
theoretically hidden if A does not query G on x∗. Furthermore, the attacker A must
query H on s∗ in order to learn x∗. We will now show that the probability that A queries
both H on s∗ and G on x∗ is negligible (denote this event by hit).

Claim 3 Prob[hit] ≈ 0.

Assume to the contrary that Prob[hit] 6≈ 0, then there exists an efficient adversary that
queries both H(s∗) and G(x∗) with non-negligible probability. Then, we show how to build
a algorithm B with input y∗ that inverts the trapdoor permutation also with non-negligible
probability. The algorithm B simulates the random oracle using lazy sampling and it runs a
black-box simulation of A = (A0,A1). At some point, A0 outputs two messages (m0,m1).
The algorithm B then runs A1 on y∗ and simulates decryption queries as follows: Whenever
B receives a query y, then is searches through all queries to H ′ (that are stored in QH′) and
computes for each query (xi,mi) the value

si ← (G(xi)⊕mi)‖H ′(xi‖mi).

Now, if si 6∈ QH , then A has never queried H on (si) and B returns ⊥. Otherwise, the
algorithm B computes ti ← H(si) ⊕ xi and checks if y = f(si‖ti). If this is the case, then
B returns si‖ti as the decryption. Otherwise, B outputs ⊥.

At some point, A1 either outputs a bit b or aborts. In any case, the algorithm B goes
through the lists QH and QG and checks if the pre-image of y has been queried to the
oracle. That is, for each si ∈ QH and each xj in QG it computes ti,j ← xj ⊕ H(si) and
checks if f(si‖ti,j) = y∗. If there exists a pair that passes this check, then B outputs the
corresponding pair. Otherwise, it aborts.

12-3



Now, the proof follows from the following facts: The algorithm A only notices the
difference between this simulation and the one in the real world if it makes an exceptional
query to the decryption oracle. However, we have seen that this probability is negligible.
Thus, the probability that hit happens in this game is the same as in a real execution. But
then, the algorithm B inverts the TDP A with the same probability. Since he have initially
assumed that the TDP is one-way, the opposite must be true.

References

[1] M. Bellare and P. Rogaway, Optimal Asymmetric Encryption, EUROCRYPT’94.

[2] Dan Boneh, Simplified OAEP for the RSA and Rabin functions, CRYPTO’01.

[3] E. Fujisaki, T. Okamoto, D. Pointcheval, J. Stern, RSA-OAEP Is Secure under the
RSA Assumption. CRYPTO’01.

[4] Victor Shoup, OAEP Reconsidered, CRYPTO’01.

[5] J. Katz, Lecture Notes Advanced Cryptography CMSC 858K, Spring 2004.

12-4


