
9/19/2012

1

CS 260:
Foundations Of
Computer Science

Class 04 – August 29, 2012

1

Today’s Agenda
• Call Roll

• Seating chart…

• Please help out an old man’s memory!

• This is not a permanent commitment!

• Assignment:

• Read chapter 2 for Friday.

• Finish chapter 1

• DIA demo

2

An example ADT used in
Tuesday’s class was…

31 2 3 4 5 6 7

14% 14% 14%14%14%14%14%1. Pen

2. Library book

3. Car

4. Railroad

5. Employee

6. Computer

7. College Class

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Abstract Data Types Chapter 1

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
5Chapter 1: Abstract Data Types –

Introduction

 This course emphasizes three important concepts
in computer science:

 algorithms

 data structures

 abstractions

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Steps in Defining an ADT

1. What’s the domain of possible values?

2. What operations should this ADT support?

a. Math? String functions?

b. “Enroll in a class”? “Drop a class”?

c. Each operation should have a clearly stated
precondition and postcondition.

d. Each operation should have clearly defined inputs.

3. Are there exceptions that this ADT needs?

a. “Illegal date”?

4. Finally: How do we implement it?

–

9/19/2012

2

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
7Chapter 1: Abstract Data Types –

The Date ADT

 Example of a simple ADT.

 Represents a single day in the proleptic Gregorian
calendar:

 First date of the Gregorian calendar

 Friday, October 15, 1582

 What about earlier dates?

 use proleptic Gregorian calendar

 extension for accommodating earlier dates

 first date: November 24, 4713 BC

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
8Chapter 1: Abstract Data Types –

Defining Operations

 The ADT definition should specify:

 required inputs and resulting outputs.

 state of the ADT instance before and after the
operation is performed.

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
9Chapter 1: Abstract Data Types –

Precondition

 Condition or state of the ADT instance and data
inputs before the operation is performed.

 Assumed to be true.

 Error occurs if the condition is not satisfied.

 ex: index out of range

 Implied conditions

 the ADT instance has been created and initialized.

 valid input types.

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
10Chapter 1: Abstract Data Types –

Postcondition

 Result or state of the ADT instance after the
operation is performed.

 Will be true if the preconditions are met.

 given: x.pop(i)

 the ith item will be removed if i is a valid index.

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
11Chapter 1: Abstract Data Types –

Postcondition

 The specific postcondition depends on the type of
operation:

 Access methods and iterators

 no postcondition.

 Constructors

 create and initialize ADT instances.

 Mutators

 the ADT instance is modified in a specific way.

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
12Chapter 1: Abstract Data Types –

Exceptions

 OOP languages raise exceptions when errors
occur.

 An event that can be triggered by the program.

 Optionally handled during execution.

 Example:
myList = [12, 50, 5, 17]
print(myList[4])

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

IndexError: list index out of range

9/19/2012

3

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
13Chapter 1: Abstract Data Types –

Assertions

 Used to state what we assume to be true.

 If condition is false, a special exception is
automatically raised.

 Combines condition testing and raising an
exception.

 Exception can be caught or let the program abort.

assert value != 0, “Value cannot be zero.”

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
14Chapter 1: Abstract Data Types –

Date ADT Implementation

 How should a date be represented?

 What data should be stored?

 What types of data should be used?

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
15Chapter 1: Abstract Data Types –

Gregorian Representation

 Common date consisting of month, day, year.

 Store individual date components as int values.

 12, 15, 2010

 Easy access to individual components.

 No conversions required.

 Difficult to perform some operations

 date comparisons

 advance by some number of days

 compute number of days between two dates

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
16Chapter 1: Abstract Data Types –

Julian Day Representation

 Number of days elapsed since an initial date.

 Store the Julian day as a single int value >= 0.

 12/10/2010: 2455541

 12/31/2010: 2455562

 Easy to perform all defined operations.

 Easy conversions to/from Julian and Gregorian.

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
17Chapter 1: Abstract Data Types –

Constructing the Date

 Convert a Gregorian date to a Julian day number

 day 0 = November 24, 4713 BC

 integer arithmetic

T = (M - 14) / 12
jday = D - 32075 + (1461 * (Y + 4800 + T) / 4) +

(367 * (M - 2 - T * 12) / 12) -
(3 * ((Y + 4900 + T) / 100) / 4)

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
18Chapter 1: Abstract Data Types –

Date: Constructor

class Date :
def __init__(self, month, day, year):

Create the attributes.
self._julianDay = 0

Verify the precondition.
assert self._isValidGregorian(month, day, year), \

"Invalid Gregorian date."

The first line of the equation, T = (M – 14)/12, has
to be changed due to Python's integer division.
tmp = 0

if month < 3 :
tmp = -1

The rest of the equation.
self._julianDay = day - 32075 + \

(1461 * (year + 4800 + tmp) // 4) + \
(367 * (month - 2 - tmp * 12) // 12) - \
(3 * ((year + 4900 + tmp) // 100) // 4)

date.py

9/19/2012

4

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
19Chapter 1: Abstract Data Types –

Protected Members

 Python does not provide for a technique to protect
attributes and methods from direct access.

 We use identifiers beginning with an underscore.

 Rely on the user to not attempt direct access.

self._julianDay = 0

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
20Chapter 1: Abstract Data Types –

Helper Methods

 Methods used internally to implement the class.

 Allow for the subdivision of larger methods.

 Help to reduce code repetition.

 Not meant to be accessed from the outside.
self._isValidGregorian(month, day, year)

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
21Chapter 1: Abstract Data Types –

Julian to Gregorian

 To access the Gregorian components, convert
Julian day back to Gregorian.

class Date :
...
def _toGregorian(self):

A = self._julianDay + 68569
B = 4 * A // 146097
A = A - (146097 * B + 3) // 4
year = 4000 * (A + 1) // 1461001
A = A - (1461 * year // 4) + 31
month = 80 * A // 2447
day = A - (2447 * month // 80)
A = month // 11
month = month + 2 - (12 * A)
year = 100 * (B - 49) + year + A
return month, day, year

date.py

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
22Chapter 1: Abstract Data Types –

Date: Date Components

class Date :
...
def month(self):

return (self._toGregorian())[0]

def day(self):
return (self._toGregorian())[1]

def year(self):
return (self._toGregorian())[2]

def __str__(self):
month, day, year = self._toGregorian()
return "%02d/%02d/%04d" % (month, day, year)

date.py

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
23Chapter 1: Abstract Data Types –

Date: Day of Week

 Can be determined from the Julian day.

class Date :
...
def dayOfWeek(self):
month, day, year = self._toGregorian()
if month < 3 :

month = month + 12
year = year – 1

Returns 0...6 for Monday...Sunday.
return ((13 * month + 3) // 5 + day + \

year + year // 4 - year // 100 + year // 400) % 7

date.py

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
24Chapter 1: Abstract Data Types –

Overloading Operators

 We can implement methods to define many of
Python's standard operators.

 Allows for more natural use of objects.

 Limit use of operator methods for meaningful
purposes.

9/19/2012

5

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
25Chapter 1: Abstract Data Types –

Date: Comparable

 Need only implement 3 of the 6 comparable
operators.

class Date :
...
def __eq__(self, otherDate):
return self._julianDay == otherDate._julianDay

def __lt__(self, otherDate):
return self._julianDay < otherDate._julianDay

def __le__(self, otherDate):
return self._julianDay <= otherDate._julianDay

date.py

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
26Chapter 1: Abstract Data Types –

Bags

 A bag is a basic container like a shopping bag that
can be used to store collections.

 There are several variations:

 simple bag

 grab bag

 counting bag

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
27Chapter 1: Abstract Data Types –

Bag ADT

 A simple bag is a container that stores a collection
with duplicate values allowed. The elements

 are stored individually

 have no particular order

 must be comparable
 Bag()

 length()

 contains(item)

 add(item)

 remove(item)

 iterator()

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
28Chapter 1: Abstract Data Types –

Bag: Example 1

Creates a bag and fills it with values. The user is then
prompted to guess a value contained in the bag.

myBag = Bag()
myBag.add(19)
myBag.add(74)
myBag.add(23)
myBag.add(19)
myBag.add(12)

value = int(input("Guess a value contained in the bag."))
if value in myBag:
print("The bag contains the value", value)

else :
print("The bag does not contain the value", value)

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
29Chapter 1: Abstract Data Types –

Bag: Example 2

Modified version of the checkdates.py program which first
stores the birth dates and then processes them.

from linearbag import Bag
from date import Date

def main():
bornBefore = Date(6, 1, 1988)
bag = Bag()

Extract dates from the user and place them in the bag.
date = promptAndExtractDate()
while date is not None :
bag.add(date)
date = promptAndExtractDate()

Iterate over the bag and check the age.
for date in bag :
if date <= bornBefore :

print("Is at least 21 years of age: ", date)

checkdates2.py

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
30Chapter 1: Abstract Data Types –

Why a Bag ADT?

 Python's list can accomplish the same thing as a
Bag ADT.

 So, why do we need a new ADT?

 For a small program, the use of a list may be
appropriate.

 For large programs the use of new ADTs provide
several advantages.

9/19/2012

6

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
31Chapter 1: Abstract Data Types –

Why a Bag ADT?

 By working with the abstraction of a bag, we can:

 Focus on solving the problem at hand instead of
how the list will be used.

 Reduce the chance of errors or misuse of the list.

 Provide better coordination between different
modules and programmers.

 Easily swap out one Bag implementation for a
possibly more efficient version.

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
32Chapter 1: Abstract Data Types –

Implementing the Bag

 Implementation of a complex ADT typically requires
the use of a data structure.

 There are many data structures (and other ADTs)
from which to choose.

 Which should we use?

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
33Chapter 1: Abstract Data Types –

Evaluating a Data Structure

 Evaluate the data structure based on certain
criteria.

 Does the data structure:

 provide for the storage requirements of the ADT?

 provide the necessary functionality to fully
implement the ADT?

 lend itself to an efficient implementation of the
operations?

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
34Chapter 1: Abstract Data Types –

Selecting a Data Structure

 Multiple data structures may be suitable for a given
ADT.

 Select the best possible based on the context in
which the ADT will be used.

 Common for language libraries to provide multiple
implementations of a single ADT.

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
35Chapter 1: Abstract Data Types –

Bag ADT Data Structure

 Evaluate each DS/ADT option to determine if it can
be used for the Bag.

 dictionary

 list

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
36Chapter 1: Abstract Data Types –

Evaluating Candidate Data Structures

 Provide for the storage requirements of the ADT?

 dictionary

 stores key/value pairs; key must be unique.

 can store duplicates (using a counter as the value)

 can not store each item individually.

 list

 can store any type of comparable object.

 can store duplicates.

 can store each item individually.

9/19/2012

7

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
37Chapter 1: Abstract Data Types –

Evaluating Candidate DS

 Does the list provide the necessary functionality to
fully implement the ADT?

 Empty bag – empty list

 Bag size – list size

 Contains item – use in operator on list.

 Add item – append() to the list.

 Remove item – remove() from the list.

 Traverse items – can access each list elements.

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
38Chapter 1: Abstract Data Types –

Selecting the List

 The Python list can be used to implement the bag:

 provides for the storage requirements.

 provides the necessary functionality.

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
39Chapter 1: Abstract Data Types –

Sample Bag Instance

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
40Chapter 1: Abstract Data Types –

Bag: List Implementation

class Bag :
def __init__(self):
self._theItems = list()

def __len__(self):
return len(self._theItems)

def __contains__(self, item):
return item in self._theItems

def add(self, item):
self._theItems.append(item)

def remove(self, item):
assert item in self._theItems, "The item must be in the bag."
ndx = self._theItems.index(item)
return self._theItems.pop(ndx)

linearbag.py

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
41Chapter 1: Abstract Data Types –

Traversals and Iterators

 Traversals are very common operations performed
on containers.

 Iterates over the entire collection.

 Provides access to each individual element.

 Examples:

 find an item.

 print entire collection.

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
42Chapter 1: Abstract Data Types –

Traversals

 We could define specific traversal operations as
part of the ADT.

class Bag :
...
def saveToFile(self, filename):
......

def findSmallest(self):
......

9/19/2012

8

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
43Chapter 1: Abstract Data Types –

Generic Traversals

 What about other traversals?

 Find the largest instead of the smallest?

 Save to a file in a different format?

 We can not possibly add all traversals to a general
container.

 Need to provide generic traversal.

 Without requiring access to the implementation.

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
44Chapter 1: Abstract Data Types –

Python Iterators

 Python provides a built-in iterator mechanism.

 Create an iterator object.

 Used with the for loop construct .

 Works for both built-in and user-defined
containers.
Iterate over the bag and check the ages.
for date in bag :
if date <= bornBefore :
print("Is at least 21 years of age: ", date)

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
45Chapter 1: Abstract Data Types –

Designing an Iterator

 Step 1: define and implement an iterator class.

 Class with two special methods.

 Defined in the same module as the container
class.class _BagIterator :

def __init__(self, theList):
self._bagItems = theList
self._curItem = 0

def __iter__(self):
return self

def __next__(self):
if self._curItem < len(self._bagItems) :

item = self._bagItems[self._curItem]
self._curItem += 1
return item

else :
raise StopIteration

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
46Chapter 1: Abstract Data Types –

Designing an Iterator

 Step 2: define the iterator operator as part of the
container class.

 Creates an instance of the iterator object.

 Called at the beginning of the for loop.

class Bag :
...
def __iter__(self):
return _BagIterator(self._theItems)

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
47Chapter 1: Abstract Data Types –

Bag Iterator

 An instance of the iterator is automatically created.

for item in bag :
print(item)

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
48Chapter 1: Abstract Data Types –

Student Records

 Suppose we have a collection of student records
on external storage.

 id #

 first name

 last name

 class code

 GPA

 We need to extract the data and produce a report
in a prescribed format.

9/19/2012

9

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
49Chapter 1: Abstract Data Types –

Sample Report

LIST OF STUDENTS
ID NAME CLASS GPA
----- ------------------------- ---------- ----
10015 Smith, John Sophomore 3.01
10167 Jones, Wendy Junior 2.85
10175 Smith, Jane Senior 3.92
10188 Wales, Sam Senior 3.25
10200 Roberts, Sally Freshman 4.00
10208 Green, Patrick Freshman 3.95
10226 Nelson, Amy Sophomore 2.95
10334 Roberts, Jane Senior 3.81
10387 Taylor, Susan Sophomore 2.15
10400 Logan, Mark Junior 3.33
10485 Brown, Jessica Sophomore 2.91
--
Number of students: 11

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
50Chapter 1: Abstract Data Types –

File Format

 We have not been told the type or format of the
external storage.

 What type?

 plain text file

 binary file

 relational database

 How is the data formatted?

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
51Chapter 1: Abstract Data Types –

Using Abstraction

 By applying abstraction to this problem, we can
begin designing a solution.

 No matter the source, the record extraction will be
similar:

 open the a connection

 extract the records

 close the connection

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
52Chapter 1: Abstract Data Types –

Student File Reader ADT

 A student file reader extracts student records from
external storage.

 Data components will be stored in an appropriate
storage object.

 StudentFileReader(filename)

 open()

 close()

 fetchRecord()

 fetchAll()

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
53Chapter 1: Abstract Data Types –

Creating the Report

from studentfile import StudentFileReader

Name of the file to open.
FILE_NAME = "students.txt"

def main():
Extract the student records from the given text file.
reader = StudentFileReader(FILE_NAME)
reader.open()
studentList = reader.fetchAll()
reader.close()

Sort the list by id number and print the report.
sortTheList(studentList)
printReport(studentList)

def sortTheList(theList):
......

def printReport(theList):
......

main()

studentreport..py

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
54Chapter 1: Abstract Data Types –

Student Records

 Tuples should not be used for structured data.

 access by subscript.

 Use storage objects created from a storage class.

 access by named data fields.

class StudentRecord :
def __init__(self):
self.idNum = 0
self.firstName = None
self.lastName = None
self.classCode = 0
self.gpa = 0.0

9/19/2012

10

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
55Chapter 1: Abstract Data Types –

Storage Class

 Regular class with only a constructor.

 creates and initializes data fields

 data fields are public

 Internal storage classes should be private.

 name starts with an underscore.

 StudentRecord objects needed outside the ADT.

 Defined within the module where they are used.

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
56Chapter 1: Abstract Data Types –

Sort The List
studentreport..py

def sortTheList(theList):
theList.sort(key = lambda rec: rec.idNum)

Each object is passed to the lambda expression
which returns the idNum field of the object.

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
57Chapter 1: Abstract Data Types –

Print the Report
studentreport..py

def printReport(theList):
The class names associated with the class codes.
classNames = (None, "Freshman", "Sophomore",

"Junior", "Senior")
Print the header.
print("LIST OF STUDENTS".center(50))
print("")
print("%-5s %-25s %-10s %-4s" % \

('ID', 'NAME', 'CLASS', 'GPA'))
print("%5s %25s %10s %4s" % \

('-' * 5, '-' * 25, '-' * 10, '-' * 4))
Print the body.
for record in theList :
print("%5d %-25s %-10s %4.2f" % \

(record.idNum, \
record.lastName + ', ' + record.firstName,
classNames[record.classCode], record.gpa))

Add a footer.
print("-" * 50)
print("Number of students:", len(theList))

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
58Chapter 1: Abstract Data Types –

ADT Implementation

 Does not require a data structure.

 Implemented based on the storage type/ format.

 Assume a text file with the format:

10015
John
Smith
2
3.01
10334
Jane
Roberts
4
3.81
:
:

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

DIA Software

• It’s free!

• Download from
http://dia-installer.de/

• Use the UML shapes.

–

