

Success stories of algorithms:

Shortest path (Google maps)

Pattern matching (Text editors, genome)

Fast-fourier transform (Audio/video processing)

This class:

General techniques: Divide-and-conquer,

dynamic programming,

data structures

amortized analysis

Various topics: Sorting

Matrixes

Graphs

Polynomials

MATHEMATICAL BACKGROUND

What is theory?

 Theory is when you make claims that are either True or False, but not both

Example of claims:

$$1+1=2$$

there is a graph with > 56 edges all prime numbers are between 57 and 59 all regular languages are context-free

More complicated claims are made up with logical connectives

Logical connectives

- not A also written !A, A, ¬A, A
- A or B also written A ∨B, A ∪B, ...
- A and B also written A ∧ B, A & B, ...
- A implies B also written A ⇒B, if A then B, B if A

 You should be familiar with these, but let's clear some doubts Or

A or B means A or B, possibly both

Different use in everyday language:

"We shall triumph or perish"

•Intended meaning is:

"We shall triumph exclusive-or perish"

Do not confuse or with exclusive or!

Implication		A	B	A implies B
		False	False	True
		False	True	True
$A \Rightarrow B$	means if A then B	True	False	False
		True	True	True

Only False when A True and B False, True otherwise

" $1 = 0 \Rightarrow$ the earth is flat" is True (False \Rightarrow False)

A ⇒ B same as: (not A) or B
 (not B) ⇒ (not A) (contrapositive)

Different meaning in everyday language:

"You go out if you finish your homework"

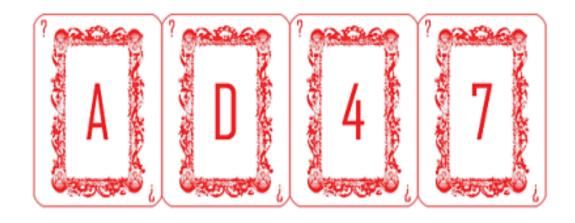
A B

- Logically means B ⇒A, can go out and not having finished homework!
- Intended meaning: A ⇒ B

"You go out only if you finish your homework"

• Do not confuse $A \Rightarrow B$ with $B \Rightarrow A$!

Do you understand implication?



- Know for true: Each card has a number on one side and a letter on the other.
- Suppose I claim: If a card has a vowel on one side, then it has an even number on the other side

Which cards must you turn to know if I lie or not?

De Morgan's Laws:

 $\neg(A \land B)$ is equivalent to $(\neg A) \lor (\neg B)$

 $\neg(A \lor B)$ is equivalent to $(\neg A) \land (\neg B)$

There are two quantifiers:

 \exists

there exists

same thing as OR

 \forall

for all

same thing as AND

Usually:

OR, AND

∃, ∀

few things

many (infinite) things

Example:

 \exists a prime x > 5

same as

6 is prime OR 7 is prime OR 8 is prime OR ...

De Morgan's Laws for quantifiers:

 $\neg \exists x A(x)$ is equivalent to $\forall x \neg A(x)$

 $\neg \forall x A(x)$ is equivalent to $\exists x \neg A(x)$

Sets, Functions:

 Sets are just different notation to express the same claims we construct using logical connectives and quantifiers.

This redundant notation turns out to be useful.

$$(x = 1) \lor (x = 16) \lor (x = 23) \Leftrightarrow x \in \{1, 16, 23\}$$

 $x \text{ is even} \Leftrightarrow x \in \{x \mid x \text{ is even }\}$
 $A(x) \Leftrightarrow x \in \{x \mid A(x)\}$

With this in mind, sets become straightforward.

When are two sets equal?

When the defining claims are equivalent:

$$\{x \mid A(x)\} = \{x \mid B(x)\}$$
 same as $A(x) \Leftrightarrow B(x)$

This shows that order and repetitions do not matter, for example $\{b, a, a\} = \{a, b\},\$

because
$$(x = b) \lor (x = a) \lor (x = a)$$
 and $(x = a) \lor (x = b)$ are equivalent claims

When is a set contained in another?

When its defining claim implies the defining claim of the latter:

$$\{x|A(x)\}\subseteq \{x|B(x)\} \Leftrightarrow A(x)\Rightarrow B(x)$$

$$\{x|A(x)\} \supseteq \{x|B(x)\} \Leftrightarrow B(x) \Rightarrow A(x)$$

$$\{x \mid A(x)\} \cup \{x \mid B(x)\} = \{x \mid A(x) \lor B(x)\}\$$

 $\{x \mid A(x)\} \cap \{x \mid B(x)\} = \{x \mid A(x) \land B(x)\}\$
 $\{x \mid A(x)\} = \{x \mid \neg A(x)\}\$

$$U_{i} \{x | A_{i}(x) \} = \{x | \exists i A_{i}(x) \}$$

 $\cap_{i} \{x | A_{i}(x) \} = \{x | \forall i A_{i}(x) \}$

The empty set is denoted Ø

It can be defined as $\emptyset = \{x : 1+1=3\}$

The empty set is a subset of any set:

$$\emptyset \subseteq \{ x : A(x) \}$$
 always

because $1+1=3 \Rightarrow A$ for any A

Powerset(A): Set of all subsets of A.

Example:

Powerset($\{1,2,3\}$) = $\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{2,3\},\{1,3\},\{1,2,3\}\}$

Size of a set A: |A| = number of elements in it

Example: $| \{ 1,2,3 \} | = 3$

Fact: $|Powerset(A)| = 2^{|A|}$

Example: $|Powerset(\{1,2,3\})| = 2^3 = 8$

Important sets:

$$\mathbb{N} = \{0,1,2,3,...\}$$

Natural numbers

$$\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$$
 Integer numbers

$$\mathbb{R} = \{0, 2.5748954, \pi, \sqrt{2}, -17, \dots\}$$
 Real numbers

These are all infinite sets: contain an infinite number of elements

A **function** f from set A to set B is written $f : A \rightarrow B$ is a way to associate to EVERY element $a \in A$ ONE element $f(a) \in B$

A is called domain, B range

Example: $f: \{0,1\} \rightarrow \{a,b,c\}$ defined as f(0)=a, f(1)=c

 $f: N \rightarrow N$ defined as f(n) = n+1

 $f: Z \rightarrow Z$ defined as $f(n) = n^2$

Some $b \in B$ may not be `touched,' but every $a \in A$ must be

Tuples (arrays): Ordered sequences of elements

Order matters: $(a, b) \neq (b, a)$

By contrast, $\{a, b\} = \{b, a\}$

Construct tuples from sets via Cartesian product

A X B = set of pairs (a, b) :
$$a \in A$$
 and $b \in B$
= $\{(a, b) : a \in A \text{ and } b \in B \}$
A X B X C = $\{(a, b, c) : a \in A \text{ and } b \in B \text{ and } c \in C\}$
 $A^k = A \times A \times \dots \times A$ (k times)

Example

```
\{q,r,s\} \times \{0,1\} = \{ (q,0), (q,1), (r,0), (r,1), (s,0), (s,1) \}
\{a,b\}^3 = \{ (a,a,a), (a,a,b), (a,b,a), (a,b,b),
(b,a,a), (b,a,b), (b,b,a), (b,b,b) \}
```

Strings

Strings are like tuples, but written without brackets and commas

Example: (h, e, l, l, o) is written as hello (0, 1, 0) is written as 010

Strings

An alphabet Σ is a finite, non-empty set.

We call its elements symbols.

Example:
$$\Sigma = \{0,1\}$$
 (the binary alphabet)
 $\Sigma = \{a,b,...,z\}$ (English language alphabet)

A string over an alphabet Σ is a finite, ordered sequence of symbols from Σ

Example: 010101000 a string over $\Sigma = \{0,1\}$

hello a string over $\Sigma = \{a,b,...,z\}$

A string w is a substring of a string x if the symbols in w appears consecutively in x

Example: aba is a substring of aaabbaaaababbb 00 is a substring of 111100010010100

The length of a string w is the number of symbols in it Length is denoted |w|

Example: |hello| = 5 |001| = 3

We denote by Σ^i the set of strings of length i

Example:
$$\{0,1\}^2 = \{00, 01, 10, 11\}$$

hello $\in \{a,b,..., z\}^5$

$$001 \in \{0,1\}^3$$

The empty string is denoted ϵ (never in Σ)

Its length is 0: $|\varepsilon| = 0$

We denote by Σ^* the set of all strings over Σ of any length, including ϵ

```
Example: \{0,1\}^* = \{\epsilon, 0, 1, 001, 10101010, \dots\}
= \text{all binary strings}
\{a\}^* = \{\epsilon, a, aa, aaa, aaaa, \dots\}
= \text{all strings containing only a}
\varnothing^* = \{\epsilon\}
```

Note: $\Sigma^* = \{ \epsilon \} \cup \{ U_i \Sigma^i \} = \{ \epsilon \} \cup \{ \Sigma^1 \cup \{ \Sigma^2 \cup \{ \Sigma^3 \cup \{ \Sigma^4 \} \} \} \cup \{ \Sigma^4 \cup \{ \Sigma^4 \cup \{ \Sigma^4 \} \} \} \cup \{ \Sigma^4 \cup \{ \Sigma^4$

What is an algorithm?

Informally,
 an algorithm for a function f : A → B (the problem) is a simple, step-by-step, procedure that computes f(x) on every input x

• Example: A = NxN B = N , f(x,y) = x+y

• Algorithm: Kindergarten addition

Abstraction 1

Computers actually only handle strings ∈ {0,1}*

 However, we often abstract from this and consider more structured objects,

such as numbers, tuples, graphs

• We implicitly assume a suitable encoding in {0,1}*

• Example: $30 \in \mathbb{N} \to 11110 \in \{0,1\}^*$

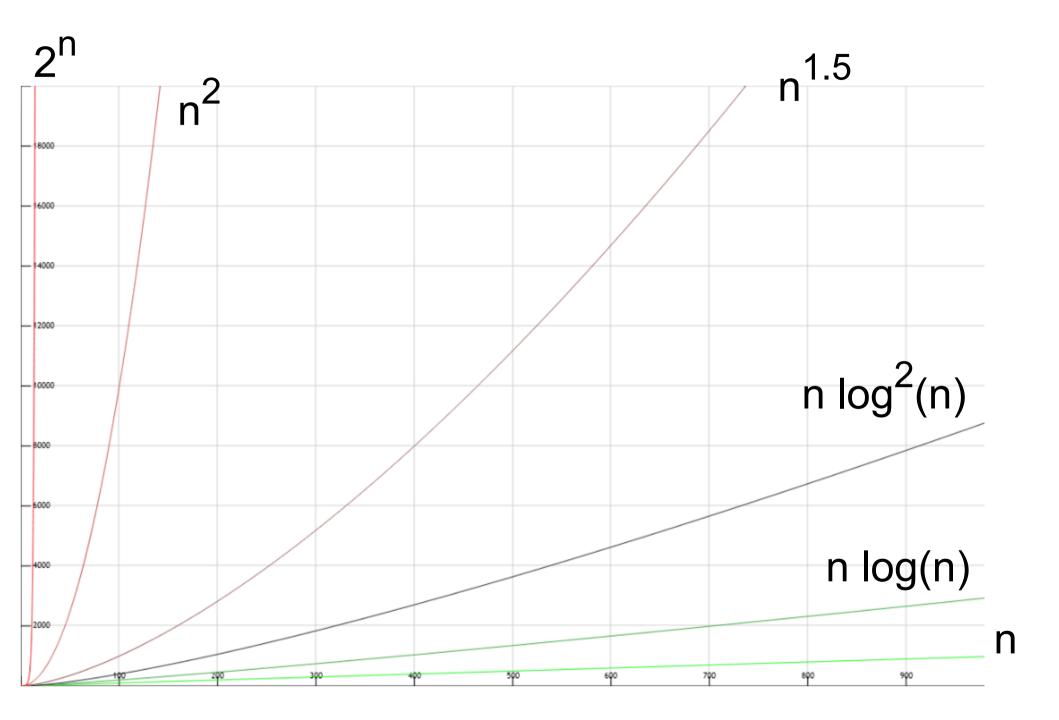
Measuring performance of algorithms

 Time, space, etc. of algorithms are measured as a function of the input length.

Makes sense: need to at least read the input!

The input length is usually denoted n

We are interested in which functions of n grow faster



Abstraction 2: Time

The exact time depends on the actual machine

 We ignore constant factors, to have more robust theory that applies to most computer

Example:

on my computer it takes 67 n + 15 operations, on yours 58 n – 15, but that's about the same

We now give definitions that make this precise