
Public-key Encryption January 23, 2013

Lecture 10
Lecturer: Dominique Schröder

1 The Random Oracle Model

In the previous lectures, we have seen two approaches to build a CCA2 secure encryp-
tion scheme. The first one was the DDN construction, which generically combines
a CPA secure encryption scheme with a digital (one-time) signature scheme and an
adaptively secure NIZK. The second approach was the Cramer-Shoup encryption
scheme that is secure under the DDH assumption. Thus, if we want CCA2 security,
then we either have to use a rather inefficient scheme or a construction that is based
on specific number theoretic assumptions that might not hold in reality. In both
cases, however, we know that even the Cramer-Shoup encryption scheme is not as
efficient as many CPA secure schemes (e.g., the El Gamal encryption scheme).

Another approach to obtain a more efficient instantiation is to introduce a new
cryptographic model. We stress that introducing a new model is not the same as
introducing a new assumption. In this lecture, we discuss a quite popular model
known as the random oracle (RO) model. The RO model has a long history in
cryptography and was first formalized by Bellare and Rogaway [1]. The RO model
assumes the existence of a public oracle H that implements a truly random function.

It is not hard to see that such an oracle cannot exist in reality, but this model
provides a formal methodology to design and validate the security of cryptographic
schemes following a typical two step approach [2]:

1. The first step is the design of the scheme and providing a proof of security in
the RO model. The construction might be based on “standard” cryptographic
assumptions.

2. To use the scheme in the real world, each party uses a real-world hash function
(such as e.g., SHA1) and we adjust the scheme appropriately. That is, whenever
the scheme asks to evaluate the RO on a value x, then the function is computed
locally.

The hope is that the hash functions emulates the RO well enough such that the
security proof carries over to the standard model. Currently, there is no theoretical
foundation that justifies this view. In fact, there exist (contrived) schemes that are
provably secure in the RO model, but completely insecure in the standard model no
matter how the random oracle is instantiated [2, 3]. From a practical point of view,
however, is not clear what it means to emulate a RO well enough and there is not

10-1

good understanding if this is an achievable goal. Instead, one can see a proof in the
RO model as providing (strong?) evidence that a scheme has no “inherent design
flaws”. In particular, a proof in the RO model does not mean that the scheme is
provably secure in the real world.

1.1 Defining the RO Model

The random oracle H can be seen as black box that is accessible by everyone, the
honest and the malicious parties. Whenever it is queried with a binary string x, then
it outputs binary string y = H(x). The box answers consistently, i.e., whenever some
party queries x, it outputs the same response y. The queries to the box are hidden
from the other parties, which means that if the party P queries x to H, then the
party P ′ neither learns the query nor its answer. This models the fact that a hash
function should be a publicly known function that is computable by everyone. Since
internal behavior of the box is unknown and inscrutable, no party knows the complete
function (in fact, each party only knows the mapping of the points it has queried).

In what follows, we describe two equivalent ways to model the RO model. The
first possibility is to choose a function H uniformly at random from the set of all
appropriate functions (i.e., those that have the same input and output length). The
second way is to program the function “on-the-fly”.

Random Choice of H: Consider the set of functions that map λ-bit input to `(λ)-
bit output. Each of these functions can be represented by a table where for each
possible value x ∈ {0, 1}λ the corresponding output value is H(x) ∈ {0, 1}`(n).
If we order the inputs lexicographically, then any of these functions can be
represented by a string of length `(λ) · 2λ. We can count all possible functions
mapping λ-bit inputs to `(λ)-bit outputs, obtaining a total number of U :=
2`(λ)·2λ different functions. Thus, choosing a random function means to pick a
function of U uniformly at random.

Programming H: Alternatively, one can define the random oracle “on-the-fly”.
That is, we imagine the function H to be defined by a table (as before) mapping
λ-bit inputs to `(λ)-bit outputs, but now this table is initially empty. Thus,
whenever a party queries H on a value x, then the oracle first checks if x is
already in the table. If this is the case, then it simply returns the corresponding
entry H(x) = y. Otherwise, if x has never been queried before, then the oracle
picks a value y uniformly at random from {0, 1}`(λ), it stores the mapping (x, y)
in the table, and returns H(x) := y.

1.2 Security Proofs in the RO Model

In the previous lectures we have seen several definitions and proofs in the standard
model. The typical structure of a construction and security proof in the standard

10-2

model consist of the definition of a schemes Π and a security proof w.r.t. some exper-
iment ExpΠ

A. The scheme Π is secure, if the probability that the experiment ExpΠ
A

outputs some value α is only negligibly bigger than γ, where γ is the maximum de-
sired probability that some “bad” event happens. In the case of CPA/CCA security
γ = 1/2. Here, the probabilities are taken over the random choice of Π and those of
A. The parties that use the scheme Π in the real-world will make random choices
which guarantees the security of the scheme in the real-world.

Now, if we consider definitions and proof in the RO model, then the situation is
different because we have to compute the success probability also over the random
choice of H. More precisely, in the RO model, the scheme (and also the attacker
A) gets black-box access to random oracle H. Let’s denote the corresponding con-
struction by ΠH (resp. AH). Then, the security definition says that a scheme ΠH is

secure, if the probability that ExpΠH

AH outputs α is only negligibly bigger than γ. The
difference is that the probability in this case is also taken over the random choice of
H. In particular, this means that once the hash function is fixed, the above security
claim does not hold anymore. This is analogous to the fact that the security claims
do not hold for a particular set of random choices made by the honest parties, but
only with high probability over these choices [2].

Another issue why the security proofs might no longer hold in the standard model
is that once the hash functions is fixed, the adversary does not need to query it in a
black-box way, but it might look at the code.

2 Public Key Encryption in the RO Model

2.1 Semantically-Secure Encryption

We illustrate the power of the RO model by revisiting the semantically secure scheme
based on any trapdoor permutation. Recall that given a trapdoor permutation
F = Gentd, the public-key encryption scheme PKE = (Gen,Enc,Dec) was defined
as follows:

Gen(1λ)

(f, f−1)← Gentd(1
λ)

dk ← f−1, ek ← f

return (dk, ek)

Enc(ek,m)

parse m ∈ {0, 1}
x← {0, 1}λ

y ← f(x)

b← hc(x)⊕m
return c = (y, b)

Dec(dk, c)

parse c as (y, b)

x← f−1(y)

m← hc(x)⊕ b
output m

where hc is the hardcore predicate for F . Thus, one evaluation of the trapdoor per-
mutation is used to encrypt a single bit. We have learned from the midterm that

10-3

encrypting more bits with a single evaluation of the TDP is quite difficult.
In the random oracle, however, we can exploit the fact that the output H(x) is

truly random if H is a random oracle and the adversary has never queried H(x).
This allows us to extract an unbounded number of hardcore bits from H. Obviously,
this cannot be true in the standard model: From an information theoretic point of
view, once H is fixed hc(x) completely determines x and thus H(x). Therefore, the
entropy of H(x), given hc(x) is 0. Also note that if the attacker is given hc(x) then
the probability that he queries x to H is negligible, or the attacker inverts the hc.

Given a trapdoor permutation F = Gentd and a random oracle H that maps from
the domain of the trapdoor permutation family to strings of length `, then the public-
key encryption scheme PKEH = (GenH ,EncH ,DecH) is defined as follows:

GenH(1λ)

(f, f−1)← Gentd(1
λ)

dk ← f−1, ek ← f

return (dk, ek)

EncH(ek,m)

parse m ∈ {0, 1}`

x← {0, 1}λ

y ← f(x)

B ← H(x)⊕m
return c = (y,B)

DecH(dk, c)

parse c as (y,B)

x← f−1(y)

m← H(x)⊕B
output m

Theorem 1 If F is a trapdoor one-way permutation, then PKEH = (GenH ,EncH ,DecH)
is semantically secure in the random oracle model.

Proof To prove this theorem, we have to show that the probability that the fol-
lowing experiment evaluates to 1 is negligibly bigger than 1/2,

Experiment IND-EAVPKE
A,H(λ)

b← {0, 1}
x← {0, 1}λ
(f, f−1)← Gentd(1

λ)
(m0,m1)← AH0 (f)
yb ← f(x)
Bb ← H(x)⊕mb

b′ ← AH1 (yb, Bb)
Return 1 iff b′ = b and |m0| = |m1|.

In other words, we have to show that∣∣∣∣Prob
[

IND-EAVPKE
A,H(λ) = 1

]
− 1

2

∣∣∣∣ ≈ 0.

The first observation is that if the attacker A = (A0,A1) never queries the random
oracle H on the value x, then the output H(x) looks truly random to him. But if

10-4

this is the case, then the H(x) ⊕m leaks no information about m and thus, the A
can only guess the bit. In what follows we denote by hit the event that A = (A0,A1)
queries H on x in the above experiment and succ is the event that A1 guesses the bit
correctly, i.e., the event that b = b′. Using this notations we compute the probability
of the equation above as∣∣∣∣Prob

[
IND-EAVPKE

A,H(λ) = 1
]
− 1

2

∣∣∣∣
=

∣∣∣∣Prob[succ | hit] Prob[hit] + Prob[succ | ¬hit] Prob[¬hit]− 1

2

∣∣∣∣
=

∣∣∣∣Prob[succ | hit] Prob[hit] +
1

2
Prob[¬hit]− 1

2

∣∣∣∣
=

∣∣∣∣Prob[succ | hit] Prob[hit]− 1

2
Prob[hit]

∣∣∣∣
≤ 1

2
Prob[hit] .

The last step of the proof is to show that the probability that A manages to query
H on x is negligible.

Claim 2 Prob[hit] ≈ 0.

In the proof of this claim we show that if Prob[hit] 6≈ 0, then we can build an attacker
B that inverts the one-way property of F in the real world as follows:

B(y, f)

L← ∅
B∗ ← {0, 1}`

(m0,m1)← AĤ0 (f)

b′ ← AĤ1 (y∗, B∗)

Whenever A queries Ĥ on some value x, then:
If f(x) 6= y:

If (x, ·) ∈ L, then return h,
Else return a randomly chosen h← {0, 1}` and store (x, h) in L.

If f(x) = y, then output x.

First observe that B provides a perfect simulation for A up to the point where A
queries H on x such that f(x) = y. This is easy to see because B simulates the
random oracle on all points except for x. Note that A1 gets a uniformly distributed
value B∗ as input, but A1 receives H(x) ⊕mb in the real game. We argue this does
not make any difference from A’s point of view: If A0 has queried H on x, then B
would have already found the pre-image. Now, assuming that A0 never asked such a
query, means that B∗ looks random to A1 up to the point where A1 sends x to H.
In this case, however, B learns the pre-image and stops the game.

10-5

3 CCA2 Secure Encryption

In this section, we discuss two different constructions of a CCA2 secure encryption
scheme.

3.1 Preliminaries

We recall the definitions of a message authentication code (MAC).

Definition 1 A message authentication code is a triple of ppt algorithms MAC =
(MGen,Mac,Vrfy), where

MGen(1λ): The key generation algorithm takes as input the security parameter 1λ and
returns a key k.

Mac(k,m): The tag generation algorithm takes as input a key k and a message m ∈
{0, 1}∗, and outputs a tag t.

Vrfy(k,m, t): The deterministic verification algorithm takes as input a key k, a message
m, and a tag t. It outputs a bit b, with b = 1 meaning valid and b = 0 meaning
invalid.

A message authentication code is complete if for all λ, all k ← MGen(1λ), and all
m ∈ {0, 1}∗ we have Vrfy(k,m,Mac(k,m)) = 1. ♦

Definition 2 A message authentication code MAC = (MGen,Mac,Vrfy) is a existen-
tially unforgeable one-time message authentication code if for all (possibly stateful)
ppt algorithms A = (A0,A1) the probability that the experiment EU-CMAMAC

A eval-
uates to 1 is negligible (in the security parameter λ), where

Experiment EU-CMAMAC
A (λ)

k ← MGen(1λ)
m← A0(1λ)
t← Mac(k,m)
(m′, t′)← A1(t)

Return 1 iff Vrfy(k,m′, t′) = 1 and m′ 6= m.

♦

The following construction is an information theoretically secure one-time MAC
that will be part of our first construction. Let Fq be the field with q elements. The
scheme MAC = (MGen,Mac,Vrfy) is defined as follows:

10-6

MGen(1λ)

a← Fq
b← Fq
return k := (a, b)

Mac(k,m)

parse m ∈ Fq
t← am+ b

return t

Vrfy(k,m, t)

parse k as (a, b)

return 1 iff t = am+ b

Concerning security, we prove the following theorem.

Theorem 3 The scheme MAC = (MGen,Mac,Vrfy) as defined above is an informa-
tion theoretical secure message authentication code.

Proof Let A = (A0,A1) be an unbounded adversary, where A0 outputs some
message m ∈ Fq and denote by t = am + b the tag that is giving to A1. From A1’s
point of view the value a is uniformly distributed in Fq, because for every a ∈ Fq
there exists a single value b ∈ Fq that satisfies the equation t = am + b (the value is
b = t − am). Thus, any forgery (m′, t′) of A1 must satisfy the verification equation,
i.e., m 6= m′ and t′ = am′ + b. This means that the verification equation holds iff
t′ − t = a(m − m′). Since a is uniformly distributed from A1’s point of view, the
probability that can be bounded as follows:

Prob[t′ = am′ + b] = Prob
[
a = (t′ − t)(m−m′)−1

]
=

1

q
.

References

[1] M. Bellare and P. Rogaway, Random oracles are practical: A paradigm
for designing efficient protocols, ACM CCS 1993. Full version available at
http://cseweb.ucsd.edu/∼mihir/papers/ro.html.

[2] J. Katz and Y. Lindell, Introduction to Modern Cryptography, Chapman and
Hall/CRC Press, 2007.

[3] R. Canetti, O. Goldreich, and S. Halevi, The Random Oracle Methodology,
Revisited, ACM Sym. on Theory of Computation (STOC) 1998. Full version
available at http://eprint.iacr.org/1998/011.pdf.

10-7

