

Success stories of algorithms:

Shortest path (Google maps)

Pattern matching (Text editors, genome)

Fast-fourier transform (Audio/video processing)

This class:

General techniques: Divide-and-conquer,

dynamic programming,

data structures

amortized analysis

Various topics: Sorting

Matrixes

Graphs

Polynomials

MATHEMATICAL BACKGROUND

● What is theory?

● Theory is when you make claims

 that are either True or False,

 but not both

Example of claims:

1+1 = 2

there is a graph with > 56 edges

all prime numbers are between 57 and 59

all regular languages are context-free

● More complicated claims are made up with logical

connectives

Logical connectives

● not A also written !A, A , ¬ A , A
● A or B also written A B, A B, … ∨ ∪
● A and B also written A ∧ B, A & B, ...
● A implies B also written A B, if A then B, B if A⇒

● You should be familiar with these, but let's clear

some doubts

Or

A or B means A or B, possibly both

● Different use in everyday language:

“We shall triumph or perish”

●Intended meaning is:

“We shall triumph exclusive-or perish”

● Do not confuse or with exclusive or!

Implication

A B means if A then B⇒

Only False when A True and B False, True otherwise

“1 = 0 ⇒ the earth is flat” is True (False False)⇒

● A B same as: (not A) or B⇒
 (not B) (not A) (contrapositive)⇒

Different meaning in everyday language:

● “You go out if you finish your homework”

 A B

● Logically means B ⇒ A, can go out and not having

finished homework!
● Intended meaning: A B⇒
“You go out only if you finish your homework”

● Do not confuse A ⇒ B with B A !⇒

Do you understand implication?

● Know for true: Each card has a number on one side

 and a letter on the other.
● Suppose I claim: If a card has a vowel on one side,

 then it has an even number on the other side

● Which cards must you turn to know if I lie or not?

De Morgan's Laws:

¬(A B) is equivalent to (¬A) (¬B)∧ ∨
¬(A B) is equivalent to (¬A) (¬B)∨ ∧

There are two quantifiers:

∃ there exists same thing as OR

∀ for all same thing as AND

Usually: OR, AND few things

 ∃, ∀ many (infinite) things

Example:

∃ a prime x > 5

 same as

 6 is prime OR 7 is prime OR 8 is prime OR ...

∀ x, x < y

 same as

 1 < y AND 2 < y AND 3 < y AND …

De Morgan's Laws for quantifiers:

¬ x A(x) is equivalent to x ¬A(x)∃ ∀
¬ x A(x) is equivalent to x ¬A(x)∀ ∃

Sets, Functions:

• Sets are just different notation to express the same

claims we construct using logical connectives and

quantifiers.

This redundant notation turns out to be useful.

(x = 1) (x = 16) (x = 23)∨ ∨ ⇔ x {1, 16, 23 }∈
x is even ⇔ x {x| x is even }∈
A(x) ⇔ x {x| A(x) }∈

With this in mind, sets become straightforward.

• When are two sets equal?

 When the defining claims are equivalent:

 {x| A(x)} = {x| B(x)} same as A(x) B(x)⇔

This shows that order and repetitions do not matter,

for example {b, a, a} = {a, b},

because (x = b) (x = a) (x = a)∨ ∨ and

 (x = a) (x = b)∨ are equivalent claims

• When is a set contained in another?

 When its defining claim implies the defining claim

of the latter:

 {x|A(x)} {x|B(x)}⊆ ⇔ A(x) B(x)⇒

 {x|A(x)} {x|B(x)}⊇ ⇔ B(x) A(x)⇒

{x| A(x)} U {x| B(x)} = {x| A(x) B(x)}∨
{x| A(x)} ∩ {x| B(x)} = {x| A(x) B(x)}∧
{x| A(x)} = {x| ¬A(x)}

Ui {x| Ai(x) } = {x| i A∃ i(x)}

∩i {x| Ai(x) } = {x| i A∀ i(x)}

The empty set is denoted Ø

It can be defined as Ø = {x : 1+1= 3}

The empty set is a subset of any set:

 Ø ⊆{ x : A(x) } always

 because 1+1=3 A for any A⇒

Powerset(A): Set of all subsets of A.

Example:

 Powerset({1,2,3}) = {∅,{1},{2},{3},{1,2},{2,3},{1, 3},{1,2,3}}

Size of a set A: |A| = number of elements in it

Example: | { 1,2,3 } | = 3

Fact: | Powerset(A) | = 2|A|

Example: |Powerset({1,2,3})| = 23 = 8

Important sets:

 ℕ= {0,1,2,3,...} Natural numbers

 ℤ= {..., -3, -2, -1, 0, 1, 2, 3, … } Integer numbers

 ℝ= {0, 2.5748954, π, √ 2, -17, … } Real numbers

These are all infinite sets: contain an infinite number

of elements

A function f from set A to set B is written f : A → B

is a way to associate to EVERY element a ∈ A

ONE element f(a) ∈ B

A is called domain, B range

Example: f : {0,1} → {a,b,c} defined as f(0)=a, f(1)=c

 f : N → N defined as f(n) = n+1

 f : Z → Z defined as f(n) = n2

Some b ∈ B may not be `touched,' but every a ∈ A must be

Tuples (arrays) : Ordered sequences of elements

Example: (5, 2) 2-tuple, or pair

 (7, 8, -1) 3-tuple, or triple

 (Ø, {4,5}, 8, 21) 4-tuple

Order matters: (a, b) ≠ (b, a)

By contrast, {a, b} = {b, a}

Construct tuples from sets via Cartesian product

 A X B = set of pairs (a, b) : a ∈ A and b ∈ B

 = {(a, b) : a ∈ A and b ∈ B }

A X B X C = {(a, b, c) : a ∈ A and b ∈ B and c ∈ C}

 Ak = A X A X … X A (k times)

Example

{q,r,s} X {0,1} = { (q,0), (q,1), (r,0), (r,1), (s,0), (s,1) }

 {a,b}3 = { (a,a,a), (a,a,b), (a,b,a), (a,b,b),

 (b,a,a), (b,a,b), (b,b,a), (b,b,b) }

Strings are like tuples,

but written without brackets and commas

Example: (h, e, l, l, o) is written as hello

 (0, 1, 0) is written as 010

Strings

An alphabet Σ is a finite, non-empty set.

We call its elements symbols.

Example: Σ = {0,1} (the binary alphabet)

 Σ = {a,b,..., z} (English language alphabet)

A string over an alphabet Σ is a finite, ordered

sequence of symbols from Σ
Example: 010101000 a string over Σ = {0,1}

 hello a string over Σ = {a,b,..., z}

Strings

A string w is a substring of a string x if the symbols

in w appears consecutively in x

Example: aba is a substring of aaabbaaaababbb

 00 is a substring of 111100010010100

The length of a string w is the number of symbols in it

Length is denoted |w|

Example: |hello| = 5 |001|=3

We denote by Σi the set of strings of length i

Example: {0,1}2 = {00, 01, 10, 11}

 hello ∈ {a,b,..., z}5

 001 ∈ {0,1}3

The empty string is denoted ε (never in Σ)

Its length is 0: |ε| = 0

We denote by Σ* the set of all strings over Σ

of any length, including ε

Example: {0,1}* = {ε, 0, 1, 001, 10101010, … }

 = all binary strings

 {a}* = {ε, a, aa, aaa, aaaa, … }

 = all strings containing only a

 ∅* = {ε}

Note: Σ* = { ε } U (Ui Σ
i) = { ε } U Σ1 U Σ2 U Σ3 U ...

 Σ* is an infinite set

What is an algorithm?

● Informally,

an algorithm for a function f : A → B (the problem)
is a simple, step-by-step, procedure

that computes f(x) on every input x

● Example: A = NxN B = N , f(x,y) = x+y

● Algorithm: Kindergarten addition

Abstraction 1

● Computers actually only handle strings {0,1}*∈

● However, we often abstract from this and consider
more structured objects,

such as numbers, tuples, graphs

● We implicitly assume a suitable encoding in {0,1}*

● Example: 30 N → 11110 {0,1}*∈ ∈

Measuring performance of algorithms

● Time, space, etc. of algorithms are measured as a
function of the input length.

● Makes sense: need to at least read the input!

● The input length is usually denoted n

● We are interested in which functions of n grow faster

n

n log(n)

n log2(n)

n2 n1.52n

Abstraction 2: Time
● The exact time depends on the actual machine

● We ignore constant factors, to have more robust
theory that applies to most computer

● Example:

on my computer it takes 67 n + 15 operations,

on yours 58 n – 15, but that's about the same

● We now give definitions that make this precise

