
  



  

Success stories of algorithms:

Shortest path  (Google maps)

Pattern matching  (Text editors, genome)

Fast-fourier transform  (Audio/video processing)



  

This class:

General techniques: Divide-and-conquer,

dynamic programming,

data structures

amortized analysis

Various topics: Sorting

Matrixes

Graphs

Polynomials



  

MATHEMATICAL BACKGROUND



  

● What is theory?

● Theory is when you make claims

 that are either True or False,

 but not both



  

Example of claims:

1+1 = 2

there is a graph with > 56 edges

all prime numbers are between 57 and 59

all regular languages are context-free

● More complicated claims are made up with logical 

connectives



  

Logical connectives

● not A             also written !A, A  , ¬ A , A                    
● A or B           also written A  B, A  B, …              ∨ ∪
● A and B        also written A ∧ B, A & B, ...
● A implies B   also written A  B, if A then B, B if A⇒

● You should be familiar with these, but let's clear 

some doubts



  

Or

A or B     means A or B, possibly both

● Different use in everyday language:

“We shall triumph or perish”

●Intended meaning is:

“We shall triumph exclusive-or perish”

● Do not confuse or with exclusive or!



  

Implication

A  B     means if A then B⇒

Only False when A True and B False, True otherwise

“1 = 0  ⇒  the earth is flat” is True   (False  False)⇒

● A  B  same as: (not A) or B⇒
                            (not B)  (not A)    (contrapositive)⇒



  

Different meaning in everyday language:

● “You go out if you finish your homework”

         A                    B

● Logically means B ⇒ A, can go out and not having     

finished homework!
● Intended meaning: A  B⇒
“You go out only if you finish your homework”

● Do not confuse A ⇒ B with B  A !⇒



  

Do you understand implication?

● Know for true: Each card has a number on one side  

  and a letter on the other.
● Suppose I claim: If a card has a vowel on one side,   

  then it has an even number on the other side

● Which cards must you turn to know if I lie or not?



  

De Morgan's Laws:

¬(A B) is equivalent to (¬A) (¬B)∧ ∨
¬(A B) is equivalent to (¬A) (¬B)∨ ∧



  

There are two quantifiers:

∃                there exists           same thing as OR

∀               for all                     same thing as AND

Usually:         OR, AND          few things

                      ∃, ∀                  many (infinite) things



  

Example:

∃ a prime x > 5

       same as

       6 is prime OR 7 is prime OR 8 is prime OR ...

∀ x, x < y

     same as

     1 < y  AND  2 < y  AND 3 < y  AND … 



  

De Morgan's Laws for quantifiers:

¬  x A(x) is equivalent to  x ¬A(x)∃ ∀
¬  x A(x) is equivalent to  x ¬A(x)∀ ∃



  

Sets, Functions:

• Sets are just different notation to express the same 

claims we construct using logical connectives and 

quantifiers.

This redundant notation turns out to be useful.

(x = 1) (x = 16) (x = 23)∨ ∨ ⇔ x  {1, 16, 23 }∈
x is even ⇔ x  {x| x is even }∈
A(x) ⇔ x  {x| A(x) }∈



  

With this in mind, sets become straightforward. 

• When are two sets equal?

  When the defining claims are equivalent:

  {x| A(x)} = {x| B(x)}   same as        A(x)   B(x)⇔

This shows that order and repetitions do not matter, 

for example {b, a, a} = {a, b},

because       (x = b)  (x = a)  (x = a)∨ ∨  and

                     (x = a)  (x = b)∨  are equivalent claims



  

• When is a set contained in another?

  When its defining claim implies the defining claim 

of the latter:

    {x|A(x)}  {x|B(x)}⊆ ⇔ A(x)  B(x)⇒

    {x|A(x)}  {x|B(x)}⊇ ⇔ B(x)  A(x)⇒



  

       

{x| A(x)} U {x| B(x)}  =  {x| A(x)  B(x)}∨
{x| A(x)} ∩ {x| B(x)}   =   {x| A(x)  B(x)}∧
{x| A(x)}     =  {x| ¬A(x)}

Ui {x| Ai(x) }        =    {x|  i  A∃ i(x)}

∩i {x| Ai(x) }              =    {x|  i  A∀ i(x)}



  

The empty set is denoted Ø

It can be defined as     Ø = {x : 1+1= 3}

The empty set is a subset of any set:

           Ø  ⊆{ x : A(x) }         always

          because 1+1=3   A    for any A⇒



  

Powerset(A): Set of all subsets of A.

Example:

   Powerset({1,2,3}) = {∅,{1},{2},{3},{1,2},{2,3},{1, 3},{1,2,3}}

Size of a set A:  |A| = number of elements in it           

Example: | { 1,2,3 } | = 3

Fact:         | Powerset(A) | = 2|A|

Example:  |Powerset({1,2,3})| = 23 = 8



  

Important sets:

 ℕ= {0,1,2,3,...}                                Natural numbers

 ℤ= {..., -3, -2, -1, 0, 1, 2, 3, … }      Integer numbers

 ℝ= {0, 2.5748954, π, √ 2, -17, … }   Real numbers

These are all infinite sets: contain an infinite number 

of elements



  

A function f from set A to set B is written  f : A → B

is a way to associate to EVERY element a ∈ A

ONE element f(a) ∈ B

A is called domain, B range

Example: f : {0,1} → {a,b,c} defined as f(0)=a, f(1)=c 

                f : N → N defined as f(n) = n+1

                f : Z → Z defined as f(n) = n2

Some b ∈ B may not be `touched,' but every a ∈ A must be



  

Tuples (arrays) : Ordered sequences of elements

Example: (5, 2)                      2-tuple, or pair

                (7, 8, -1)                 3-tuple, or triple

                (Ø, {4,5}, 8, 21)      4-tuple

Order matters: (a, b) ≠ (b, a)

By contrast,     {a, b} = {b, a}



  

Construct tuples from sets via Cartesian product

       A X B  = set of pairs (a, b) : a ∈ A and b ∈ B

                  = {(a, b) : a ∈ A and b ∈ B }

A X B X C  = {(a, b, c) : a ∈ A and b ∈ B and c ∈ C}

            Ak  = A X A X … X A   (k times)

Example

{q,r,s} X {0,1} = { (q,0), (q,1), (r,0), (r,1), (s,0), (s,1) }

            {a,b}3  = { (a,a,a), (a,a,b), (a,b,a), (a,b,b),

                             (b,a,a), (b,a,b), (b,b,a), (b,b,b) }



  

Strings are like tuples,

but written without brackets and commas

Example: (h, e, l, l, o)  is written as  hello

                (0, 1, 0)       is written as  010

Strings



  

An alphabet Σ is a finite, non-empty set.

We call its elements symbols.

Example: Σ = {0,1}         (the binary alphabet)

                Σ = {a,b,..., z} (English language alphabet)

A string over an alphabet Σ is a finite, ordered 

sequence of symbols from Σ
Example: 010101000    a string over Σ = {0,1}

                hello              a string over Σ = {a,b,..., z}

Strings



  

A string w is a substring of a string x if the symbols 

in w appears consecutively in x

Example: aba is a substring of aaabbaaaababbb 

                00 is a substring of 111100010010100



  

The length of a string w is the number of symbols in it

Length is denoted |w|

Example: |hello| = 5       |001|=3

We denote by Σi the set of strings of length i

Example: {0,1}2 = {00, 01, 10, 11}

                hello ∈  {a,b,..., z}5

                001   ∈  {0,1}3

The empty string is denoted ε           (never in Σ)

Its length is 0: |ε| = 0



  

We denote by Σ* the set of all strings over Σ

of any length, including ε

Example: {0,1}* = {ε, 0, 1, 001, 10101010, … }

                          = all binary strings

                {a}* = {ε, a, aa, aaa, aaaa, … }

                       = all strings containing only a

                ∅*   = {ε}

Note: Σ* = { ε } U  (Ui Σ
i ) = { ε } U Σ1 U Σ2 U Σ3 U ...

         Σ* is an infinite set



  

What is an algorithm?

● Informally,

an algorithm for a function f : A → B (the problem) 
is a simple, step-by-step, procedure

that computes f(x) on every input x

● Example: A = NxN  B = N ,  f(x,y) = x+y

● Algorithm: Kindergarten addition



  

Abstraction 1

● Computers actually only handle strings   {0,1}*∈

● However, we often abstract from this and consider 
more structured objects,

such as numbers, tuples, graphs

● We implicitly assume a suitable encoding in {0,1}*

● Example: 30  N →   11110  {0,1}*∈ ∈



  

Measuring performance of algorithms

● Time, space, etc. of algorithms are measured as a 
function of the input length.

● Makes sense: need to at least read the input!

● The input length is usually denoted n

● We are interested in which functions of n grow faster



  

n

n log(n)

n log2(n)

n2 n1.52n



  

Abstraction 2: Time
● The exact time depends on the actual machine

● We ignore constant factors, to have more robust 
theory that applies to most computer

● Example:

on my computer it takes 67 n + 15 operations,

on yours 58 n – 15, but that's about the same

● We now give definitions that make this precise


