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1 Introduction

Triangular norms (briefly t-norms) are an indispensable tool for the interpretation of the conjunc-
tion in fuzzy logics [29] and, subsequently, for the intersection of fuzzy sets [74]. They are,
however, interesting mathematical objects for themselves.

Triangular norms, as we use them today, were first introduced in the context of probabilistic
metric spaces [60, 64, 63], based on some ideas presented in [47] (see Section 7 for details). They
also play an important role in decision making [22, 28], in statistics [51] as well as in the theories of
non-additive measures [42, 56, 68, 71] and cooperative games [11]. Some parameterized families
of t-norms (see, e.g., [23]) turn out to be solutions of well-known functional equations.

Algebraically speaking, t-norms are binary operations on the closed unit interval[0, 1] such
that([0, 1], T,≤) is an abelian, totally ordered semigroup with neutral element1 [30].

For the closely related concept of uninorms (which turn[0, 1] into an abelian, totally ordered
semigroup with neutral elemente ∈ ]0, 1[) see [41, 73].

A recent monograph [41] provides a rather complete overview about triangular norms and
their applications.

In a series of three papers we want to summarize in a condensed form the most important
facts about t-norms. This Part I deals with the basic analytical properties, such as continuity, and
with important classes such as Archimedean, strict and nilpotent t-norms. We also mention the
dual operations, the triangular norms, and De Morgan triples. Finally we give a short historical
overview on the development of t-norms and their way into fuzzy sets and fuzzy logics.

To keep the paper readable, we have omitted all proofs (usually giving a source for the reader
interested in them) and rather included a number of (counter-)examples, in order to motivate and
to illustrate the abstract notions used.

Part II will be devoted to general construction methods based mainly on pseudo-inverses,
additive and multiplicative generators, and ordinal sums, adding also some constructions leading
to non-continuous t-norms, and to a presentation of some distinguished families of t-norms.

Finally, Part III will concentrate on continuous t-norms, in particular, on their representation
by additive and multiplicative generators and ordinal sums.

2 Triangular norms

The term triangular norm appeared for the first time (with slightly different axioms) in K. Menger
[47]. The following set of independent axioms for triangular norms goes back to B. Schweizer
and A. Sklar [59, 60, 61].

Definition 2.1 A triangular norm(briefly t-norm) is a binary operationT on the unit interval[0, 1]
which is commutative, associative, monotone and has1 as neutral element, i.e., it is a function
T : [0, 1]2 −→ [0, 1] such that for allx, y, z ∈ [0, 1]:

(T1) T (x, y) = T (y, x),

(T2) T (x, T (y, z)) = T (T (x, y), z),



2 Triangular norms 2

0
0.25

0.5
0.75

10.5

0.25

0.5

0.75

1

0
0.25

0.5
0.75

1

0.25

0.5

0.75

1

0
0.25

0.5
0.75

10.5

0.25

0.5

0.75

1

0
0.25

0.5
0.75

1

0.25

0.5

0.75

1

0
0.25

0.5
0.75

10.5

0.25

0.5

0.75

1

0
0.25

0.5
0.75

1

0.25

0.5

0.75

1

0
0.25

0.5
0.75

10.5

0.25

0.5

0.75

1

0
0.25

0.5
0.75

1

0.25

0.5

0.75

1

TM TP TL TD

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Figure 1: 3D plots (top) and contour plots (bottom) of the four basic t-normsTM, TP, TL, andTD

(observe that there are no contour lines forTD)

(T3) T (x, y) ≤ T (x, z) whenevery ≤ z,

(T4) T (x, 1) = x.

Since a t-norm is an algebraic operation on the unit interval[0, 1], some authors (e.g., in [53])
prefer to use an infix notation likex ∗ y instead of the prefix notationT (x, y). In fact, some of the
axioms (T1)–(T4) then look more familiar: for allx, y, z ∈ [0, 1]

(T1) x ∗ y = y ∗ x,

(T2) x ∗ (y ∗ z) = (x ∗ y) ∗ z,

(T3) x ∗ y ≤ x ∗ z whenevery ≤ z,

(T4) x ∗ 1 = x.

Because of the importance of some functional aspects (e.g., continuity) and since we prefer to keep
a unified notation throughout this paper, we shall consistently use the prefix notation for t-norms
(and t-conorms).

Since t-norms are obviously extensions of the Boolean conjunction, they are usually used as
interpretations of the conjunction∧ in [0, 1]-valued and fuzzy logics.

There exist uncountably many t-norms. In [41, Section 4] some parameterized families of
t-norms are presented which are interesting from different points of view.

The following are the four basic t-norms, namely, theminimumTM, theproductTP, theŁuka-
siewicz t-normTL, and thedrastic productTD (see Figure 1 for 3D and contour plots), which are
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given by, respectively:

TM(x, y) = min(x, y), (1)

TP(x, y) = x · y, (2)

TL(x, y) = max(x + y − 1, 0), (3)

TD(x, y) =

{
0 if (x, y) ∈ [0, 1[2 ,

min(x, y) otherwise.
(4)

These four basic t-norms are remarkable for several reasons. The drastic productTD and the
minimumTM are the smallest and the largest t-norm, respectively (with respect to the pointwise
order). The minimumTM is the only t-norm where eachx ∈ [0, 1] is an idempotent element
(compare Definition 6.1), whereas the productTP and the Łukasiewicz t-normTL are prototypical
examples of two important subclasses of t-norms, namely, of the classes of strict and nilpotent t-
norms, respectively.

It should be mentioned that the t-normsTM, TP, TL, andTD were denotedM , Π, W , andZ,
respectively, in [63].

Sometimes we shall visualize t-norms (and functionsF : [0, 1]2 −→ [0, 1] in general) in dif-
ferent forms: as 3D plots, i.e., as surfaces in the unit cube, as contour plots showing the curves
(or, more generally, the sets) where the function in question has constant (equidistant) values, and,
occasionally, as diagonal sections, i.e., as graphs of the functionx 7−→ F (x, x).

The boundary condition (T4) and the monotonicity (T3) were given in their minimal form.
Together with (T1) it follows that, for allx ∈ [0, 1], each t-normT satisfies

T (0, x) = T (x, 0) = 0, (5)

T (1, x) = x. (6)

Therefore, all t-norms coincide on the boundary of the unit square[0, 1]2.

The monotonicity of a t-normT in its second component (T3) is, together with the commuta-
tivity (T1), equivalent to the (joint) monotonicity in both components, i.e., to

T (x1, y1) ≤ T (x2, y2)
wheneverx1 ≤ x2 andy1 ≤ y2. (7)

Since t-norms are just functions from the unit square into the unit interval, the comparison of
t-norms is done in the usual way, i.e., pointwise.

Definition 2.2 If, for two t-normsT1 andT2, we haveT1(x, y) ≤ T2(x, y) for all (x, y) ∈ [0, 1]2,
then we say thatT1 is weakerthanT2 or, equivalently, thatT2 is strongerthanT1, and we write in
this caseT1 ≤ T2.

We shall writeT1 < T2 if T1 ≤ T2 andT1 6= T2, i.e., ifT1 ≤ T2 and ifT1(x0, y0) < T2(x0, y0)
for some(x0, y0) ∈ [0, 1]2.

As an immediate consequence of (T1), (T3) and (T4), the drastic productTD is the weakest,
and the minimumTM is the strongest t-norm, i.e., for each t-normT we have:

TD ≤ T ≤ TM. (8)
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Between the four basic t-norms we have these strict inequalities:

TD < TL < TP < TM. (9)

A slight modification of axiom (T4) leads to the following notion, introduced in S. Jenei [33,
34].

Definition 2.3 A functionF : [0, 1]2 −→ [0, 1] which satisfies, for allx, y, z ∈ [0, 1], the proper-
ties (T1)–(T3) and

F (x, y) ≤ min(x, y) (10)

is called at-subnorm.

Clearly, each t-norm is a t-subnorm, but not vice versa: for example, the zero function is a
t-subnorm but not a t-norm.

Each t-subnorm can be transformed into a t-norm by redefining (if necessary) its values on the
upper right boundary of the unit square [41, Corollary 1.8].

Proposition 2.4 If F : [0, 1]2 −→ [0, 1] is a t-subnorm then the functionT : [0, 1]2 −→ [0, 1]
defined by

T (x, y) =

{
F (x, y) if (x, y) ∈ [0, 1[2 ,

min(x, y) otherwise,

is a triangular norm.

An interesting question is whether a t-norm is determined uniquely by its values on the diag-
onal of the unit square. In general, this is not the case, but the two extremal t-normsTD andTM

are completely determined by their diagonal sections, i.e., by their values on the diagonal of the
unit square.

The associativity (T2) allows us to extend each t-normT (which was introduced as a binary
operation) in a unique way to ann-ary operation for arbitraryn ∈ N ∪ {0} by induction:

n

T
i=1

xi =

1 if n = 0,

T
(
xn,

n−1

T
i=1

xi

)
otherwise.

(11)

We also shall use the notation

T (x1, x2, . . . , xn) =
n

T
i=1

xi.

If, in particular,x1 = x2 = · · · = xn = x, we shall briefly write

x
(n)
T = T (x, x, . . . , x). (12)

Then-ary extensions of the minimumTM and the productTP are obvious. For the Łukasiewicz
t-normTL and the drastic productTD we get

TL(x1, x2, . . . , xn) = max
( n∑

i=1

xi − (n− 1), 0
)
,

TD(x1, x2, . . . , xn) =

{
xi if xj = 1 for all j 6= i,

0 otherwise.
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Figure 2: 3D plots (top) and contour plots (bottom) of the four basic t-conormsSM, SP, SL, and
SD

The fact that each t-normT is weaker thanTM implies that, for each sequence(xi)i∈N of
elements of[0, 1], the sequence ( n

T
i=1

xi

)
n∈N

is non-increasing and bounded from below and, subsequently, convergent. We therefore can extend
T to a (countably) infinitary operation putting

∞
T
i=1

xi = lim
n→∞

n

T
i=1

xi. (13)

However, similarly as for infinite series of numbers, then some desirable properties such as the
generalized associativity may be violated (for more details see [48]).

3 Triangular conorms

In [61] triangular conorms were introduced as dual operations of t-norms. We give here an inde-
pendent axiomatic definition.

Definition 3.1 A triangular conorm(t-conormfor short) is a binary operationS on the unit in-
terval [0, 1] which is commutative, associative, monotone and has0 as neutral element, i.e., it is a
functionS : [0, 1]2 −→ [0, 1] which satisfies, for allx, y, z ∈ [0, 1], (T1)–(T3) and

(S4) S(x, 0) = x.

The following are the four basic t-conorms, namely, themaximumSM, theprobabilistic sum
SP, theŁukasiewicz t-conormor (bounded sum) SL, and thedrastic sumSD (see Figure 2 for 3D
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and contour plots), which are given by, respectively:

SM(x, y) = max(x, y), (14)

SP(x, y) = x + y − x · y, (15)

SL(x, y) = min(x + y, 1), (16)

SD(x, y) =

{
1 if (x, y) ∈ ]0, 1]2 ,

max(x, y) otherwise.
(17)

The t-conormsSM, SP, SL, andSD were denotedM∗, Π∗, W ∗ andZ∗, respectively, in [63].

The original definition of t-conorms given in [61] is completely equivalent to the axiomatic
definition given above: a functionS : [0, 1]2 −→ [0, 1] is a t-conorm if and only if there exists a
t-normT such that for all(x, y) ∈ [0, 1]2 either one of the two equivalent equalities holds:

S(x, y) = 1− T (1− x, 1− y), (18)

T (x, y) = 1− S(1− x, 1− y). (19)

The t-conorm given by (18) is called thedual t-conormof T and, analogously, the t-norm
given by (19) is said to be thedual t-normof S. Obviously,(TM, SM), (TP, SP), (TL, SL), and
(TD, SD) are pairs of t-norms and t-conorms which are mutually dual to each other.

Considering the standard negationNs(x) = 1 − x (compare (20)) as complement ofx in the
unit interval, equation (18) explains the name t-conorm. We shall keep this original notion and
avoid the terms-normwhich sometimes is used synonymously in the literature.

The duality expressed in (18) allows us to translate many properties of t-norms into the corre-
sponding properties of t-conorms, including then-ary and infinitary extensions of a t-conorm.

The duality changes the order: if, for some t-normsT1 andT2 we haveT1 ≤ T2, and ifS1 and
S2 are the dual t-conorms ofT1 andT2, respectively, then we getS1 ≥ S2.

If (T, S) is a pair of mutually dual t-norms and t-conorms, then the dualities (18) and (19) can
be generalized as follows (hereI can be an arbitrary finite or countably infinite index set):

S
i∈I

xi = 1− T
i∈I

(1− xi),

T
i∈I

xi = 1− S
i∈I

(1− xi).

In fuzzy logics, t-conorms are usually used as an interpretation of the disjunction∨.

4 Negations and De Morgan triples

Finally, let us have a brief look at negations.

Definition 4.1 (i) A non-increasing functionN : [0, 1] −→ [0, 1] is called anegationif

(N1) N(0) = 1 and N(1) = 0.
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(ii) A negationN : [0, 1] −→ [0, 1] is called astrict negationif, additionally,

(N2) N is continuous.

(N3) N is strictly decreasing.

(iii) A strict negationN : [0, 1] −→ [0, 1] is called astrong negationif it is an involution, i.e., if

(N4) N ◦N = id[0,1].

It is obvious thatN : [0, 1] −→ [0, 1] is a strict negation if and only if it is a strictly decreasing
bijection.

The most important and most widely used strong negation is thestandard negationNs : [0, 1] −→
[0, 1] given by

Ns(x) = 1− x. (20)

Note thatN : [0, 1] −→ [0, 1] is a strong negation if and only if there is a monotone bijection
g : [0, 1] −→ [0, 1] such that for allx ∈ [0, 1]

ϕ(x) = g−1(Ns(g(x))), (21)

i.e., each strong negation is a monotone transformation of the standard negation [69].

The negationN : [0, 1] −→ [0, 1] given byN(x) = 1− x2 is strict, but not strong.

An example of a negation which is not strict and, subsequently, not strong, is theGödel nega-
tion NG : [0, 1] −→ [0, 1] given by

NG(x) =

{
1 if x = 0,

0 if x ∈ ]0, 1] .
(22)

The standard negationNs was used, e.g., in [59, 60] when introducing t-conorms as duals of
t-norms, or in [74] when modeling the complement of a fuzzy set.

Given a t-normT and a strict negationN , one obtains a t-conormS : [0, 1]2 −→ [0, 1], which
is N -dual toT in the sense of

S(x, y) = N−1(T (N(x), N(y))). (23)

Note, however, that ifN is a non-strict negation, formula (23) cannot be applied.

If N is a strong negation, then, applying the construction in (23) to the t-conormS, we get
back the t-normT we started with.

A triple (T, S, N), whereT is a t-norm,S is a t-conorm andN is a negation is called aDe
Morgan triple if for all (x, y) ∈ [0, 1]2 we have

T (x, y) = N(S(N(x), N(y))),
S(x, y) = N(T (N(x), N(y))).

This means that, given a t-normT , (T, S, N) is a De Morgan triple if and only ifN is a strong
negation andS is theN -dual ofT .
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Let s : [0, 1] −→ [0, 1] be a strictly increasing bijection. ThenS : [0, 1]2 −→ [0, 1] defined by

S(x, y) = s−1(min(s(x) + s(y), 1))

is a t-conorm (in fact,S is a nilpotent t-conorm with additive generators [41, Definition 3.39]).
Moreover,N : [0, 1] −→ [0, 1] given by

N(x) = inf{y ∈ [0, 1] | S(x, y) = 1}

is a strong negation. IfT is t-norm which isN -dual toS then we have

T (x, y) = s−1(TL(s(x), s(y))),

S(x, y) = s−1(SL(s(x), s(y))),

N(x) = s−1(Ns(s(x))),

which means that the De Morgan triple(T, S, N) is isomorphic to the Łukasiewicz De Morgan
triple (TL, SL, Ns).

Even if (T, S, N) is a De Morgan triple, we do not necessarily haveT (x,N(x)) = 0 and
S(x,N(x)) = 1 for all x ∈ [0, 1], i.e., the law of the excluded middle (which is one of the crucial
features of the classical, two-valued Boolean logic) may be violated. For instance, if the t-norm
T in the De Morgan triple(T, S, Ns) has no zero divisors, i.e., ifT (x, y) > 0 wheneverx > 0
andy > 0 (see Definition 6.1(iii)), then the law of the excluded middle never holds. On the other
hand, in the De Morgan triple(TL, SL, Ns) and, a fortiori, in each De Morgan triple(T, S, Ns)
with T ≤ TL, we have a many-valued analogue of the classical law of the excluded middle.

It is noteworthy that, given a De Morgan triple(T, S, N), the tuple([0, 1], T, S,N, 0, 1) can
never be a Boolean algebra: in order to satisfy distributivity we must haveT = TM andS =
SM (see Proposition 6.18), in which case it is impossible to have bothT (x, N(x)) = 0 and
S(x,N(x)) = 1 for all x ∈ [0, 1].

5 Continuity

As can be seen from the drastic productTD and its dualSD, t-norms and t-conorms (viewed as
functions in two variables) need not be continuous (in fact, they need not even be Borel measurable
functions [41, Example 3.75]). Nevertheless, for a number of reasons continuous t-norms and t-
conorms play an important role. Therefore, we shall discuss here continuity as well as left- and
right-continuity.

Recall that a t-normT : [0, 1]2 −→ [0, 1] is continuous if for all convergent sequences(xn)n∈N,
(yn)n∈N ∈ [0, 1]N we have

T
(

lim
n→∞

xn, lim
n→∞

yn

)
= lim

n→∞
T (xn, yn).

Obviously, the continuity of a t-conormS is equivalent to the continuity of the dual t-normT .
Since the unit square[0, 1]2 is a compact subset of the real planeR2, the continuity of a t-norm
T : [0, 1]2 −→ [0, 1] is equivalent to its uniform continuity.
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Figure 3: 3D plot (left) and contour plot of the nilpotent minimumTnM defined by (24)

Obviously, the basic t-normsTM, TP andTL as well as their dual t-conormsSM, SP andSL

are continuous, and the drastic productTD and the drastic sumSD are not continuous.

In general, a real function of two variables, e.g, with domain[0, 1]2, may be continuous in each
variable without being continuous on[0, 1]2. Because of their monotonicity, triangular norms (and
conorms) are exceptions from this:

Proposition 5.1 A t-normT : [0, 1]2 −→ [0, 1] is continuous if and only if it is continuous in each
component, i.e., if for allx0, y0 ∈ [0, 1] both the vertical sectionT (x0, �) : [0, 1] −→ [0, 1] and the
horizontal sectionT (�, y0) : [0, 1] −→ [0, 1] are continuous functions in one variable.

Obviously, because of the commutativity (T1), for a t-norm or a t-conorm its continuity is
equivalent to its continuity in the first component.

For applications, e.g., in probabilistic metric spaces, many-valued logics or decomposable
measures, quite often weaker forms of continuity are sufficient. Since we have a similar result as
Proposition 5.1 for left- and right-continuous t-norms, these definitions are given in one component
only.

Definition 5.2 A t-norm T : [0, 1]2 −→ [0, 1] is said to beleft-continuous(right-continuous) if
for eachy ∈ [0, 1] and for all non-decreasing (non-increasing) sequences(xn)n∈N we have

lim
n→∞

T (xn, y) = T
(

lim
n→∞

xn, y
)
.

Clearly, a t-norm is continuous if and only if it is both left- and right-continuous.

The nilpotent minimumTnM (mentioned in [57, 58, 21], for a visualization see Figure 3)
defined by

TnM(x, y) =

{
0 if x + y ≤ 1,

min(x, y) otherwise,
(24)

is a t-norm which is left-continuous but not right-continuous. The drastic productTD, on the other
hand, is right-continuous but not left-continuous. An example of a t-norm which is neither left-
nor right-continuous can be found in Example 6.14(iv).

Clearly, a t-normT is left-continuous if and only if its dual t-conorm given by (18) is right-
continuous, and vice versa.
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6 Algebraic properties

In the language of algebra,T is a t-norm if and only if([0, 1], T,≤) is a fully ordered commutative
semigroup with neutral element1 and annihilator (zero element)0. Therefore, it is natural to
consider additional algebraic properties a t-norm may have.

Our first focus are idempotent and nilpotent elements, and zero divisors. Since for eachn ∈ N
we trivially have0(n)

T = 0 and1(n)
T = 1, only elements of]0, 1[ will be considered as candidates

for nilpotent elements and zero divisors in the following definition.

Definition 6.1 Let T be a t-norm.

(i) An elementa ∈ [0, 1] is called anidempotent elementof T if T (a, a) = a. The numbers
0 and1 (which are idempotent elements for each t-normT ) are calledtrivial idempotent
elements ofT , each idempotent element in]0, 1[ will be called anon-trivial idempotent
element ofT .

(ii) An elementa ∈ ]0, 1[ is called anilpotent elementof T if there exists somen ∈ N such that
a

(n)
T = 0.

(iii) An elementa ∈ ]0, 1[ is called azero divisorof T if there exists someb ∈ ]0, 1[ such that
T (a, b) = 0.

The set of idempotent elements of the minimumTM equals[0, 1] (actually,TM is the only
t-norm with this property). For the Łukasiewicz t-normTL as well as for the drastic productTD,
both the set of nilpotent elements and the set of zero divisors equal]0, 1[. The minimumTM and
the productTP have neither nilpotent elements nor zero divisors, andTP, TL, andTD possess
only trivial idempotent elements.

The set of idempotent elements of the nilpotent minimumTnM defined in (24) equals{0} ∪
]0.5, 1], its set of nilpotent elements is]0, 0.5], and its set of zero divisors equals]0, 1[.

The idempotent elements of t-norms can be characterized in the following way, which involves
the operation minimum [41, Proposition 2.3].

Proposition 6.2 (i) An elementa ∈ [0, 1] is an idempotent element of a t-normT if and only if
for all x ∈ [a, 1] we haveT (a, x) = min(a, x).

(ii) If T is a continuous t-norm, thena ∈ [0, 1] is an idempotent element ofT if and only if for
all x ∈ [0, 1] we haveT (a, x) = min(a, x).

Remark 6.3 For arbitrary t-norms some general observations concerning idempotent and nilpo-
tent elements and zero divisors can be formulated.

(i) No element of]0, 1[ can be both idempotent and nilpotent.

(ii) Each nilpotent elementa of a t-normT is also a zero divisor ofT , but not conversely (TnM

is a counterexample).

(iii) If a t-normT has a nilpotent elementa then there is always an elementb ∈ ]0, 1[ such that
b
(2)
T = 0.
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(iv) If a ∈ ]0, 1[ is a nilpotent element of a t-normT then each numberb ∈ ]0, a[ is also a
nilpotent element ofT , i.e., the set of nilpotent elements of a t-normT can either be the
empty set (as forTM or TP) or an interval of the form]0, c[ or ]0, c]. The same is true for
zero divisors.

Example 6.4 For the t-normT [63, Example 5.3.13] given by

T (x, y) =


0 if (x, y) ∈ [0, 0.5]2 ,

2(x− 0.5)(y − 0.5) + 0.5
if (x, y) ∈ ]0.5, 1]2 ,

min(x, y) otherwise,

(25)

its set of nilpotent elements and its set of zero divisors both equal]0, 0.5], and for each element of
the family(Tc)c∈]0,1] of t-norms defined by

Tc(x, y) =

{
max(0, x + y − c) if (x, y) ∈ [0, c]2,
min(x, y) otherwise,

the set of nilpotent elements and the set of zero divisors ofTc equal]0, c[.

Although the set of nilpotent elements is in general a subset of the set of zero divisors, for
each t-norm the existence of zero divisors is equivalent to the existence of nilpotent elements, i.e.,
a t-norm has zero divisors if and only if it has nilpotent elements [41, Proposition 2.5].

For right-continuous t-norms (in fact, the right-continuity ofT on the diagonal of the unit
square is sufficient) it is possible to obtain each idempotent element as the limit of the powers of a
suitablex ∈ [0, 1] [41, Proposition 2.6].

Proposition 6.5 LetT be a t-norm which is right-continuous on the diagonal{(x, x) | x ∈ [0, 1]}
of the unit square[0, 1]2, and leta ∈ [0, 1]. The following are equivalent:

(i) a is an idempotent element ofT .

(ii) There exists anx ∈ [0, 1] such thata = lim
n→∞

x
(n)
T .

It is well-known that, for continuous t-norms, its set of idempotent elements is a closed subset
of the unit interval[0, 1]. As a consequence of [41, Corollary 2.8], this is also true for t-norms
which are right-continuous in some specific points of the diagonal of the unit square and, conse-
quently, for t-norms which are right-continuous:

Corollary 6.6 LetT be a t-norm such that for eacha ∈ [0, 1[

T (a, a) = a wheneverlim
x↘a

T (x, x) = a.

Then the set of idempotent elements ofT is a closed subset of[0, 1].
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The t-normT given in (25) shows that the converse implication does not necessarily hold in
Corollary 6.6 (just consider the casea = 0.5).

Some t-norms have additional algebraic properties. The first group of such properties centers
around the notions of strict monotonicity and the Archimedean property, which play an important
role in many algebraic concepts, e.g., in semigroups.

Definition 6.7 For an arbitrary t-normT we consider the following properties:

(i) The t-normT is said to bestrictly monotoneif

(SM) T (x, y) < T (x, z)
wheneverx > 0 andy < z.

(ii) The t-normT satisfies thecancellation lawif

(CL) T (x, y) = T (x, z)
implies x = 0 or y = z.

(iii) The t-normT satisfies theconditional cancellation lawif

(CCL) T (x, y) = T (x, z) > 0
implies y = z.

(iv) The t-normT is calledArchimedeanif

(AP) for each(x, y) ∈ ]0, 1[2

there is ann ∈ N with x
(n)
T < y.

(v) The t-normT has thelimit property if

(LP) for all x ∈ ]0, 1[ : lim
n→∞

x
(n)
T = 0.

Example 6.8 (i) The minimumTM has none of these properties, and the productTP satisfies
all of them. The Łukasiewicz t-normTL and the drastic productTD are Archimedean and
satisfy the conditional cancellation law (CCL) and the limit property (LP), but none of the
other properties.

(ii) If a t-norm T satisfies the cancellation law (CL) then it obviously fulfills the conditional
cancellation law (CCL), but not conversely (see, e.g.,TL).

(iii) The algebraic properties introduced in Definition 6.7 are independent of the continuity: the
continuous t-normTM shows that continuity implies none of these properties. Conversely,
TD and the non-continuous t-normT given by

T (x, y) =

{
xy
2 if (x, y) ∈ [0, 1[2 ,

min(x, y) otherwise,
(26)

which is strictly monotone and satisfies the cancellation law (CL), are examples demon-
strating that none of the algebraic properties implies the continuity of the t-norm under
consideration.
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The strict monotonicity (SM) of a t-norm is related to the other properties as follows [41,
Proposition 2.11]:

Proposition 6.9 LetT be a t-norm. Then we have:

(i) T is strictly monotone if and only if it satisfies the cancellation law (CL).

(ii) If T is strictly monotone then it has only trivial idempotent elements.

(iii) If T is strictly monotone then it has no zero divisors.

The Archimedean property (AP) of a t-norm can be characterized in the following way [41,
Theorem 2.12].

Proposition 6.10 For a t-normT the following are equivalent:

(i) T is Archimedean.

(ii) T satisfies the limit property (LP).

(iii) T has only trivial idempotent elements and, whenever

lim
x↘x0

T (x, x) = x0

for somex0 ∈ ]0, 1[, there exists ay0 ∈ ]x0, 1[ such thatT (y0, y0) = x0.

Combining the continuity with some algebraic properties, we obtain two extremely important
classes of t-norms.

Definition 6.11 (i) A t-normT is calledstrict if it is continuous and strictly monotone.

(ii) A t-normT is callednilpotentif it is continuous and if eacha ∈ ]0, 1[ is a nilpotent element
of T .

Example 6.12 (i) The productTP is a strict t-norm, and the Łukasiewicz t-normTL is a nilpo-
tent t-norm. In fact [41, Propositions 5.9, 5.10] each strict t-norm is isomorphic toTP and
each nilpotent t-norm is isomorphic toTL.

(ii) Because of Proposition 6.9(i), a t-normT is strict if and only if it is continuous and satisfies
the cancellation law (CL).

(iii) Each strict and each nilpotent t-norm fulfills the conditional cancellation law (CCL).

The following result gives a number of sufficient conditions for a t-norm to be Archimedean
[41, Proposition 2.15].

Proposition 6.13 For an arbitrary t-normT we have:

(i) If T is right-continuous and has only trivial idempotent elements then it is Archimedean.
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Figure 4: The logical relationship between various algebraic properties of t-norms: a double ar-
row indicates an implication, a dotted arrow means that the corresponding implication holds for
continuoust-norms

(ii) If T is right-continuous and satisfies the conditional cancellation law (CCL) then it is Archi-
medean.

(iii) If limx↘x0 T (x, x) < x0 for eachx0 ∈ ]0, 1[ thenT is Archimedean.

(iv) If T is strict then it is Archimedean.

(v) If eachx ∈ ]0, 1[ is a nilpotent element ofT thenT is Archimedean.

In [43] it was shown that each left-continuous Archimedean t-norm is necessarily continuous.

All the implications between the algebraic properties of t-norms considered so far are sum-
marized and visualized in Figure 4. The following are counterexamples showing that there are no
other logical relations between these algebraic properties.

Example 6.14 (i) The Łukasiewicz t-normTL shows that an Archimedean t-norm need not
be strictly monotone, and that the limit property (LP) does not imply the cancellation law
(CL). The productTP is an example of a continuous Archimedean t-norm without nilpotent
elements. The drastic productTD is an example of a non-continuous Archimedean t-norm
for which eacha ∈ ]0, 1[ is a nilpotent element.

(ii) The t-norm given in (26) shows that a strictly monotone t-norm need not be continuous and,
subsequently, not necessarily strict.

(iii) The non-continuous t-norm given in (25) shows that a t-norm with only trivial idempotent
elements is not necessarily strictly monotone or Archimedean.

(iv) A t-norm may satisfy both the strict monotonicity (SM) and the Archimedean property (AP)
without being continuous and, subsequently, without being strict. One example for this is
the t-norm introduced in (26), another t-norm with these features is the following [10]: recall
that each(x, y) ∈ ]0, 1]2 is in a one-to-one correspondence with a pair

(
(xn)n∈N, (yn)n∈N

)
of strictly increasing sequences of natural numbers given by the unique infinite dyadic rep-
resentations

x =
∞∑

n=1

1
2xn

and y =
∞∑

n=1

1
2yn
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of the numbersx andy, respectively. Using this notion, then the functionT : [0, 1]2 −→
[0, 1] given by

T (x, y) =


∞∑

n=1

1
2xn+yn

if (x, y) ∈ ]0, 1[2 ,

min(x, y) otherwise,

is a t-norm which is strictly monotone, Archimedean, and left-continuous on]0, 1[2. How-
ever,T is discontinuous in each point(x, y) ∈ ]0, 1]2 where at least one coordinate is a
dyadic rational number (i.e., of the formm2n for somem,n ∈ N with m ≤ 2n; observe that
the set of discontinuity points ofT is dense in[0, 1]2). Consequently,T is not strict.

(v) A modification of the t-norm in (iv) yields a t-norm which is strictly monotone but neither
Archimedean nor continuous (compare [67]): keeping the notation of (iv), the function
T : [0, 1]2 −→ [0, 1], which is defined by

T (x, y) =


∞∑

n=1

1
2xn+yn−n

if (x, y) ∈ ]0, 1]2 ,

0 otherwise,

is a t-norm which is strictly monotone, left-continuous on[0, 1]2, but discontinuous in each
point (x, y) ∈ ]0, 1[2 where at least one coordinate is a dyadic rational number. However,T
is not Archimedean.

(vi) The functionT : [0, 1]2 −→ [0, 1] defined by

T (x, y) =


xy if (x, y) ∈ [0, 0.5]2 ,

2(x− 0.5)(y − 0.5) + 0.5
if (x, y) ∈ ]0.5, 1]2 ,

min(x, y) otherwise,

is a t-norm which has only trivial idempotent elements, no zero divisors, is not Archimedean
and not strictly monotone.

(vii) Recall that eachx ∈ ]0, 1] has a unique infinite dyadic representationx =
∑∞

n=1
1

2xn , where
(xn)n∈N is a strictly increasing sequence of natural numbers, and consider the function
f : [0, 1] −→ [0, 1] defined by

f(x) =


∞∑

n=1

2
3xn if x =

∞∑
n=1

1
2xn ,

0 if x = 0.

Then the functionT : [0, 1]2 −→ [0, 1] (introduced in [66], compare [41, Example 3.21])
given by

T (x, y) =


f
(
f (−1)(x) · f (−1)(y)

)
if (x, y) ∈ [0, 1[2 ,

min(x, y) otherwise,



6 Algebraic properties 16

wheref (−1) : [0, 1] −→ [0, 1] is the pseudo-inverse off (observe thatf (−1) is also known
as Cantor function) given by

f (−1)(x) = sup{z ∈ [0, 1] | f(z) < x},

is an Archimedean t-norm which is continuous in the point(1, 1), but which has no zero
divisors and which is not strictly monotone. A more complicated example of this type is the
Krause t-norm [41, Appendix B.1], which is also a non-continuous t-norm with a continuous
diagonal, thus providing a counterexample to an open problem stated in [63].

It turns out that among the continuous Archimedean t-norms there are only two classes: the
nilpotent and the strict t-norms. The existence of nilpotent elements (or zero divisors) provides a
simple check for that [41, Theorem 2.18].

Theorem 6.15 LetT be a continuous Archimedean t-norm. Then the following are equivalent:

(i) T is nilpotent.

(ii) There exists some nilpotent element ofT .

(iii) There exists some zero divisor ofT .

(iv) T is not strict.

Remark 6.16 (i) A consequence of Proposition 6.10 is that a t-normT is Archimedean if and
only if it fulfills the limit property (LP). Note that, e.g., for topological semigroups, the
Archimedean property is usually defined by means of the limit property (LP) (see [49, 12]).

(ii) An immediate consequence of Theorem 6.15 and Example 6.12(iii) is that a continuous
t-norm is Archimedean if and only if it satisfies the conditional cancellation law (CCL).

(iii) From Theorem 6.15 it follows that a continuous t-normT is strict if and only if for each
x ∈ ]0, 1[ the sequence

(
x

(n)
T

)
n∈N is strictly decreasing and converges to0. Again, this is

the usual way to define the strictness of topological semigroups.

The strict monotonicity of t-conorms as well as strict, Archimedean and nilpotent t-conorms
can be introduced using the dualities (18) and (19). Without presenting all the technical details, we
only mention that it suffices to interchange the words t-norm and t-conorm and the roles of0 and
1, respectively, and sometimes to reverse the inequalities involved, in order to obtain the proper
definitions and results for t-conorms. For instance, a t-conormS is strictly monotone if

(SM*) S(x, y) < S(x, z)
whenever x < 1 and y < z.

The Archimedean property is an example where it is necessary to reverse the inequality, so a
t-conormS is Archimedean if

(AP*) for each(x, y) ∈ ]0, 1[2

there is ann ∈ N such thatx(n)
S > y.
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Example6.14(vi)

Archimedean t-normsExample6.14(vii)

strictly monotone t-norms

TLTP

nilpotent
t-norms

strict
t-norms

TM (〈0, 0.5, TL〉)

(〈0.5, 1, TD〉) TnM

TD

Example
6.14(v)

Example
6.8(iii)
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Figure 5: Different classes of t-norms, each of them with a typical representative: within the
central circle one finds the continuous t-norms, and the classes of strict and nilpotent t-norms are
marked in grey (for the definition of the ordinal sums(〈0, 0.5, TL〉) and(〈0.5, 1, TD〉) see [41,
Definition 3.44])

Of course, a t-conorm fulfills any of these properties if and only if the dual t-norm fulfills it.

Finally let us have a brief look at the distributivity of t-norms and t-conorms.

Definition 6.17 Let T be a t-norm andS be a t-conorm. Then we say thatT is distributive over
S if for all x, y, z ∈ [0, 1]

T (x, S(y, z)) = S(T (x, y), T (x, z)),

and thatS is distributive overT if for all x, y, z ∈ [0, 1]

S(x, T (y, z)) = T (S(x, y), S(x, z)).

If T is distributive overS andS is distributive overT , then(T, S) is called adistributive pair(of
t-norms and t-conorms).

In the context of distributivity the minimumTM and the maximumSM play a distinguished
role (compare also [8]).

Proposition 6.18 LetT be a t-norm andS a t-conorm. Then we have:

(i) S is distributive overT if and only ifT = TM.

(ii) T is distributive overS if and only ifS = SM.

(iii) (T, S) is a distributive pair if and only ifT = TM andS = SM.
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7 Historical remarks

The history of triangular norms started with K. Menger’s paper “Statistical metrics" [47]. The
main idea was to study metric spaces where probability distributions rather than numbers are used
to model the distance between the elements of the space in question. Triangular norms naturally
came into the picture in the course of the generalization of the classical triangle inequality to this
more general setting. The original set of axioms for t-norms was somewhat weaker, including
among others also triangular conorms.

Consequently, the first field where t-norms played a major role was the theory of probabilistic
metric spaces (as statistical metric spaces were called after 1964). B. Schweizer and A. Sklar
[59, 60, 61] provided the axioms of t-norms, as they are used today, and a redefinition of statis-
tical metric spaces given in A. N. Šerstnev [64] led to a rapid development of the field. Many
results concerning t-norms were obtained in the course of this development, most of which are
summarized in the monograph [63] of B. Schweizer and A. Sklar.

Mathematically speaking, the theory of (continuous) t-norms has two rather independent roots,
namely, the field of (specific) functional equations and the theory of (special topological) semi-
groups.

Concerning functional equations, t-norms are closely related to the equation of associativity
(which is still unsolved in its most general form). The earliest source in this context seems to be
N. H. Abel [1], further results in this direction were obtained in L. E. J. Brouwer [9], É. Cartan
[13], J. Aczél [2], and M. Hosszú [32]. Especially J. Aczél’s monograph [3, 4] had (and still has)
a big impact on the development of t-norms. The main result based on this background was the
full characterization of continuous Archimedean t-norms by means of additive generators in C. M.
Ling [45] (for the case of strict t-norms see [61]).

Another direction of research was the identification of several parameterized families of t-
norms as solutions of some (more or less) natural functional equations. The perhaps most famous
result in this context has been proven in M. J. Frank [23], showing that the family of Frank t-norms
and t-conorms (together with ordinal sums thereof) are the only solutions of the so-called Frank
functional equation.

The study of a class of compact, irreducibly connected topological semigroups was initiated in
W. M. Faucett [20], including a characterization of such semigroups, where the boundary points (at
the same time annihilator and neutral element, respectively) are the only idempotent elements and
where no nilpotent elements exist. In the language of t-norms, this provided a full representation
of strict t-norms. In P. S. Mostert and A. L. Shields [49] all such semigroups, where the boundary
points play the role of annihilator and neutral element, were characterized (see also [55]). Again
in the language of t-norms, this provided a representation of all continuous t-norms [45].

Several construction methods from the theory of semigroups, such as (isomorphic) transfor-
mations (which are closely related to generators mentioned above) and ordinal sums (based on the
work of A. H. Clifford [14], and foreshadowed in F. Klein-Barmen [37] and A. C. Climescu [15]),
have been successfully applied to construct whole families of t-norms from a few given prototypi-
cal examples [62]. Summarizing, starting with only three t-norms, namely, the minimumTM, the
productTP and the Łukasiewicz t-normTL, it is possible to construct all continuous t-norms by
means of isomorphic transformations and ordinal sums [45].



References 19

Non-continuous t-norms, such as the drastic productTD, have been considered from the very
beginning [60]. In [45] even an additive generator for this t-norm was given. However, a general
classification of non-continuous t-norms is still not known.

In his seminal paper “Fuzzy sets", L. A. Zadeh [74] introduced the theory of fuzzy sets as a
generalization of the classical Cantorian set theory whose logical basis is the two-valued Boolean
logic (compare also D. Klaua [35, 36]). It was suggested in [74] to use the minimumTM, the
maximumSM, and the standard negationNs to model the intersection, union, and complement of
fuzzy sets, respectively. However, also the productTP, the probabilistic sumSP and the Łukasie-
wicz t-conormSL (the latter in a restricted form) were already mentioned as possible candidates
for intersection and union of fuzzy sets, respectively, in this very first paper.

The use of general t-norms and t-conorms for modeling the intersection and the union of fuzzy
sets seems to have at least two independent roots. On the one hand, there was a series of seminars
devoted to this topic, held in the seventies by E. Trillas at the Departament de Matemàtiques i Es-
tadística de l’Escola Tècnica Superior d’Arquitectura of the Universitat Politecnica de Barcelona.
On the other hand, there were suggestions by U. Höhle during the First International Symposium
on Policy Analysis and Information Systems (Durham, N.C., 1979) and the First International
Seminar on Fuzzy Set Theory (Linz, Austria, 1979). The canonical reason for this was that the
axioms of commutativity, associativity, monotonicity as well as the boundary conditions were (and
still are) generally considered as reasonable, even indispensable properties of meaningful exten-
sions of the Cantorian intersection and union (a notable exception from this are the compensatory
operators which may be non-associative, compare H.-J. Zimmermann and P. Zysno [75], J. Dombi
[16], M. K. Luhandjula [46], I. B. Türksen [70], C. Alsinaet al. [5], R. R. Yager and D. P. Filev
[72], and E. P. Klementet al. [40]).

Very early traces of (some slight variations of) t-norms and t-conorms in the context of inte-
gration of fuzzy sets with respect to non-additive measures can be found in the PhD thesis of M.
Sugeno [68], first concepts for a unified theory of fuzzy sets (based onTM andSM) were pre-
sented in C. V. Negoita and D. Ralescu [50] and S. Gottwald [24, 25, 26]. The first papers using
general t-norms and t-conorms for operations on fuzzy sets were J. M. Anthony and H. Sherwood
[7], C. Alsinaet al. [6], D. Dubois [17], and E. P. Klement [38, 39] (see also D. Dubois and H.
Prade [19]). A full characterization of strong negations as models of the complement of fuzzy sets
can be found in E. Trillas [69].
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