Section #11

November 2-3, 2010

1 Sequences and Summations

1. What are the terms a_0, a_1, a_2 , and a_3 of the sequence $\{a_n\}$, where a_n equals

(a)
$$a_0 = 2, a_1 = 3, a_2 = 5, a_3 = 9$$

(b)
$$a_0 = 1, a_1 = 4, a_2 = 9, a_3 = 16$$

(c) $a_0 = 0, a_1 = 0, a_2 = 1, a_3 = 1$

(c)
$$a_0 = 0, a_1 = 0, a_2 = 1, a_3 = 1$$

(d)
$$a_0 = 0, a_1 = 1, a_2 = 2, a_3 = 3$$

2. What are the values of these sums? (a) 2+3+4+5+6=20

(a)
$$2+3+4+5+6=20$$

(b)
$$1 + (-2) + 4 + (-8) + 16 = 11$$

(c)
$$3 * 10 = 30$$

(d)
$$1+2+4+8+16+32+64+128+256=511$$

3. What is the value of each of these sums of terms of a geometric progression?

(a)
$$3(1+2+4+8+16+32+64+128+256) = 1533$$

(b)
$$2+4+8+16+32+64+128+256=510$$

(c)
$$(-3)^2((-3)^0 + (-3)^1 + (-3)^2 + (-3)^3 + (-3)^4 + (-3)^5 + (-3)^6) = 4923$$

(d) $2(\frac{4923}{9} + (-3)^7 + (-3)^8) = 9842$

(d)
$$2(\frac{4923}{9} + (-3)^7 + (-3)^8) = 9842$$

Note: You can also use the formula for the sum of a geometric progression.

(e.g.
$$\sum_{j=0}^{n} ar^j = a(r^{n+1} - 1)/(r - 1)$$
)

4. Show that $\sum_{i=1}^{n} (a_i - a_{j-1}) = a_n - a_0$, where a_0, a_1, \ldots, a_n is a sequence of real numbers. This type of

sum is called **telescoping**.

For this, all we need to do is write out the meaning of the summation, and we will see that terms in the sequence cancel.

$$\sum_{j=1}^{n} (a_j - a_{j-1}) = a_1 - a_0 + a_2 - a_1 + \dots + a_{n-1} - a_{n-2} + a_n - a_{n-1} = a_n - a_0$$

1

5. Find
$$\sum_{k=100}^{200} k$$
.

Note that the closed-form expression of
$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$
. Here, we have

$$\begin{split} \sum_{k=100}^{200} k &= \sum_{k=1}^{200} k - \sum_{k=1}^{99} k \\ &= \frac{200^2 + 20}{2} - \frac{99^2 + 99}{2} \\ &= 20100 - 4950 = 15150 \end{split}$$

6. Find
$$\sum_{j=0}^{4} j!$$
.

By definition of factorial, we have

$$0! + 1! + 2! + 3 + 4! = 1 + 1 + 1 \cdot 2 + 1 \cdot 2 \cdot 3 + 1 \cdot 2 \cdot 3 \cdot 4$$

= $1 + 1 + 2 + 6 + 24 = 34$

- 7. Determine whether each of these sets is countable or uncountable. For those that are countable, exhibit a one-to-one correspondence between the set of natural numbers and that set.
 - (a) Countable. The Correspondence matches the natural number n with the string consisting of n ones
 - (b) Countable. This set is a subset of the rational numbers. Apply the demonstration from Example 20.
 - (c) Uncountable. Apply the diagonal argument of Example 21.
 - (d) Uncountable. Apply the diagonal argument of Example 21.

2 Mathematical Induction

8. Prove that if h > -1, then $1 + nh \le (1 + h)^n$ for all nonnegative integers n. This is called **Bernoulli's** inequality.

Proof. (By weak induction on $k \in \mathbb{Z}^*$)

Basis Step:

Let k = 0. For our conjecture, we have

$$1 + (0)h = 1 = (1+h)^0$$

Inductive Step:

Assume $1 + kh \le (1 + h)^k$ for some nonnegative integer k. We will show that $1 + (k+1)h \le (1+h)^k + 1$.

$$(1+h)^{k+1} = (1+h)^k (1+h)$$

$$\geq (1+kh)(1+h)$$
 (By the inductive hypothesis)
$$= 1+h+kh+kh^2$$

$$= 1+(k+1)h+kh^2$$

By comparing like terms as well as noting that h^2 is always positive and h+1>0, we have

$$1+(k+1)h \leq 1+(k+1)h+kh^2 \leq (1+h)^{k+1}$$
 (By transitivity of \leq) $1+(k+1)h \leq (1+h)^{k+1}$

Therefore, if h > -1, then $1 + nh \le (1 + h)^n$ for all nonnegative integers n.

9. Prove that if A_1, A_2, \ldots, A_n and B are sets, then

$$(A_1 \cup A_2 \cup \cdots \cup A_n) \cap B = (A_1 \cap B) \cup (A_2 \cap B) \cup \cdots \cup (A_n \cap B).$$

Proof. (By weak induction on $k \in \mathbb{Z}^+$)

Basis Step:

Let k = 1. For our conjecture, we have $(A_1) \cap B = A_1 \cap B$.

 $Inductive \ Step:$

Assume $(A_1 \cup \cdots \cup A_k) \cap B = (A_1 \cap B) \cup \cdots \cup (A_k \cap B)$ for some positive integer k. We will show that $(A_1 \cup \cdots \cup A_k \cup A_{k+1}) \cap B = (A_1 \cap B) \cup \cdots \cup (A_k \cap B) \cup (A_{k+1} \cap B)$.

 $(A_1 \cap B) \cup \cdots \cup (A_k \cap B) \cup (A_{k+1} \cap B) = ((A_1 \cup \cdots \cup A_k) \cap B) \cup (A_{k+1} \cap B)$ (By the inductive hypothesis) = $(A_1 \cup \cdots \cup A_k \cup A_{k+1}) \cap B$ (By the distributive property)

Therefore, if A_1, A_2, \ldots, A_n and B are sets, then

$$(A_1 \cup A_2 \cup \cdots \cup A_n) \cap B = (A_1 \cap B) \cup (A_2 \cap B) \cup \cdots \cup (A_n \cap B).$$