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CS 260:
Foundations Of 
Computer Science

Class 11 – September 17, 2012
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Thought for the Day

Life is what happens while you’re 
making other plans.

2

Today’s Agenda
• Project 1 –

• Code & final diagrams - Due Wednesday, but 
grace period through Friday.

• Exam 1 –Friday, September 21st

• Exam 1 will cover material through chapter 3, 
and some of chapter 4.

• Read chapter 4 – Algorithms for today.
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Algorithm Analysis Chapter 4
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5Chapter 4: Algorithm Analysis  –

Algorithms

 Algorithms are designed to solve problems.

 A problem can have multiple solutions. 

How do we determine which 
solution is the most efficient?
How do we determine which 
solution is the most efficient?
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Execution Time

 Measure execution time:

 construct a program for a given solution.

 execute the program.

 time it using a “wall clock”.

 Dependent on:

 amount of data

 type of hardware and time of day

 programming language and compiler
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Complexity Analysis

 What if we examine the solution itself and measure 
critical operations:

 logical comparisons

 assignments

 arithmetic operations
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Example Algorithm

 Given a matrix of size n x n, compute the:

 sum of each row of a matrix.

 overall sum of the entire matrix.
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Version 1

totalSum = 0
for i in range(n) : 

rowSum[i] = 0 
for j in range(n) : 

rowSum[i] = rowSum[i] + matrix[i,j] 
totalSum = totalSum + matrix[i,j]

Chapter 4: Algorithm Analysis - 9
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Version 2

totalSum = 0
for i in range(n) : 

rowSum[i] = 0 
for j in range(n) : 

rowSum[i] = rowSum[i] + matrix[i,j] 
totalSum = totalSum + rowSum[i]

Chapter 4: Algorithm Analysis - 10
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Compare the Results

 Number of additions:    v1:  2n2 v2:  n
2 + n

 Second version has fewer additions (n > 1)

 Will execute faster than the first.

 Difference will not be significant.

Both algorithms execute on the 
same order of magnitude, n2

Both algorithms execute on the 
same order of magnitude, n2
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Growth Rates

 As n increases, both algorithms increase at approx
the same rate:

n 2n2 n2 + n
10 200 110

100 20,000 10,100

1000 2,000,000 1,001,000

10,000 200,000,000 100,010,000

100,000 20,000,000,000 10,000,100,000
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Growth Rates
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Big-O Notation

 No need to count precise number of steps. 

 Classify algorithms by order of magnitude.

 execution time

 space requirements

Approximates actual number of 
steps or actual storage in terms

of variable-sized data sets.

Approximates actual number of 
steps or actual storage in terms

of variable-sized data sets.
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Big-O Definition

 Given a function T(n)

 # of steps required for an input of size n.

 Ex:   T2(n) = n2 + n

 Suppose there exist a function f(n) for all 
integers n > 0 such that

for some constant c and for all large values of n 
> m (a constant).

T(n) < c f(n)
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Big-O Definition

 Then, the algorithm has a time-complexity of or 
executes “on the order of”  f(n)

 We use the notation: O( f(n) )

 Big-O is intended for large values of n. 

f(n) indicates the rate of growth
at which the run time increases 

as the input size increases.

f(n) indicates the rate of growth
at which the run time increases 

as the input size increases.
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Big-O Example (v.1)

 Consider the previous sample algorithms.

 Version 1:      T1(n) = 2n2

T1(n) < c f(n)

2n2 < 2n2

O( n2 )

Let c = 2
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Big-O Example (v.2)

 Consider the previous sample algorithms.

 Version 2:      T2(n) = n2 + n 

O( n2 )

T2(n) < c f(n)

n2 + n < n2 + n2

n2 + n < 2n2

Let c = 2
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Upper Bound

 There is more than one f(n) for an algorithm.

 n2 is not the only choice

 f(n) could be n2, n3, n4

n2 + n < c f(n)

Objective: find an f(n) that
provides the tightest (lowest)

upper bound.

Objective: find an f(n) that
provides the tightest (lowest)

upper bound.
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Constant of Proportionality

 Is it important?

 Consider two algorithms:

 O(n2), with c = 1

 O(2n), with c = 2

n n2 2n

10 100 20

100 10,000 200

1000 1,000,000 2,000

10,000 100,000,000 20,000

100,000 10,000,000,000 200,000
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Constant of Proportionality
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Constructing T(n)

 We don't count total number of specific instructions 
(math operations, comparisons, etc.)

 Assume each basic statement takes the same 
time, constant time.

 Total number of steps required: 

T(n) = f1(n) + f2(n) + ... + fk(n)
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Constructing T(n)

Markup – All operations are marked with appropriate time: 1 or n
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Constructing T(n)

Markup – Only the non-constant operations are marked: n
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Choosing the Function

 Given T(n), choose the dominant term.

T(n) = n2 + log2n + 3n

n2 dominates the other terms (for n > 3)n2 dominates the other terms (for n > 3)

n2 + log2n + 3n  < n2 + n2 + n2

n2 + log2n + 3n  < 3n2                   
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Choosing the Function

 What is the dominant term for the following 
expression?

T(n) = 2n2 + 15n + 500

When n < 16, 500 dominates.
When n > 16, n2 is the dominant term.

When n < 16, 500 dominates.
When n > 16, n2 is the dominant term.
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Classes of Algorithms

 Many algorithms have a time-complexity selected 
from a common set of functions.

f() Common Name

1 constant

log n logarithmic

n linear

n log n log linear

n2 quadratic

n3 cubic

an exponential
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Classes of Algorithms
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Evaluating Python Code

 Basic operations only require constant time:

 x = 5

 z = x + y * 6

 if x > 0 and x < 100

 What about function calls? 

y = ex1(n)
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Code Evaluation #1

def ex1( n ):
count = 0
for i in range( n ):

count += i
return count



9/19/2012

6

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise. 
31Chapter 4: Algorithm Analysis  –

Code Evaluation #2

def ex2( n ):
count = 0
for i in range( n ):

count += 1
for j in range( n ):

count += 1
return count
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Code Evaluation #3

def ex3( n ):
count = 0
for i in range( n ):

for j in range( n ):
count += 1

return count

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise. 
33Chapter 4: Algorithm Analysis  –

Code Evaluation #3b

def ex3b( n ):
count = 0
for i in range( n ):

count += ex2( n )
return count
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Code Evaluation #4

def ex4( n ):
count = 0
for i in range( n ):

for j in range( 25 ):
count += 1

return count
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Code Evaluation #5

def ex5( n ):
count = 0
for i in range( n ):

for j in range( i+1 ):
count += 1

return count
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Code Evaluation #6

def ex6( n ):
count = 0
i = n
while i >= 1 :

count += 1
i = i // 2  

return count
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Code Evaluation #7

def ex7( n ):
count = 0
for i in range( n ) :

count += ex6( n )
return count
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Different Cases

 Some algorithms have different run times for 
different sets of inputs of the same size.

 best case

 worst case

 average case
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Different Cases

def findNeg( intSeq ):
n = len( intSeq )
for i in range( n ) :

if intSeq[i] < 0 :
return i

return None

L = [ 72, 4, 90, 56, 12, 67, 43, 17, 2, 86, 33 ]
p = findNeg( L )

L = [ -12, 50, 4, 67, 39, 22, 43, 2, 17, 28 ]
p = findNeg( L )
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The Python List

 We used the list to implement many of our ADTs.

 Their efficiency depends on the efficiency of 
Python's list.
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Python List: Traversal

 Iterates over the contiguous elements of the 
underlying array.

# Sum the elements of a list.
sum = 0
for value in valueList :

sum = sum + value

# Alternate version.
sum = 0
n = len(valueList)
for i in range( n ) :

sum = sum + valueList[i]
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Python List: Allocation

 Creating a non-empty list is not constant.

temp = list()
listX = [ 0 ] * n
valueList = [ 4, 8, 20, 2, 15, 89, 60, 75 ]
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Python List: Appending

 When space is available, the item is stored in the 
next slot.

What if the underlying
array is full?

What if the underlying
array is full?
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Python List: Expansion

 Expanding the underlying array:

 Step 1: create a new array, double the size.

 Step 2: copy the items from original array to the new array.

 Step 3: replace the original array with the new array.

 Step 4: store the new value the next slot of the new array.
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Python List: Extending

 Adds the contents of a source list to the end of the 
destination list.
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Python List: Time-Complexities

List Operation Worst Case

v = list() O(1)

len(v) O(1)

v = [ 0 ] * n O(n)

v[i] = x O(1)

v.append(x) O(n)

v.extend(w) O(n)

v.insert(x) O(n)

v.pop() O(n)

traversal O(n)
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Amortized Cost

 Consider a sequence of n append operations:

 What is the worst-case running time?

L = list()
for i in range( 1, n+1 ):

L.append( i )
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Special Case

 The append() method introduces a special case.

 available capacity:   O(1)

 expansion required:  O(n)

How many times does 
append require O(n) time?

How many times does 
append require O(n) time?
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Amortized Analysis

 Given a sequence of operations, compute the time-
complexity by computing the average cost over 
the entire sequence.

 Cost per operation must be known.

 Cost must vary, with

 many ops contributing little cost.

 only a few ops contributing high cost.
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Aggregate Method

 Determine upper bound total cost: T(n)

 Calculate average cost:  T(n) / n

 Example: sequence of n append operations

 Storage of a single item: O(1)

 Expansion only occurs when (i – 1) is a power of 
2.

 Cost of the expansion based on current array size.
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Amortized Cost

 The append() operation:

 worst-case time:    O(n)

 amortized cost:  O(1)

 Can only be used for a long sequence of append 
operations.


