

Success stories of algorithms:

Shortest path (Google maps)

Pattern matching (Text editors, genome)

Fast-fourier transform (Audio/video processing)

This class:

General techniques:

Various topics:

Divide-and-conquier,
dynamic programming,
data structures

amortized analysis

Sorting
Matrixes
Graphs

Polynomials

MATHEMATICAL BACKGROUND

* What is theory?

* Theory is when you make claims
that are either True or False,
but not both

Example of claims:

1+1 =2

there is a graph with > 56 edges

all prime numbers are between 57 and 59

all regular languages are context-free

* More complicated claims are made up with logical

connectives

Logical connectives

* not A also written 1A, A | ~ AN

cAorB also written A vB, A UB, ...

 Aand B also written A AB, A& B, ...
 Aimplies B also written A =B, if Athen B, B if A

* You should be familiar with these, but let's clear
some doubts

Or

AorB means A or B, possibly both

» Different use in everyday language:
“We shall triumph or perish”

*Intended meaning is:
“We shall triumph exclusive-or perish”

Do not confuse or with exclusive or!

Implication A B | Aimples B
False False True

False True True
A=B meansif Athen B True False| False
True True True

Only False when A True and B False, True otherwise

“1=0 = the earthis flat” is True (False =False)

* A=B same as: (notA) or B
(not B) =(not A) (contrapositive)

Different meaning in everyday language:

* “You go out if you finish your homework”
A B

* Logically means B =A, can go out and not having

finished homework!
* Intended meaning: A =B
“You go out only if you finish your homework”

Do not confuse A =B with B =A!

Do you understand implication?

1 't.::' bl - i

" % %
&
TR
WJ‘ "‘1

* Know for true: Each card has a number on one side
and a letter on the other.

e Suppose | claim: If a card has a vowel on one side,
then it has an even number on the other side

* Which cards must you turn to know if | lie or not?

De Morgan's Laws:

“(AAB) Is equivalent to (TA)MB)
“(AVB) Is equivalent to (TA)AB)

There are two quantifiers:

3 there exists same thing as OR

V for all same thing as AND

Usually: OR, AND few things
=/ many (infinite) things

Example:

da prime x> 5
same as
6 is prime OR 7 is prime OR 8 is prime OR ...

VX, X<y
same as
1<y AND 2<y AND 3 <y AND ...

De Morgan's Laws for quantifiers:

7dx A(X) Is equivalent to V x 7A(x)
1V X A(X) Is equivalent to dx 7A(x)

Sets, Functions:

» Sets are just different notation to express the same
claims we construct using logical connectives and
quantifiers.

This redundant notation turns out to be useful.

(X=1)UXx=16)UXx =23) < x&{1, 16, 23}
X IS even < XE{X| X is even }
A(X) < Xe{X| A(x) }

With this in mind, sets become straightforward.

* When are two sets equal?

When the defining claims are equivalent:
{X| A(x)} = {x| B(x)} same as A(X) < B(x)

This shows that order and repetitions do not matter,
for example {b, a, a} = {a, b},
because (x=Db)Vv(x=a)Vv(x=a)and

(x =a)V(x = Db) are equivalent claims

 When is a set contained in another?

When its defining claim implies the defining claim
of the latter:

XAKX)} € X|B(x)} < A(x) =B(x)

XIAKX)} 2{x|B(x); < B(x) =A(X)

(x| A} U {x| BX)} = {x| A(x)VB(x)}
(x| A} N {x| Bx)} = {x| A(x)AB(x)}
(X AX)} = {x| "A(x))

Ui {x| Al(%) } = {x 3i A(X)}
N (X AYX)) = {xl Vi A(x)}

The empty set is denoted G

It can be definedas @ ={x:1+1=3}

The empty set is a subset of any set:
d<{x:AX)} always

because 1+1=3 = A forany A

Powerset(A): Set of all subsets of A.

Example:
Powerset({1,2,3}) = {J,{1},{2},{3},{1,2},{2,3},{1, 3},{1,2,3}}

Size of a set A: |A| = number of elements in it
Example: | {1,2,3}]| =3

Fact: Powerset(A) | = 2IAl
Example: |Powerset({1,2,3})] =23=8

Important sets:

N={0,1,2,3,...} Natural numbers
7=1...,-3,-2,-1,0,1,2,3, ... } Integer numbers
R={0, 2.5748954, 1, \ 2, -17, ...} Real numbers

These are all infinite sets: contain an infinite number
of elements

A function f from set Ato set B is written f: A— B

IS a way to associate to EVERY element a €A
ONE element f(a) €B

A Is called domain, B range

Example: f: {0,1} — {a,b,c} defined as f(0)=a, f(1)=c
f: N — N defined as f(n) = n+1
f:Z — Z defined as f(n) = n?

Some b € B may not be touched,' but every a € A must be

Tuples (arrays) : Ordered sequences of elements

Example: (5, 2) 2-tuple, or pair
(7, 8, -1) 3-tuple, or triple
(9, {4,5}, 8,21) 4-tuple

Order matters: (a, b) # (b, a)

By contrast, {a, b} ={b, a}

Construct tuples from sets via Cartesian product

AXB =setofpairs(a,b):acAandb B
={(a,b):acAandb B}
AXBXC ={a,b,c):acAandb B and c €C}
AK =AXAX...XA (ktimes)

Example
{g,r,s} X{0,1} ={(q,0), (9,1), (r,0), (r,1), (8,0), (s,1) }
{a,b} ={(a,a,a), (a,a,b), (a,b,a), (a,b,b),
(b,a,a), (b,a,b), (b,b,a), (b,b,b) }

Strings

Strings are like tuples,

but written without brackets and commas

Example: (h, e, |, |, 0) is written as hello
(0, 1, 0) is written as 010

Strings

An alphabet 2 is a finite, non-empty set.

We call its elements symbols.
Example: > ={0,1} (the binary alphabet)
> ={a,b,..., z} (English language alphabet)

A string over an alphabet Z is a finite, ordered

sequence of symbols from X

Example: 010101000 a string over 2 = {0,1}
hello a string over > ={a,b,..., z}

A string w is a substring of a string x if the symbols
IN W appears consecutively in x

Example: aba is a substring of aaabbaaaababbb
00 is a substring of 111100010010100

The length of a string w is the number of symbols in it
Length is denoted |w|
Example: |hello| = 5 |001|=3

We denote by Z! the set of strings of length i
Example: {0,1}2 = {00, 01, 10, 11}

hello € {a,b,..., z}°

001 € {013

The empty string is denoted ¢ (neverin)
Its length is 0: |¢| =0

We denote by 2* the set of all strings over 2
of any length, including ¢

Example: {0,1}* = {¢, 0, 1, 001, 10101010, ... }
= all binary strings
{a}* = {¢, a, aa, aaa, aaaa, ... }

= all strings containing only a
& ={g}

Note: Z*={e}U (U Z')={e}UZ'UZ2UZ3U ..

2.* Is an infinite set

What is an algorithm?

* Informally,

an algorithm for a function f : A — B (the problem)
IS a simple, step-by-step, procedure

that computes f(x) on every input x
« Example: A=NxN B =N, f(x,y) = x+y

[19
+ 999

VI

* Algorithm: Kindergarten addition

Abstraction 1

 Computers actually only handle strings € {0,1}*

« However, we often abstract from this and consider
more structured objects,

such as numbers, tuples, graphs
* We implicitly assume a suitable encoding in {0,1}*

« Example: 30 eN —- 11110 €{0,1}*

Measuring performance of algorithms

* Time, space, etc. of algorithms are measured as a
function of the input length.

 Makes sense: need to at least read the input!
* The input length is usually denoted n

* We are interested in which functions of n grow faster

[— 18000

= 16000

[— §4000

[— J2000

Abstraction 2: Time

 The exact time depends on the actual machine

* We ignore constant factors, to have more robust
theory that applies to most computer

 Example:
on my computer it takes 67 n + 15 operations,

on yours 38 n — 195, but that's about the same

* We now give definitions that make this precise

