
9/19/2012

1

CS 260:
Foundations Of
Computer Science

Class 11 – September 17, 2012

1

Thought for the Day

Life is what happens while you’re
making other plans.

2

Today’s Agenda
• Project 1 –

• Code & final diagrams - Due Wednesday, but
grace period through Friday.

• Exam 1 –Friday, September 21st

• Exam 1 will cover material through chapter 3,
and some of chapter 4.

• Read chapter 4 – Algorithms for today.

3 © 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Algorithm Analysis Chapter 4

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
5Chapter 4: Algorithm Analysis –

Algorithms

 Algorithms are designed to solve problems.

 A problem can have multiple solutions.

How do we determine which
solution is the most efficient?
How do we determine which
solution is the most efficient?

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
6Chapter 4: Algorithm Analysis –

Execution Time

 Measure execution time:

 construct a program for a given solution.

 execute the program.

 time it using a “wall clock”.

 Dependent on:

 amount of data

 type of hardware and time of day

 programming language and compiler

9/19/2012

2

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
7Chapter 4: Algorithm Analysis –

Complexity Analysis

 What if we examine the solution itself and measure
critical operations:

 logical comparisons

 assignments

 arithmetic operations

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
8Chapter 4: Algorithm Analysis –

Example Algorithm

 Given a matrix of size n x n, compute the:

 sum of each row of a matrix.

 overall sum of the entire matrix.

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Version 1

totalSum = 0
for i in range(n) :

rowSum[i] = 0
for j in range(n) :

rowSum[i] = rowSum[i] + matrix[i,j]
totalSum = totalSum + matrix[i,j]

Chapter 4: Algorithm Analysis - 9
© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Version 2

totalSum = 0
for i in range(n) :

rowSum[i] = 0
for j in range(n) :

rowSum[i] = rowSum[i] + matrix[i,j]
totalSum = totalSum + rowSum[i]

Chapter 4: Algorithm Analysis - 10

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
11Chapter 4: Algorithm Analysis –

Compare the Results

 Number of additions: v1: 2n2 v2: n
2 + n

 Second version has fewer additions (n > 1)

 Will execute faster than the first.

 Difference will not be significant.

Both algorithms execute on the
same order of magnitude, n2

Both algorithms execute on the
same order of magnitude, n2

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
12Chapter 4: Algorithm Analysis –

Growth Rates

 As n increases, both algorithms increase at approx
the same rate:

n 2n2 n2 + n
10 200 110

100 20,000 10,100

1000 2,000,000 1,001,000

10,000 200,000,000 100,010,000

100,000 20,000,000,000 10,000,100,000

9/19/2012

3

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
13Chapter 4: Algorithm Analysis –

Growth Rates

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
14Chapter 4: Algorithm Analysis –

Big-O Notation

 No need to count precise number of steps.

 Classify algorithms by order of magnitude.

 execution time

 space requirements

Approximates actual number of
steps or actual storage in terms

of variable-sized data sets.

Approximates actual number of
steps or actual storage in terms

of variable-sized data sets.

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
15Chapter 4: Algorithm Analysis –

Big-O Definition

 Given a function T(n)

 # of steps required for an input of size n.

 Ex: T2(n) = n2 + n

 Suppose there exist a function f(n) for all
integers n > 0 such that

for some constant c and for all large values of n
> m (a constant).

T(n) < c f(n)

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
16Chapter 4: Algorithm Analysis –

Big-O Definition

 Then, the algorithm has a time-complexity of or
executes “on the order of” f(n)

 We use the notation: O(f(n))

 Big-O is intended for large values of n.

f(n) indicates the rate of growth
at which the run time increases

as the input size increases.

f(n) indicates the rate of growth
at which the run time increases

as the input size increases.

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
17Chapter 4: Algorithm Analysis –

Big-O Example (v.1)

 Consider the previous sample algorithms.

 Version 1: T1(n) = 2n2

T1(n) < c f(n)

2n2 < 2n2

O(n2)

Let c = 2

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
18Chapter 4: Algorithm Analysis –

Big-O Example (v.2)

 Consider the previous sample algorithms.

 Version 2: T2(n) = n2 + n

O(n2)

T2(n) < c f(n)

n2 + n < n2 + n2

n2 + n < 2n2

Let c = 2

9/19/2012

4

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
19Chapter 4: Algorithm Analysis –

Upper Bound

 There is more than one f(n) for an algorithm.

 n2 is not the only choice

 f(n) could be n2, n3, n4

n2 + n < c f(n)

Objective: find an f(n) that
provides the tightest (lowest)

upper bound.

Objective: find an f(n) that
provides the tightest (lowest)

upper bound.

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
20Chapter 4: Algorithm Analysis –

Constant of Proportionality

 Is it important?

 Consider two algorithms:

 O(n2), with c = 1

 O(2n), with c = 2

n n2 2n

10 100 20

100 10,000 200

1000 1,000,000 2,000

10,000 100,000,000 20,000

100,000 10,000,000,000 200,000

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
21Chapter 4: Algorithm Analysis –

Constant of Proportionality

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
22Chapter 4: Algorithm Analysis –

Constructing T(n)

 We don't count total number of specific instructions
(math operations, comparisons, etc.)

 Assume each basic statement takes the same
time, constant time.

 Total number of steps required:

T(n) = f1(n) + f2(n) + ... + fk(n)

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
23Chapter 4: Algorithm Analysis –

Constructing T(n)

Markup – All operations are marked with appropriate time: 1 or n

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
24Chapter 4: Algorithm Analysis –

Constructing T(n)

Markup – Only the non-constant operations are marked: n

9/19/2012

5

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
25Chapter 4: Algorithm Analysis –

Choosing the Function

 Given T(n), choose the dominant term.

T(n) = n2 + log2n + 3n

n2 dominates the other terms (for n > 3)n2 dominates the other terms (for n > 3)

n2 + log2n + 3n < n2 + n2 + n2

n2 + log2n + 3n < 3n2

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
26Chapter 4: Algorithm Analysis –

Choosing the Function

 What is the dominant term for the following
expression?

T(n) = 2n2 + 15n + 500

When n < 16, 500 dominates.
When n > 16, n2 is the dominant term.

When n < 16, 500 dominates.
When n > 16, n2 is the dominant term.

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
27Chapter 4: Algorithm Analysis –

Classes of Algorithms

 Many algorithms have a time-complexity selected
from a common set of functions.

f() Common Name

1 constant

log n logarithmic

n linear

n log n log linear

n2 quadratic

n3 cubic

an exponential

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
28Chapter 4: Algorithm Analysis –

Classes of Algorithms

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
29Chapter 4: Algorithm Analysis –

Evaluating Python Code

 Basic operations only require constant time:

 x = 5

 z = x + y * 6

 if x > 0 and x < 100

 What about function calls?

y = ex1(n)

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
30Chapter 4: Algorithm Analysis –

Code Evaluation #1

def ex1(n):
count = 0
for i in range(n):

count += i
return count

9/19/2012

6

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
31Chapter 4: Algorithm Analysis –

Code Evaluation #2

def ex2(n):
count = 0
for i in range(n):

count += 1
for j in range(n):

count += 1
return count

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
32Chapter 4: Algorithm Analysis –

Code Evaluation #3

def ex3(n):
count = 0
for i in range(n):

for j in range(n):
count += 1

return count

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
33Chapter 4: Algorithm Analysis –

Code Evaluation #3b

def ex3b(n):
count = 0
for i in range(n):

count += ex2(n)
return count

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
34Chapter 4: Algorithm Analysis –

Code Evaluation #4

def ex4(n):
count = 0
for i in range(n):

for j in range(25):
count += 1

return count

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
35Chapter 4: Algorithm Analysis –

Code Evaluation #5

def ex5(n):
count = 0
for i in range(n):

for j in range(i+1):
count += 1

return count

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
36Chapter 4: Algorithm Analysis –

Code Evaluation #6

def ex6(n):
count = 0
i = n
while i >= 1 :

count += 1
i = i // 2

return count

9/19/2012

7

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
37Chapter 4: Algorithm Analysis –

Code Evaluation #7

def ex7(n):
count = 0
for i in range(n) :

count += ex6(n)
return count

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
38Chapter 4: Algorithm Analysis –

Different Cases

 Some algorithms have different run times for
different sets of inputs of the same size.

 best case

 worst case

 average case

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
39Chapter 4: Algorithm Analysis –

Different Cases

def findNeg(intSeq):
n = len(intSeq)
for i in range(n) :

if intSeq[i] < 0 :
return i

return None

L = [72, 4, 90, 56, 12, 67, 43, 17, 2, 86, 33]
p = findNeg(L)

L = [-12, 50, 4, 67, 39, 22, 43, 2, 17, 28]
p = findNeg(L)

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
40Chapter 4: Algorithm Analysis –

The Python List

 We used the list to implement many of our ADTs.

 Their efficiency depends on the efficiency of
Python's list.

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
41Chapter 4: Algorithm Analysis –

Python List: Traversal

 Iterates over the contiguous elements of the
underlying array.

Sum the elements of a list.
sum = 0
for value in valueList :

sum = sum + value

Alternate version.
sum = 0
n = len(valueList)
for i in range(n) :

sum = sum + valueList[i]

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
42Chapter 4: Algorithm Analysis –

Python List: Allocation

 Creating a non-empty list is not constant.

temp = list()
listX = [0] * n
valueList = [4, 8, 20, 2, 15, 89, 60, 75]

9/19/2012

8

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
43Chapter 4: Algorithm Analysis –

Python List: Appending

 When space is available, the item is stored in the
next slot.

What if the underlying
array is full?

What if the underlying
array is full?

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
44Chapter 4: Algorithm Analysis –

Python List: Expansion

 Expanding the underlying array:

 Step 1: create a new array, double the size.

 Step 2: copy the items from original array to the new array.

 Step 3: replace the original array with the new array.

 Step 4: store the new value the next slot of the new array.

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
45Chapter 4: Algorithm Analysis –

Python List: Extending

 Adds the contents of a source list to the end of the
destination list.

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
46Chapter 4: Algorithm Analysis –

Python List: Time-Complexities

List Operation Worst Case

v = list() O(1)

len(v) O(1)

v = [0] * n O(n)

v[i] = x O(1)

v.append(x) O(n)

v.extend(w) O(n)

v.insert(x) O(n)

v.pop() O(n)

traversal O(n)

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
47Chapter 4: Algorithm Analysis –

Amortized Cost

 Consider a sequence of n append operations:

 What is the worst-case running time?

L = list()
for i in range(1, n+1):

L.append(i)

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
48Chapter 4: Algorithm Analysis –

Special Case

 The append() method introduces a special case.

 available capacity: O(1)

 expansion required: O(n)

How many times does
append require O(n) time?

How many times does
append require O(n) time?

9/19/2012

9

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
49Chapter 4: Algorithm Analysis –

Amortized Analysis

 Given a sequence of operations, compute the time-
complexity by computing the average cost over
the entire sequence.

 Cost per operation must be known.

 Cost must vary, with

 many ops contributing little cost.

 only a few ops contributing high cost.

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
50Chapter 4: Algorithm Analysis –

Aggregate Method

 Determine upper bound total cost: T(n)

 Calculate average cost: T(n) / n

 Example: sequence of n append operations

 Storage of a single item: O(1)

 Expansion only occurs when (i – 1) is a power of
2.

 Cost of the expansion based on current array size.

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.
51Chapter 4: Algorithm Analysis –

Amortized Cost

 The append() operation:

 worst-case time: O(n)

 amortized cost: O(1)

 Can only be used for a long sequence of append
operations.

