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1 Introduction

Triangular norms (briefly t-norms) are an indispensable tool for the interpretation of the conjunc-
tion in fuzzy logics [29] and, subsequently, for the intersection of fuzzy sets [74]. They are,
however, interesting mathematical objects for themselves.

Triangular norms, as we use them today, were first introduced in the context of probabilistic
metric spaces [60, 64, 63], based on some ideas presented in [47] (see Section 7 for details). They
also play an important role in decision making [22, 28], in statistics [51] as well as in the theories of
non-additive measures [42, 56, 68, 71] and cooperative games [11]. Some parameterized families
of t-norms (see, e.g., [23]) turn out to be solutions of well-known functional equations.

Algebraically speaking, t-norms are binary operations on the closed unit inféruélsuch
that([0, 1], 7', <) is an abelian, totally ordered semigroup with neutral elerh¢80].

For the closely related concept of uninorms (which tiirri] into an abelian, totally ordered
semigroup with neutral elemeate |0, 1]) see [41, 73].

A recent monograph [41] provides a rather complete overview about triangular norms and
their applications.

In a series of three papers we want to summarize in a condensed form the most important
facts about t-norms. This Part | deals with the basic analytical properties, such as continuity, and
with important classes such as Archimedean, strict and nilpotent t-norms. We also mention the
dual operations, the triangular norms, and De Morgan triples. Finally we give a short historical
overview on the development of t-norms and their way into fuzzy sets and fuzzy logics.

To keep the paper readable, we have omitted all proofs (usually giving a source for the reader
interested in them) and rather included a number of (counter-)examples, in order to motivate and
to illustrate the abstract notions used.

Part 11 will be devoted to general construction methods based mainly on pseudo-inverses,
additive and multiplicative generators, and ordinal sums, adding also some constructions leading
to non-continuous t-norms, and to a presentation of some distinguished families of t-norms.

Finally, Part Il will concentrate on continuous t-norms, in particular, on their representation
by additive and multiplicative generators and ordinal sums.

2 Triangular norms

The term triangular norm appeared for the first time (with slightly different axioms) in K. Menger
[47]. The following set of independent axioms for triangular norms goes back to B. Schweizer
and A. Sklar [59, 60, 61].

Definition 2.1 A triangular norm(briefly t-norm) is a binary operatioff’ on the unit interval0, 1]
which is commutative, associative, monotone and has neutral element, i.e., it is a function
T: [0,1]> — [0, 1] such that for allr, 3, z € [0, 1]:

(T1)  T(x,y) =T(y,2),

(T2) T(x,T(y,z) =T(T(z,y),2),
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Figure 1: 3D plots (top) and contour plots (bottom) of the four basic t-n@igasTe, 11, andTp
(observe that there are no contour lines¥gy)

(T3) T(x,y) <T(z,z2) whenever < z,
(T4) T(x,1) =x.

Since a t-norm is an algebraic operation on the unit intgfval], some authors (e.g., in [53])
prefer to use an infix notation like x y instead of the prefix notatidfi(x, y). In fact, some of the
axioms (T1)—(T4) then look more familiar: for atl y, z € [0, 1]

(T1) TRY=y*x,
(T2)  zx(yxz)=(zxy)*z,
(T3) rxy < T*2z whenever < z,

(T4) rx1l=ux.

Because of the importance of some functional aspects (e.g., continuity) and since we prefer to keep
a unified notation throughout this paper, we shall consistently use the prefix notation for t-norms
(and t-conorms).

Since t-norms are obviously extensions of the Boolean conjunction, they are usually used as
interpretations of the conjunctionin [0, 1]-valued and fuzzy logics.

There exist uncountably many t-norms. In [41, Section 4] some parameterized families of
t-norms are presented which are interesting from different points of view.

The following are the four basic t-norms, namely, theimunily,, theproduct’p, thetuka-
siewicz t-normily,, and thedrastic productip (see Figure 1 for 3D and contour plots), which are
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given by, respectively:

Twm (.ZL', y) - min(x7 y)? 1)

TP(%Z/) =Xy, (2)

Ty (z,y) = max(z +y — 1,0), ®3)
_Jo if (z,y) €[0,1]%,

To(@,y) = {min(x, y) otherwise. )

These four basic t-norms are remarkable for several reasons. The drastic gfpdant the
minimum Ty are the smallest and the largest t-norm, respectively (with respect to the pointwise
order). The minimuniy is the only t-norm where each € [0, 1] is an idempotent element
(compare Definition 6.1), whereas the prodiistand the Lukasiewicz t-norffi, are prototypical
examples of two important subclasses of t-norms, namely, of the classes of strict and nilpotent t-
norms, respectively.

It should be mentioned that the t-norffig;, Tp, 11, and1p were denoted/, II, W, andZ,
respectively, in [63].

Sometimes we shall visualize t-norms (and functighs|0, 1]> — [0, 1] in general) in dif-
ferent forms: as 3D plots, i.e., as surfaces in the unit cube, as contour plots showing the curves
(or, more generally, the sets) where the function in question has constant (equidistant) values, and,
occasionally, as diagonal sections, i.e., as graphs of the functien F(z,x).

The boundary condition (T4) and the monotonicity (T3) were given in their minimal form.
Together with (T1) it follows that, for alt € [0, 1], each t-norni” satisfies
T(0,z) =T(x,0) =0, (5)
T(l,z) =x. (6)
Therefore, all t-norms coincide on the boundary of the unit sqjdadé*.

The monotonicity of a t-norrfd” in its second component (T3) is, together with the commuta-
tivity (T1), equivalent to the (joint) monotonicity in both components, i.e., to

T(x1,y1) < T(x2,y2)
wheneverr; < z5 andy; < 0. (7)

Since t-norms are just functions from the unit square into the unit interval, the comparison of
t-norms is done in the usual way, i.e., pointwise.

Definition 2.2 If, for two t-norms7} andTh, we haveTy (z,y) < Tz (z,y) for all (z,y) € [0, 1]?,
then we say thdl is weakerthan7s or, equivalently, thaf is strongerthan7y, and we write in
this casel; < Ts.

We shall writel;, < Ty if Ty < Ty andTy 75 Ty, i.e., ifTy <TyandifTy (l‘o, yo) < TQ(:EQ, yo)
for some(zg, yo) € [0, 1]%.

As an immediate consequence of (T1), (T3) and (T4), the drastic pradguct the weakest,
and the minimun¥)y is the strongest t-norm, i.e., for each t-ndfhwe have:

Tp <T < Tnm. (8)
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Between the four basic t-norms we have these strict inequalities:

To <1, <Tp < Twm. (9)

A slight modification of axiom (T4) leads to the following notion, introduced in S. Jenei [33,
34].

Definition 2.3 A function F': [0, 1]> — [0, 1] which satisfies, for alk, y, z € [0, 1], the proper-
ties (T1)—(T3) and
F(x,y) < min(z, y) (10)

is called at-subnorm

Clearly, each t-norm is a t-subnorm, but not vice versa: for example, the zero function is a
t-subnorm but not a t-norm.

Each t-subnorm can be transformed into a t-norm by redefining (if necessary) its values on the
upper right boundary of the unit square [41, Corollary 1.8].

Proposition 2.4 If F': [0,1]> — [0,1] is a t-subnorm then the functidh: [0,1]> — [0, 1]
defined by

T(z,y) = F(z,y)  if (z,y) €[0,1,
Y7\ min(z,y) otherwise,

is a triangular norm.

An interesting question is whether a t-norm is determined uniquely by its values on the diag-
onal of the unit square. In general, this is not the case, but the two extremal t-figriansd 7
are completely determined by their diagonal sections, i.e., by their values on the diagonal of the
unit square.

The associativity (T2) allows us to extend each t-ndrrfwhich was introduced as a binary
operation) in a unique way to anary operation for arbitrary. € N U {0} by induction:

n 1 if n=0,
zin - T(xn,nfll xl> otherwise. (11)
i=
We also shall use the notation .
T(z1,22,...,Tn) = z'-|=_1 ;.
If, in particular,xy = x5 = - - - = z,, = x, we shall briefly write
xg,zl) =T(z,z,...,x). (12)

Then-ary extensions of the minimuffi; and the producfe are obvious. For the tukasiewicz
t-norm7y, and the drastic produ@ip we get

n
Ti(x1,x9,...,2,) = max (Zml —(n— 1),0),
i=1

Tp (w1, 22, ...

x; ifx;=1forallj # 1,
axn) = .
0 otherwise.



3 Triangular conorms 5

N

Figure 2: 3D plots (top) and contour plots (bottom) of the four basic t-con®ipsSe, St,, and
Sp

The fact that each t-norfd’ is weaker thariy implies that, for each sequence;);cn of
elements of0, 1], the sequence
(T,
i=1 neN

is non-increasing and bounded from below and, subsequently, convergent. We therefore can extend
T to a (countably) infinitary operation putting

T x; = lim Tn x;. (13)
- 1

However, similarly as for infinite series of numbers, then some desirable properties such as the
generalized associativity may be violated (for more details see [48]).

3 Triangular conorms

In [61] triangular conorms were introduced as dual operations of t-norms. We give here an inde-
pendent axiomatic definition.

Definition 3.1 A triangular conorm(t-conormfor short) is a binary operatiofi on the unit in-
terval [0, 1] which is commutative, associative, monotone andthas neutral element, i.e., itis a
functionS: [0, 1]2 — [0, 1] which satisfies, for alk, y, z € [0, 1], (T1)—(T3) and

(s4)  S(z,0) ==z

The following are the four basic t-conorms, namely, t@ximumSy, the probabilistic sum
Sp, thektukasiewicz t-conorror (bounded suinSy,, and thedrastic sumSp (see Figure 2 for 3D
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and contour plots), which are given by, respectively:

Sm(z,y) = max(x,y), (14)

Sp(z,y)=z+y—x-vy, (15)

Sp(z,y) = min(z +y, 1), (16)
1 if (z,y) €]0,1)°,

S(@,y) = {max(x,y) otherwise. (17

The t-conormsSy, Sp, Si., andSp were denoted/*, IT*, W* and Z*, respectively, in [63].

The original definition of t-conorms given in [61] is completely equivalent to the axiomatic
definition given above: a functiofi: [0, 1]> — [0, 1] is a t-conorm if and only if there exists a
t-normT such that for al(z, ) € [0, 1]? either one of the two equivalent equalities holds:

)=1-T(1 —=z,1—-y), (18)
)=1—-S1—=z,1—y). (29)

The t-conorm given by (18) is called tltial t-conormof 7' and, analogously, the t-norm
given by (19) is said to be thagual t-normof S. Obviously,(Tnm, Sm), (T, Sp), (TL, SL), and
(Tpb, Sp) are pairs of t-norms and t-conorms which are mutually dual to each other.

Considering the standard negatidi(z) = 1 — x (compare (20)) as complement.oin the
unit interval, equation (18) explains the name t-conorm. We shall keep this original notion and
avoid the terms-normwhich sometimes is used synonymously in the literature.

The duality expressed in (18) allows us to translate many properties of t-norms into the corre-
sponding properties of t-conorms, including thary and infinitary extensions of a t-conorm.

The duality changes the order: if, for some t-noffhsandT»> we havel; < 15, and if S; and
S, are the dual t-conorms @f, andTs, respectively, then we g& > Ss.

If (T, 5) is a pair of mutually dual t-norms and t-conorms, then the dualities (18) and (19) can
be generalized as follows (hefecan be an arbitrary finite or countably infinite index set):

Sxizl—T(l—iﬁi),

icl iel
Tz, =1-S (1—ux).
iel iel

In fuzzy logics, t-conorms are usually used as an interpretation of the disjunction

4 Negations and De Morgan triples

Finally, let us have a brief look at negations.

Definition 4.1 (i) A non-increasing functiodv: [0, 1] — [0, 1] is called anegationif

(N1) NO)=1 and N(1)=0.
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(i) A negationN: [0,1] — [0, 1] is called astrict negationif, additionally,

(N2) N is continuous.
(N3) N is strictly decreasing.

(iii) A strict negationV: [0, 1] — [0, 1] is called astrong negatiorif it is an involution, i.e., if
(N4) NoN = id[oJ].
It is obvious thatV: [0, 1] — [0, 1] is a strict negation if and only if it is a strictly decreasing
bijection.

The most important and most widely used strong negation istémelard negatioiVs : [0, 1] —
[0, 1] given by
Ns(z) =1— . (20)
Note thatV: [0,1] — [0,1] is a strong negation if and only if there is a monotone bijection
g: 10,1] — [0, 1] such that for allz € [0, 1]

p(z) = g~ (Ns(g(2))), (21)

i.e., each strong negation is a monotone transformation of the standard negation [69].
The negationV: [0, 1] — [0, 1] given by N (x) = 1 — 2 is strict, but not strong.

An example of a negation which is not strict and, subsequently, not strong, &tlel nega-
tion Ng: [0, 1] — [0, 1] given by

1 ifz=0,
Ne(e) = {0 if 2 €]0,1]. (22)

The standard negatiay was used, e.g., in [59, 60] when introducing t-conorms as duals of
t-norms, or in [74] when modeling the complement of a fuzzy set.

Given a t-nornil” and a strict negatio®V, one obtains a t-conorifi: [0, 12 — [0, 1], which
is N-dual to7" in the sense of
S(@,y) = N"HT(N(z), N(v)))- (23)

Note, however, that ifV is a non-strict negation, formula (23) cannot be applied.

If N is a strong negation, then, applying the construction in (23) to the t-coSonve get
back the t-norn¥” we started with.

A triple (T, S, N), whereT is a t-norm,S is a t-conorm andV is a negation is called Be
Morgan tripleif for all (z,) € [0, 1]> we have

This means that, given a t-noriy (7',.S, N) is a De Morgan triple if and only ifV is a strong
negation and is the N-dual of T".
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Lets: [0,1] — [0, 1] be a strictly increasing bijection. Theh [0,1]2 — [0, 1] defined by
S(x,y) = s~} (min(s(z) + 5(y), 1))

is a t-conorm (in factS is a nilpotent t-conorm with additive generatof41, Definition 3.39]).
Moreover,N: [0, 1] — [0, 1] given by

N(z) = inf{y € [0,1] | S(z,y) = 1}
is a strong negation. [f is t-norm which isNV-dual to.S then we have

T(z,y)=s"
S(a,y) = s~ (Su(s(2), s(v))),
N(z) = s

=
—
VAl

—
8

~—
~—
~—

which means that the De Morgan tripl€’, S, V) is isomorphic to the tukasiewicz De Morgan
triple (71, S, Ns).

Even if (T, S, N) is a De Morgan triple, we do not necessarily hdver, N(x)) = 0 and
S(x,N(z)) = 1forall z € [0,1], i.e., the law of the excluded middle (which is one of the crucial
features of the classical, two-valued Boolean logic) may be violated. For instance, if the t-norm
T in the De Morgan tripl€7’, S, Ns) has no zero divisors, i.e., F(x,y) > 0 wheneverr > 0
andy > 0 (see Definition 6.1(iii)), then the law of the excluded middle never holds. On the other
hand, in the De Morgan tripléTy,, St., Ns) and, a fortiori, in each De Morgan triplg’, S, Ns)
with T" < T1,, we have a many-valued analogue of the classical law of the excluded middle.

It is noteworthy that, given a De Morgan trip(&, S, V), the tuple([0,1],7,.S, N,0,1) can
never be a Boolean algebra: in order to satisfy distributivity we must iave Ty; and S =
Sm (see Proposition 6.18), in which case it is impossible to have Bgth N(z)) = 0 and
S(x,N(x)) = 1forallz € [0, 1].

5 Continuity

As can be seen from the drastic prodiigf and its dualSp, t-norms and t-conorms (viewed as
functions in two variables) need not be continuous (in fact, they need not even be Borel measurable
functions [41, Example 3.75]). Nevertheless, for a number of reasons continuous t-norms and t-
conorms play an important role. Therefore, we shall discuss here continuity as well as left- and
right-continuity.

Recall thatat-norr: [0, 1)2> — [0, 1] is continuous if for all convergent sequen¢es),.cn,
(yn)nEN € [07 1]N we have
T( lim z,, lim yn) = lim T(zp,yn)-
n—oo n—oo n—oo
Obviously, the continuity of a t-conortfi is equivalent to the continuity of the dual t-norffh

Since the unit squarf, 1)? is a compact subset of the real plaRg the continuity of a t-norm
T:[0,1]2 — [0,1] is equivalent to its uniform continuity.
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Figure 3: 3D plot (left) and contour plot of the nilpotent minim@A™ defined by (24)

Obviously, the basic t-norniByg, Tp andTy, as well as their dual t-conornitgyr, Sp and S,
are continuous, and the drastic prodiligt and the drastic surSp are not continuous.

In general, a real function of two variables, e.g, with donjajrlF, may be continuous in each
variable without being continuous ¢ 1]2. Because of their monotonicity, triangular norms (and
conorms) are exceptions from this:

Proposition 5.1 A t-normT': [0, 1]> — [0, 1] is continuous if and only if it is continuous in each
component, i.e., if for alty, yo € [0, 1] both the vertical sectioff’(zo,.): [0, 1] — [0, 1] and the
horizontal sectiorf'(., yo) : [0, 1] — [0, 1] are continuous functions in one variable.

Obviously, because of the commutativity (T1), for a t-norm or a t-conorm its continuity is
equivalent to its continuity in the first component.

For applications, e.g., in probabilistic metric spaces, many-valued logics or decomposable
measures, quite often weaker forms of continuity are sufficient. Since we have a similar result as
Proposition 5.1 for left- and right-continuous t-norms, these definitions are given in one component
only.

Definition 5.2 A t-norm T': [0,1]2 — [0, 1] is said to beeft-continuougright-continuous if
for eachy € [0, 1] and for all non-decreasing (non-increasing) sequefqces,cn We have

lim T(x,,y) = T(nli_)rroloxn,y).

n—0o0

Clearly, a t-norm is continuous if and only if it is both left- and right-continuous.

The nilpotent minimun™™ (mentioned in [57, 58, 21], for a visualization see Figure 3)
defined by

M (g, y) = 4 fotyst (24)
min(x,y) otherwise,

is a t-norm which is left-continuous but not right-continuous. The drastic pradsiobn the other
hand, is right-continuous but not left-continuous. An example of a t-norm which is neither left-
nor right-continuous can be found in Example 6.14(iv).

Clearly, a t-nornil” is left-continuous if and only if its dual t-conorm given by (18) is right-
continuous, and vice versa.
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6 Algebraic properties

In the language of algebrad, is a t-norm if and only if [0, 1], T', <) is a fully ordered commutative
semigroup with neutral elementand annihilator (zero elemend) Therefore, it is natural to
consider additional algebraic properties a t-norm may have.

Ouir first focus are idempotent and nilpotent elements, and zero divisors. Since for eagh
we trivially haveog?) =0 and 1(T”) = 1, only elements of0, 1] will be considered as candidates
for nilpotent elements and zero divisors in the following definition.

Definition 6.1 LetT be at-norm.

(i) An elementa € [0, 1] is called anidempotent elemerf 7" if 7'(a,a) = a. The numbers
0 and1 (which are idempotent elements for each t-ndfjnare calledtrivial idempotent
elements off’, each idempotent element j, 1[ will be called anon-trivial idempotent
element off".

(i) Anelement € |0, 1] is called anilpotent elemenof 7" if there exists some € N such that
n
ap’ = 0.

(i) An elementa € |0, 1] is called azero divisorof T if there exists somé < ]0, 1[ such that
T(a,b) = 0.

The set of idempotent elements of the minimdiyy equals|0, 1] (actually, Tys is the only
t-norm with this property). For the tukasiewicz t-noff as well as for the drastic produt,
both the set of nilpotent elements and the set of zero divisors &gual The minimumTy; and
the productl’> have neither nilpotent elements nor zero divisors, @pd Ty, andTp possess
only trivial idempotent elements.

The set of idempotent elements of the nilpotent mininiiM! defined in (24) equal§d} U
10.5, 1], its set of nilpotent elements 8, 0.5], and its set of zero divisors equals 1].

The idempotent elements of t-norms can be characterized in the following way, which involves
the operation minimum [41, Proposition 2.3].

Proposition 6.2 (i) An element € [0, 1] is an idempotent element of a t-noffif and only if
for all z € [a, 1] we havel'(a, x) = min(a, x).

(i) If T is a continuous t-norm, them € [0, 1] is an idempotent element &fif and only if for
all x € [0, 1] we havel'(a, x) = min(a, x).

Remark 6.3 For arbitrary t-norms some general observations concerning idempotent and nilpo-
tent elements and zero divisors can be formulated.

(i) No element of0, 1] can be both idempotent and nilpotent.

(i) Each nilpotent elementof a t-normT is also a zero divisor df’, but not conversely{®M
is a counterexample).

(i) If(g t-norm7 has a nilpotent elementthen there is always an eleméng |0, 1[ such that
by’ = 0.
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(iv) If a € ]0,1[ is a nilpotent element of a t-norfi then each number € ]0,q[ is also a
nilpotent element of, i.e., the set of nilpotent elements of a t-noffrcan either be the
empty set (as fofng or 7p) or an interval of the fornjo, ¢[ or ]0, ¢]. The same is true for
zero divisors.

Example 6.4 For the t-nornil” [63, Example 5.3.13] given by

0 if (,y) € [0,0.5)%,
2(z —0.5)(y — 0.5) +0.5

if (x,y) €]0.5,1)%,
min(zx,y) otherwise,

T(x,y) = (25)

its set of nilpotent elements and its set of zero divisors both éguab|, and for each element of
the family (7¢.).jo,1) of t-norms defined by

max((),x—i—y—c) if (xay> € [076]27
min(z, y) otherwise,

Te(w,y) = {

the set of nilpotent elements and the set of zero divisoffs efquall0, ¢[.

Although the set of nilpotent elements is in general a subset of the set of zero divisors, for
each t-norm the existence of zero divisors is equivalent to the existence of nilpotent elements, i.e.,
a t-norm has zero divisors if and only if it has nilpotent elements [41, Proposition 2.5].

For right-continuous t-norms (in fact, the right-continuity Bfon the diagonal of the unit
square is sufficient) it is possible to obtain each idempotent element as the limit of the powers of a
suitablex € [0, 1] [41, Proposition 2.6].

Proposition 6.5 LetT be a t-norm which is right-continuous on the diagofét, z) | z € [0, 1]}
of the unit squaréo, 1)2, and leta € [0, 1]. The following are equivalent:

() ais an idempotent element 6t

(i) There exists am € [0, 1] such thatz = lim xgl).
n—oo
It is well-known that, for continuous t-norms, its set of idempotent elements is a closed subset
of the unit interval[0, 1]. As a consequence of [41, Corollary 2.8], this is also true for t-norms
which are right-continuous in some specific points of the diagonal of the unit square and, conse-

guently, for t-norms which are right-continuous:
Corollary 6.6 LetT be a t-norm such that for eache [0, 1]

T(a,a) =a wheneverlim 7'(z, ) = a.

z\.a

Then the set of idempotent element$'a$ a closed subset ¢, 1].
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The t-normT" given in (25) shows that the converse implication does not necessarily hold in
Corollary 6.6 (just consider the cage= 0.5).

Some t-norms have additional algebraic properties. The first group of such properties centers
around the notions of strict monotonicity and the Archimedean property, which play an important
role in many algebraic concepts, e.g., in semigroups.

Definition 6.7 For an arbitrary t-nornT” we consider the following properties:

(i) The t-normT is said to bestrictly monotonef

(SM)  T(z,y) < T(z,2)
whenever: > 0 andy < z.

(i) The t-normT satisfies theancellation lawif

CLH T(z,y)=T(z,2)
implies x=0 or y==z.

(i) The t-normT satisfies theonditional cancellation lavif

(CCL) T(z,y) =T(x,z) >0
implies y = z.

(iv) The t-normT is calledArchimedearnf

(AP)  for each(z,y) € ]0,1[>
there is am € N with x(T") <y.

(v) The t-normT" has thdimit propertyif

(LP) forallz€]0,1[: lim 2\ =0.
Example 6.8 (i) The minimumTy; has none of these properties, and the prodgcsatisfies
all of them. The tukasiewicz t-norfiy, and the drastic produdip are Archimedean and
satisfy the conditional cancellation law (CCL) and the limit property (LP), but none of the
other properties.

(i) If a t-norm T satisfies the cancellation law (CL) then it obviously fulfills the conditional
cancellation law (CCL), but not conversely (see, €l@).

(iii) The algebraic properties introduced in Definition 6.7 are independent of the continuity: the
continuous t-norni; shows that continuity implies none of these properties. Conversely,
Tp and the non-continuous t-norimgiven by

zy i 2
T(a},y) — 2 If (Z‘, y) € [07 1[ ’ (26)
min(z,y) otherwise,

which is strictly monotone and satisfies the cancellation law (CL), are examples demon-
strating that none of the algebraic properties implies the continuity of the t-norm under
consideration.
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The strict monotonicity (SM) of a t-norm is related to the other properties as follows [41,
Proposition 2.11]:

Proposition 6.9 LetT be a t-norm. Then we have:

() T is strictly monotone if and only if it satisfies the cancellation law (CL).
(i) If T is strictly monotone then it has only trivial idempotent elements.

(iii) If T is strictly monotone then it has no zero divisors.

The Archimedean property (AP) of a t-norm can be characterized in the following way [41,
Theorem 2.12].

Proposition 6.10 For a t-norm7T the following are equivalent:

(i) T is Archimedean.
(i) T satisfies the limit property (LP).
(iii) T has only trivial idempotent elements and, whenever

lim T =
Jm (z,2) = o

for somez € |0, 1], there exists g, € |xo, 1] such thatl’(yo, yo) = xo.

Combining the continuity with some algebraic properties, we obtain two extremely important
classes of t-norms.

Definition 6.11 (i) At-norm7 is calledstrict if it is continuous and strictly monotone.

(i) At-normT is callednilpotentif it is continuous and if each € |0, 1] is a nilpotent element
of T.

Example 6.12 (i) The producflp is a strict t-norm, and the Lukasiewicz t-nofff is a nilpo-
tent t-norm. In fact [41, Propositions 5.9, 5.10] each strict t-norm is isomorphig tand
each nilpotent t-norm is isomorphic 1q,.

(i) Because of Proposition 6.9(i), a t-nofftis strict if and only if it is continuous and satisfies
the cancellation law (CL).

(iii) Each strict and each nilpotent t-norm fulfills the conditional cancellation law (CCL).

The following result gives a number of sufficient conditions for a t-norm to be Archimedean
[41, Proposition 2.15].

Proposition 6.13 For an arbitrary t-norm7” we have:

(i) If T is right-continuous and has only trivial idempotent elements then it is Archimedean.
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T satisfies the T has the
czmcl(;limon limit property
T has no T Fa iftets _ ) Tis < | T is nilpotent
zero divisors Archimedean
o T has only triv-
T is strictly ial idempotent
monotone elements

Figure 4: The logical relationship between various algebraic properties of t-norms: a double ar-
row indicates an implication, a dotted arrow means that the corresponding implication holds for
continuoud-norms

(i) If T is right-continuous and satisfies the conditional cancellation law (CCL) thenitis Archi-
medean.

(iii) If limg~ o, T'(z, x) < xo for eachzq € |0, 1] thenT is Archimedean.
(iv) If T is strict then it is Archimedean.

(v) If eachx € ]0, 1] is a nilpotent element &f thenT is Archimedean.

In [43] it was shown that each left-continuous Archimedean t-norm is necessarily continuous.

All the implications between the algebraic properties of t-norms considered so far are sum-
marized and visualized in Figure 4. The following are counterexamples showing that there are no
other logical relations between these algebraic properties.

Example 6.14 (i) The Lukasiewicz t-norm¥1, shows that an Archimedean t-norm need not
be strictly monotone, and that the limit property (LP) does not imply the cancellation law
(CL). The productlp is an example of a continuous Archimedean t-norm without nilpotent
elements. The drastic produt is an example of a non-continuous Archimedean t-norm
for which eachu € ]0, 1] is a nilpotent element.

(i) The t-norm given in (26) shows that a strictly monotone t-norm need not be continuous and,
subsequently, not necessatrily strict.

(iii) The non-continuous t-norm given in (25) shows that a t-norm with only trivial idempotent
elements is not necessarily strictly monotone or Archimedean.

(iv) At-norm may satisfy both the strict monotonicity (SM) and the Archimedean property (AP)
without being continuous and, subsequently, without being strict. One example for this is
the t-norm introduced in (26), another t-norm with these features is the following [10]: recall
that each(z, y) € ]0,1]% is in a one-to-one correspondence with a W&r, ) nen, (Yn)nen)
of strictly increasing sequences of natural numbers given by the unique infinite dyadic rep-

resentations
=1 =1
x:22xn and y:22n

n=1 n=1
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of the numbers: andy, respectively. Using this notion, then the functién [0, 1)2 —
[0, 1] given by

& 1

P
T(IE,y) = §nrn=1 2%nTYn

min(z,y)  otherwise,

if (z,y) €]0,1[%,

is a t-norm which is strictly monotone, Archimedean, and Ieft-continuoqﬁ,drf. How-
ever,T is discontinuous in each poitit;, y) € ]0,1]*> where at least one coordinate is a
dyadic rational number (i.e., of the forg for somem,n € N with m < 2"; observe that
the set of discontinuity points @f is dense irf0, 1]%). Consequentlyl is not strict.

(v) A modification of the t-norm in (iv) yields a t-norm which is strictly monotone but neither

(vi)

(vii)

Archimedean nor continuous (compare [67]): keeping the notation of (iv), the function
T: [0,1]> — [0, 1], which is defined by

oS 1

ngl W
T(z,y) = if (z,y) €10,1)%,
0 otherwise,

is a t-norm which is strictly monotone, left-continuous|[6n1]?, but discontinuous in each
point (z,y) € ]0, 1[* where at least one coordinate is a dyadic rational number. HowEver,
is not Archimedean.

The functionT: [0,1]> — [0, 1] defined by

xy if (,y) €[0,0.5)%,
2(x —0.5)(y —0.5) +0.5

if (x,y) €]0.5,1)%,
min(zx,y) otherwise,

T(l‘,y) =

is a t-norm which has only trivial idempotent elements, no zero divisors, is not Archimedean
and not strictly monotone.

Recall that each < ]0, 1] has a unique infinite dyadic representatios >~ ; 211” , Wwhere

(zn)nen is a strictly increasing sequence of natural numbers, and consider the function
f:10,1] — [0, 1] defined by

[e.°] o0

fn if ¢ = %n,
f(.f) = ngl 3 n;l Zon
0 if £ =0.

Then the functiorl: [0,1]> — [0, 1] (introduced in [66], compare [41, Example 3.21])
given by
FFY@) - FD )
T(z,y) = if (z,y) € 0,1,
min(z,y) otherwise,
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wheref(=1: [0,1] — [0, 1] is the pseudo-inverse gf (observe thaif(~) is also known
as Cantor function) given by

FD(@) = sup{z € [0,1] | f(2) < =},

is an Archimedean t-norm which is continuous in the pgintl), but which has no zero
divisors and which is not strictly monotone. A more complicated example of this type is the
Krause t-norm [41, Appendix B.1], which is also a non-continuous t-norm with a continuous
diagonal, thus providing a counterexample to an open problem stated in [63].

It turns out that among the continuous Archimedean t-norms there are only two classes: the
nilpotent and the strict t-norms. The existence of nilpotent elements (or zero divisors) provides a
simple check for that [41, Theorem 2.18].

Theorem 6.15 LetT be a continuous Archimedean t-norm. Then the following are equivalent:

() T is nilpotent.
(i) There exists some nilpotent element of
(iii) There exists some zero divisorof

(iv) T is not strict.

Remark 6.16 (i) A consequence of Proposition 6.10 is that a t-n@riis Archimedean if and
only if it fulfills the limit property (LP). Note that, e.g., for topological semigroups, the
Archimedean property is usually defined by means of the limit property (LP) (see [49, 12]).

(i) An immediate consequence of Theorem 6.15 and Example 6.12(iii) is that a continuous
t-norm is Archimedean if and only if it satisfies the conditional cancellation law (CCL).

(iii) From Theorem 6.15 it follows that a continuous t-ndfhis strict if and only if for each
x €]0,1] the sequencé:::(T"))nGN is strictly decreasing and convergesitoAgain, this is
the usual way to define the strictness of topological semigroups.

The strict monotonicity of t-conorms as well as strict, Archimedean and nilpotent t-conorms
can be introduced using the dualities (18) and (19). Without presenting all the technical details, we
only mention that it suffices to interchange the words t-norm and t-conorm and the rolesiof
1, respectively, and sometimes to reverse the inequalities involved, in order to obtain the proper
definitions and results for t-conorms. For instance, a t-con®imstrictly monotone if

(SMY)  S(z,y) < S(x,2)
whenever z <1 and y < z.

The Archimedean property is an example where it is necessary to reverse the inequality, so a
t-conormS is Archimedean if

(AP*)  for each(z,y) € ]0,1[?
there is am € N such thatz{"” > y.
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without zero divisors with zero divisors

@ Example6.14(vi)

= s

g 1 Example6.14(vii)  Archimedean t-norms;
=9 t I
26 strictly monotone t-norms T |
Eg | I | D I Example6.4
22 Exampler Example I
58 6.14(v) 1 6.8(iil) Tp Ty |

% : strict nilpotent :

2 | t-norms | t-norms |

2]

£ Tnm  ((0,0.5,71)
TE
=2
£2
cE

M

eg ((0.5,1,Tp)) ™
r=g-1
sE

R

Figure 5: Different classes of t-norms, each of them with a typical representative: within the
central circle one finds the continuous t-norms, and the classes of strict and nilpotent t-norms are
marked in grey (for the definition of the ordinal surf(, 0.5,71,)) and ((0.5,1,7p)) see [41,
Definition 3.44])

Of course, a t-conorm fulfills any of these properties if and only if the dual t-norm fulfills it.
Finally let us have a brief look at the distributivity of t-norms and t-conorms.

Definition 6.17 Let T be a t-norm and' be a t-conorm. Then we say tHAtis distributive over
Sifforall z,y, 2z € [0, 1]

and thatsS is distributive overT if for all z,y, z € [0, 1]
S, T(y, 2)) =T(S(x,y), S(w, 2)).

If T is distributive overS andsS is distributive ovefT’, then(T', S) is called adistributive pair(of
t-norms and t-conorms).

In the context of distributivity the minimuriiy; and the maximundy; play a distinguished
role (compare also [8]).

Proposition 6.18 LetT be a t-norm ands' a t-conorm. Then we have:
(i) S is distributive ovefT if and only ifT" = Ty.
(i) T is distributive overS if and only if S = Sy;.

(iii) (7',.S) is a distributive pair if and only i’ = Ty and S = Sy.
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7 Historical remarks

The history of triangular norms started with K. Menger’s paper “Statistical metrics" [47]. The
main idea was to study metric spaces where probability distributions rather than numbers are used
to model the distance between the elements of the space in question. Triangular norms naturally
came into the picture in the course of the generalization of the classical triangle inequality to this
more general setting. The original set of axioms for t-norms was somewhat weaker, including
among others also triangular conorms.

Consequently, the first field where t-norms played a major role was the theory of probabilistic
metric spaces (as statistical metric spaces were called after 1964). B. Schweizer and A. Sklar
[59, 60, 61] provided the axioms of t-norms, as they are used today, and a redefinition of statis-
tical metric spaces given in A. N. Serstnev [64] led to a rapid development of the field. Many
results concerning t-norms were obtained in the course of this development, most of which are
summarized in the monograph [63] of B. Schweizer and A. Sklar.

Mathematically speaking, the theory of (continuous) t-norms has two rather independent roots,
namely, the field of (specific) functional equations and the theory of (special topological) semi-
groups.

Concerning functional equations, t-norms are closely related to the equation of associativity
(which is still unsolved in its most general form). The earliest source in this context seems to be
N. H. Abel [1], further results in this direction were obtained in L. E. J. Brouwer [9], E. Cartan
[13], J. Aczél [2], and M. Hosszu [32]. Especially J. Aczél's monograph [3, 4] had (and still has)

a big impact on the development of t-norms. The main result based on this background was the
full characterization of continuous Archimedean t-norms by means of additive generators in C. M.
Ling [45] (for the case of strict t-norms see [61]).

Another direction of research was the identification of several parameterized families of t-
norms as solutions of some (more or less) natural functional equations. The perhaps most famous
result in this context has been proven in M. J. Frank [23], showing that the family of Frank t-norms
and t-conorms (together with ordinal sums thereof) are the only solutions of the so-called Frank
functional equation.

The study of a class of compact, irreducibly connected topological semigroups was initiated in
W. M. Faucett [20], including a characterization of such semigroups, where the boundary points (at
the same time annihilator and neutral element, respectively) are the only idempotent elements and
where no nilpotent elements exist. In the language of t-norms, this provided a full representation
of strict t-norms. In P. S. Mostert and A. L. Shields [49] all such semigroups, where the boundary
points play the role of annihilator and neutral element, were characterized (see also [55]). Again
in the language of t-norms, this provided a representation of all continuous t-norms [45].

Several construction methods from the theory of semigroups, such as (isomorphic) transfor-
mations (which are closely related to generators mentioned above) and ordinal sums (based on the
work of A. H. Clifford [14], and foreshadowed in F. Klein-Barmen [37] and A. C. Climescu [15]),
have been successfully applied to construct whole families of t-norms from a few given prototypi-
cal examples [62]. Summarizing, starting with only three t-norms, namely, the minifjgnthe
productTe and the tukasiewicz t-norrifiy,, it is possible to construct all continuous t-norms by
means of isomorphic transformations and ordinal sums [45].
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Non-continuous t-norms, such as the drastic prodggthave been considered from the very
beginning [60]. In [45] even an additive generator for this t-norm was given. However, a general
classification of non-continuous t-norms is still not known.

In his seminal paper “Fuzzy sets", L. A. Zadeh [74] introduced the theory of fuzzy sets as a
generalization of the classical Cantorian set theory whose logical basis is the two-valued Boolean
logic (compare also D. Klaua [35, 36]). It was suggested in [74] to use the minifgmthe
maximumsSyg, and the standard negatidf, to model the intersection, union, and complement of
fuzzy sets, respectively. However, also the prodigetthe probabilistic sunyp and the tukasie-
wicz t-conormsSy, (the latter in a restricted form) were already mentioned as possible candidates
for intersection and union of fuzzy sets, respectively, in this very first paper.

The use of general t-norms and t-conorms for modeling the intersection and the union of fuzzy
sets seems to have at least two independent roots. On the one hand, there was a series of seminars
devoted to this topic, held in the seventies by E. Trillas at the Departament de Matematiques i Es-
tadistica de I'Escola Técnica Superior d’Arquitectura of the Universitat Politecnica de Barcelona.
On the other hand, there were suggestions by U. Hohle during the First International Symposium
on Policy Analysis and Information Systems (Durham, N.C., 1979) and the First International
Seminar on Fuzzy Set Theory (Linz, Austria, 1979). The canonical reason for this was that the
axioms of commutativity, associativity, monotonicity as well as the boundary conditions were (and
still are) generally considered as reasonable, even indispensable properties of meaningful exten-
sions of the Cantorian intersection and union (a notable exception from this are the compensatory
operators which may be non-associative, compare H.-J. Zimmermann and P. Zysno [75], J. Dombi
[16], M. K. Luhandjula [46], I. B. Turksen [70], C. Alsinat al. [5], R. R. Yager and D. P. Filev
[72], and E. P. Klemengt al. [40]).

Very early traces of (some slight variations of) t-norms and t-conorms in the context of inte-
gration of fuzzy sets with respect to non-additive measures can be found in the PhD thesis of M.
Sugeno [68], first concepts for a unified theory of fuzzy sets (base€bhpand Sng) were pre-
sented in C. V. Negoita and D. Ralescu [50] and S. Gottwald [24, 25, 26]. The first papers using
general t-norms and t-conorms for operations on fuzzy sets were J. M. Anthony and H. Sherwood
[7], C. Alsinaet al. [6], D. Dubois [17], and E. P. Klement [38, 39] (see also D. Dubois and H.
Prade [19]). A full characterization of strong negations as models of the complement of fuzzy sets
can be found in E. Trillas [69].
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