Divide and conquer
1) Divide your problem into subproblems

2) Solve the subproblems recursively, that is,

run the same algorithm on the subproblems

(when the subproblems are very small, solve them from
scratch)

3) Combine the solutions to the subproblems into a solution
of the original problem

Divide and conquer

Recursion is “top-down” start from big problem, and make it
smaller

Every divide and conquer algorithm can be written without
recursion, in an iterative “bottom-up” fashion:

solve smallest subproblems, combine them, and continue

Sometimes recursion is a bit more elegant

Merge sort (low, high) {

If (high-low <= 1) return; //Smallest subproblems

//Divide into subproblems low..split and split..high
split = (low+high) / 2;

MergeSort(low, split); //Solve subproblem recursively
MergeSort(split, high); //Solve subproblem recursively

/[[Combine solutions

merge sorted sequences a[low..split] and a[split ..high]
Into the single sorted sequence a[low..high]

Merge sort (low, high) {
if (high-low <= 1) return;
split = (low+high) / 2;
MergeSort(low, split);
MergeSort(split, high);

/‘ copy a[low ... split-1] to
scratch array;

m1 =0;

m2 = split;

| = low;

Merge <

while (i < m2 && m2 < high)
if (scratch[m1] <= a[m2])
a[i++]=scratch[m1++];
else
a[i++]=a[m2++];

while (i < m2)

\ a[i++]=scratch[m1++];

Merge sort:

demo

Analysis of running time T(n)
T(n)=2T(n/2) +cn

At level i we have 2' cn/2' = c¢n

(time cn includes merge etc.)

Numbers of levels is log(n) = T(n) =cnlog n

T(n) cn cn ---->Cn
T(n/2) T(n/2) cn/2 cn/2 ----=c¢cn
cn/4 cn/4 cn/4 cn/4 -----cn
A S P —wo0n
c ¢ CcC ¢ ¢Cc - € ¢

MergeSort(low, high){

if (high-low <= 1) return;
split = (low+high) / 2;
MergeSort(low, split);
MergeSort(split, high);
Merge
a[low..split] and a[split ..high]

into aflow..high] }

Analysis of space
How many extra array elements we need?

O(n) because we need a scratch array of size O(n) to be
able to merge the two sorted sequences into one sorted
sequence.

MergeSort(low, high){

if (high-low <= 1) return;
split = (low+high) / 2;
MergeSort(low, split);
MergeSort(split, high);

Merge the two sorted sequences
a[low..split] and a[split ..high] into the
single sorted sequence a[low..high] }

Quick sort:

QuickSort(low, high)
{
iIf (high-low <= 1) return;
partition(low, high) and return split;
QuickSort(low, split);
QuickSort(split+1, high);

}

Partition rearranges the input array a[low..high] into two
(possibly empty) sub-arrays a[low.. split] and a[split+1.. high]

each element in aflow.. split] is < a[split],

each element in a[split.. high] is = a[split].

Quick sort:

QuickSort(low, high)
{
iIf (high-low <= 1) return;
partition(low, high) and return split,
QuickSort(low, split);
QuickSort(split+1, high);
}

The choice of split determines the running time of Quick sort.
If the partitioning is balanced, Quick sort is as fast as Merge
sort, if the partitioning is unbalanced, Quick sort is as slow as
Bubble sort.

Quick sort(low, high)
if (high-low <= 1) return;
pivot = afhigh-1]; N
split = low;
for (i=low; i<high-1; i++)

if (a[i] <pivot) {
swap a[i] and a[split];
split++;

J

.

swap alhigh-1] and a[split]; _“/
QuickSort(low, split);
QuickSort(split+1, high);

Return;

Partition w.r.t. last
element

Analysis of running time

T(n) = worst-case number of comparisons in Quick sort
on an arrays of length n.

T(n) depends on the choice of

the pivot element split. ‘QuickSort(low, high)
. . L {
* Choosing pivot deterministically | . (high-low <= 1) return:
e Choosing pivot randomly partition(low, high) and
return split,

QuickSort(low, split);
QuickSort(split+1, high);
}

Analysis of running time

T(n) = worst-case number of comparisons in Quick sort
on an arrays of length n.

* Choosing pivot deterministically:

the worst case happens when one sub-array is empty
and the other is of size n-1, in this case :

T(n)= T(n-1) + T(0) + c n
=7

Analysis of running time

T(n) = worst-case number of comparisons in Quick sort
on an arrays of length n.

* Choosing pivot deterministically:

the worst case happens when one sub-array is empty
and the other is of size n-1, in this case :

T(n)=T(n-1) + T(0) +cn
= O(n?).
* Choosing pivot randomly we can guarantee
T(n) = O(n log n) with high probability

Batcher's Odd-Even Mergesort

This is just like Merge sort except that the merge
subroutine is replaced with a subroutine whose
comparisons do not depend on the input.

Useful if you want to sort with a (non-programmable)
piece of hardware

Batcher's Odd-Even Mergesort

This is just like Merge sort except that the merge
subroutine is replaced with a subroutine whose
comparisons do not depend on the input.

Assumption:
Size of the input sequence, n, is a power of 2.

Odd-even-Mergesort (a[1..n]) {

if n > 1 then
odd-even-Mergesort(a[1.. n/2]);
odd-even-Mergesort(a [n/2+1 .. n]);
odd-even-merge(a[1..n));

J

Same structure as Merge sort

But Odd-even-merge is more complicated, recursive

odd-even-merge(a[1..n]); {
if n = 2 then compare-exchange(1,2);
else {
odd-even-merge(al2,4 .. n]); //leven subsequence

odd-even-merge(a[1,3,5 .. n-1]); //odd subsequence

fori €{1,3,5, ... n-1} do
compare-exchange(i, i +1);

J

Compare-exchange(x,y) compares a[x] and a[y] and
swaps them if necessary

Merges correctly if a[1.. n/2] and a [n/2+1 .. n] are sorted

odd-even-merge(a[1..n]);
If n = 2 then compare-exchange(1,2);
else
odd-even-merge(al[2,4 .. n]);
odd-even-merge(a[1,3,5 .. n-1]);
fori €{1,3,5, ... n-1} do
compare-exchange(i, i +1);

0-1 principle: If we sort correctly all sequences of 0 and 1,
then we sort correctly all sequences

odd-even-merge(a[1..n]);
If n = 2 then compare-exchange(1,2);
else
odd-even-merge(al[2,4 .. n]);
odd-even-merge(a[1,3,5 .. n-1]);
fori €{1,3,5, ... n-1} do
compare-exchange(i, i +1);

R

W~ | —=

5

10 (11

1213

14 15

http://www.iti.fh-flensburg.de/lang/algorithmen/sortieren/networks/oem.htm

&Hﬁ H\W\Kl\ﬁ H&H

Analysis of running time

T(n) = number of comparisons.
= 2T(n/2)+ T'(n) . T'(n) = number of operations in
odd-even-merge

=2T'(n/2)+cn="

OE-Mergesort (a[1..n]) odd-even-merge(a[1..n]);
if n > 1 then if n =2 then
OE-Mergesort(a[1.. n/2]); compare-exchange(1,2);
OE-Mergesort(a [n/2+1 .. n]); | else
OE-merge(a[1..n]); odd-even-merge(al[2,4 .. n]);
odd-even-merge(a[1,3,5 .. n-1]);

fori €{1,3,5, ... n-1} do
compare-exchange(i, i +1);

Analysis of running time

T(n) = number of comparisons.

= 2T(n/2)+ T'(n) T'(n) = number of operations in
dd- -merge
= 2T(n/2)+ O(n log n). PAa-eVen-merg
_ 5 =2T'(n/2)+c n = O(n logn).
' OE-Mergesort (a[1..n]) odd-even-merge(a[1..n]);
if n > 1 then if n =2 then
OE-Mergesort(a[1.. n/2]); compare-exchange(1,2);
OE-Mergesort(a [n/2+1 .. n]); || else
OE-merge(a[1..n]); odd-even-merge(a[2,4 .. n]);
odd-even-merge(a[1,3,5 .. n-1));

fori €{1,3,5, ... n-1} do
compare-exchange(i, i +1);

Analysis of running time

T(n) = number of comparisons.

=2T(n/2)+ T'(n)
=2T(n/2)+ O(n log n)
. = O(n log? n).
OE-Mergesort (a[1..n]) odd-even-merge(a[1..n]);
if n > 1 then if n = 2 then
OE-Mergesort(a[1.. n/2]); compare-exchange(1,2);
OE-Mergesort(a [n/2+1 .. n]); || else
OE-merge(a[1..n]); odd-even-merge(a[2,4 .. n));
odd-even-merge(a[1,3,5 .. n-1]);

fori €{1,3,5, ... n-1} do
compare-exchange(i, i +1);

Sorting
algorithm

Bubble sort

Counting sort
Radix sort

Quick sort
(deterministic)

Quick sort
(Randomized)

Merge sort

Odd-even
merge sort

Time Space

O(n?) O(1)
O(n+k) O(n+k)
©(d(n+k)) O(n+k)

O(n?) O(1)
O(nlogn) O(1)

O (nlogn) O(n)
O (nlog? n) O(1)

Assumption/
Advantage

Easy to code
Input range is [0..K]

Inputs are d-digit
iIntegers in base k

Comparisons are
independent of input

Next

* View other divide-and-conquer algorithms

» Some related to sorting

Selecting h-th smallest element

e Input: A[1], ..., A[n], and h
Desired output: B[h] for B = sorted version of A

« Can do with sorting, would take O(n log n)

 Now we give O(n) algorithm

Selecting h-th smallest element

Divide array in consecutive blocks of 5

Find median of each

Find median of medians, x

Partition array according to x. Let x be k-th element

If K = h return x, if K > h recurse on left, if k < h
recurse on right

Divide array in consecutive blocks of 5

Find median of each

Find median of medians, X

Partition array according to x. Let x be k-th element

If K =h return x, if K > h recurse on left, if k < h
recurse on right

Analysis: When partitioning according to x, half the
medians will be 2 x. Each contributes = 3 elements
from their 5. So we throw away = ?

* Divide array in consecutive blocks of 5

* Find median of each

* Find median of medians, X

» Partition array according to x. Let x be k-th element

e If K =hreturn x, if K> h recurse on left, if k < h
recurse on right

* Analysis: When partitioning according to x, half the
medians will be 2 x. Each contributes = 3 elements
from their 5. So we throw away = 3n/10 elements

e T(N)<?

Divide array in consecutive blocks of 5

Find median of each

Find median of medians, X

Partition array according to x. Let x be k-th element

If K =h return x, if K > h recurse on left, if k < h
recurse on right

Analysis: When partitioning according to x, half the
medians will be 2 x. Each contributes = 3 elements
from their 5. So we throw away = 3n/10 elements

T(n) < T(n/5) + T(7n/10) + O(n)
(n) = ? (not immediate)

Divide array in consecutive blocks of 5

Find median of each

Find median of medians, X

Partition array according to x. Let x be k-th element

If K =h return x, if K > h recurse on left, if k < h
recurse on right

Analysis: When partitioning according to x, half the
medians will be 2 x. Each contributes = 3 elements
from their 5. So we throw away = 3n/10 elements

T(n) < T(n/5) + T(7n/10) + O(n)
T(n) = O(n) because 1/5+ 7/10 = 9/10 < 1

Closest pair of points
Input:

Set P of n points in the plane
Output:

Two points x. and x, with the shortest (Euclidean)
distance from each other.

Closest pair of points

Input:
Set P of n points in the plane

Output:

Two points x. and x, with the shortest (Euclidean)
distance from each other.

* For the following algorithm we assume that we have
two arrays X and Y, each containing all the points of P.

« X Is sorted so that the x-coordinates are increasing
* Y Is sorted so that y-coordinates are increasing.

Closest pair of points

Divide: find a vertical line L that bisects P into two sets
P :={ points in P that are on L or to the left of L}.

P.:={ points in P that are to the right of L}.
Such that |P |= n/2and P_ = n/2 (plus or minus 1)

Easy to do given that we have X that's sorted.

Next: Conquer

Closest pair of points

Divide: find a vertical line L that bisects P into two sets
P :={ points in P that are on L or to the left of L}.

P.:={ points in P that are to the right of L}.
Such that |P |= n/2and P_ = n/2 (plus or minus 1)

Conquer: Make two recursive calls to find the closest pair
of pointin P_and P...

Let the closest distances in P and P_be 6, and 0 ,and
let 0 =min(0 , 0,).

Note computing X and Y for P_and P is easy

Next: Combine

Closest pair of points

Divide: find a vertical line L that bisects P into two sets

P :={points in P t

nat are on

P = { pointsin Pt

_ or to the left of L}.

nat are to t

ne right of L}.

Such that |P |= n/2and P_ = n/2 (plus or minus 1)

Conquer: Make two recursive calls to find the closest pair
of pointin P_and P...

Let the closest distances in P and P_be 6, and 0 ,and
let 0 =min(0 , 0,).

Combine: The closest pair is either the one with distance 0
or it is a pair with one point in P, and the other in P_ with

distance less than

0.

(No saving?)

Closest pair of points

Combine: The closest pair is either the one with distance 0
or it is a pair with one point in P, and the other in P_ with

distance less than 0.
If such a pair exists it must be in a d x 20 box straddling L.

How do we find it? .

B =

|
|
|
|
|
|
I-(-
|
|
|
|
|
|
|
|
|

o
®
©

We can find such pairs if any exist by:

* Create Y' by removing from Y points that are not in 20-
wide vertical strip.

 For each point p €Y', Check the distance between p and
the seven following points (why 77) If any of them are
closer than 9, update the closest pair and the shortest
distance 0.

e Return o and the closest pairr.

< ==

* (Here p would be somewhere

®
®
o

on top edge of box.)

Why 77?
We know all pairs of points in P_have distance 2 0

so at most 4 points in P _can be in a 0xd square left of L.

Similarly to the right.

This gives 8 points, and one of them
IS your current p

20
o *r. A . b
|
O ® oP
li P R
v L

Analysis of running time
Similar to Merge sort:
T(n) = number of operations
T(n)=2T(n/2)+cn

= O(n log n).

Exercise: What is the space requirement?

Addition
Input: two n-digit integers a, b in base w

(think w = 2, 10)
Output: One integer c=a + b.

Operations allowed: only on digits

The simple way to add takes

Addition
Input: two n-digit integers a, b in base w
(think w = 2, 10)
Output: One integer c=a + b.
Operations allowed: only on digits

The simple way to add takes O(n)

optimal?

Addition
Input: two n-digit integers a, b in base w
(think w = 2, 10)
Output: One integer c=a + b.
Operations allowed: only on digits

The simple way to add takes O(n)

This is optimal, since we need at least to write c

Multiplication

Input: two n-digit integers a, b in base w

Output: One integer c=a-b.

(think w = 2, 10)

Operations allowed: only on digits

Simple way takes ?

23958233
5830 x

00000000 (= 23,958,233 x 0)

71874699 (= 23,958,233 x 30)

191665864 (
119791165 (

139676498390 (= 139,676,498,390

23,958,233 x 800)
23,958,233 x 5,000)

)

Multiplication
Input: two n-digit integers a, b in base w

(think w = 2, 10)
Output: One integer c=a-b.

Operations allowed: only on digits

The simple way to multiply takes Q(n?)
Can we do this any faster?

Multiplication
Example:
2-digit numbers N, and N, in base w.

N1 =a,ta w.

N,= b, +tb w.

For this example, think w very large, like w = 232

Multiplication
Example:
2-digit numbers N, and N, in base w.

N1 =a,ta w.
N,= b, +tb w.
P =N,N,

— 2
=a,b,+(a,b,+a b)w+a b w

= Pyt PW + p,we.

This can be done with ? multiplications

Multiplication
Example:
2-digit numbers N, and N, in base w.

N1 =a,ta w.
N,= b, +tb w.
P =N,N,

— 2
=a,b,+(a,b,+a b)w+a b w

= Pyt PW + p,we.

This can be done with 4 multiplications
Can we save multiplications, possibly increasing additions?

Compute P = aobo+(aob1'|'a1bo)W"'a1b1W2
Q,=8,0, =Pyt PpWH p2W2.

q,=(ag+a,)(b,+b,).

q2=a1 b1)

Note:

4o=Py- N P.=9,-
q1=p1+po+p2' p1=q1_qo_q2'
4,=P,- P,=Q,.

So the three digits of P are evaluated using 3
multiplications rather than 4.
What to do for larger numbers?

The Karatsuba algorithm
Input: two n-digit integers a, b in base w.
Output: One integer c = a-b.
Divide:
How?

The Karatsuba algorithm

Input: two n-digit integers a, b in base w.

Output: One integer c = a-b.

Divide:
m = n/2.

—_ m
a=a+a wm

b=Db,+bwm.

h = 2
ab =a b +(ab,+a b,)wm+a b wm

=p, + p, WM+ p, wem

The Karatsuba algorithm

Input: two n-digit integers a, b in base w.

Output: One integer c = a-b.

Divide:

m = n/2.
a=ag+tawmh
b=Db,+bwm.
Conquer:

q0=aoxb0.

q,=(a,*ta)x(b,+b,).

q,=axb..

h = 2
ab =a b +(ab,+a b,)wm+a b wm

=p, + p, WM+ p, wem

Each xIs a
recursive call

The Karatsuba algorithm

Input: two n-digit integers a, b in base w.

Output: One integer c = a-b.

Divide:

m = n/2.
a=ag+tawmh
b=Db,+bwm.
Conquer:

q0=aoxb0.

q,=(a,*ta)x(b,+b,).

q,=axb..

h = 2
ab =a b +(ab,+a b,)wm+a b wm

=p, + p, WM+ p, wem
Combine:
Each xis a P,=4,-
recursive call p,=q,-G,-q,.
P,=4,.

Analysis of running time

T(n) = number of operations.
T(n) =3 T(n/2) + O(n)
=7?

Can someone do this on the board?

Analysis of running time
T(n) = number of operations.
T(n) =3 T(n/2) + O(n)
= ©(n l09 3) (log in base 2)

= O(n 1.59)_

Karatsuba may be used in your computers to reduce, say,
multiplication of 128-bit integers to 64-bit integers.

Algorithms taking essentially O(n log n) are known.
We will see them later. Still based on divide and conquer!

Matrix Multiplication

n x n matrixes. Note input length is n?

B

'_‘OH'_‘:JA

| o] ol o
Rl o] o K
R ,r| O ©
ol r| RL| O
ol Rr| Rr| K

| k] O| O
o| O kK| Bk

Just to write down output need time Q(n?)
The simple way to do matrix multiplication takes ?

Matrix Multiplication

n x n matrixes. Note input length is n?

B

1
|_\

'_‘OH'_‘:JA

| o] ol o
Rl o] o K
R ,r| O ©
ol r| RL| O
ol Rr| Rr| K

| k] O| O
o| O kK| Bk

Just to write down output need time Q(n?)

The simple way to do matrix multiplication takes O(n3).

Strassen's Matrix Multiplication
Input: two nxn matrices A, B.
Output: One nxn matix C=A-B.

Strassen's Matrix Multiplication
Divide:

Divide each of the input matrices A and B into 4 matrices
of size n/2xn/2, a follow:

fA11 A12\ KB B k

11 12
A= B=
\A21 A22J 9 821 BZZ/
- ~N
A11 A12 fB']'l B’IZ\ /C‘H C12\
A.B= =
\A21 Azz, L B,, Bzzj L C,. ng

Strassen's Matrix Multiplication

Conquer:

Compute the following 7 products:

M.=(A,+A) B, +B
M=(A_+A_)B..
M=A_(B_—B,).
M,=A_ (B, -B.).
M=(A +A)B, .

22)

MG
IVI?

(A21 _A11)(B11_ B12) '
(A12_A22)(821_ Bzz) '

A=

- ~
11 A12
A, A
9 21 22/
- ~
B11 B12
B,, B
9 21 22/

Strassen's Matrix Multiplication
Combine:

C.,=M+M,-M,+ M.
C.=M+M,.

C,=M+M,.
C=M-M+M,+M._.

C11 C12
C=
C,., C

Analysis of running time
T(n) = number of operations
T(n)=7 T(n/2) + 18 {Time to do matrix addition}

=7 T(n/2) + O(n?)
=7

Analysis of running time

T(n) = number of operations
T(n)=7 T(n/2) + 18 {Time to do matrix addition}

=7 T(n/2) + O(n?)
= O(n log 7)
— O(n 2.81)_

Definition: w Is the smallest number such that
multiplication of n x n matrices can be computed in

time nW*€ for every € > 0

Meaning: time n® up to lower-order factors

w 2 2 because you need to write the output
w < 2.81 Strassen, just seen

Determining w is one of the most important problems

P (b Pl b il B Pl (B Bl B B Rl 0 B hhhhhhhhhhhhhhhthdh el (b ol B i P B B R o B R T Pl R
=
el

iuhhluliu
- 444 4

P (it Bl
aESE

b FREF 4444411 -4 4 44 - ¢ 1

45 41+ 4 99444 44 4] 3

naive

o through the years

Strassen -l— Pan

}Eini et al.

Schonhage
C., W.

Strassen Stothers
2.374

376 2.373
237 — V.

) pL 1Sl] pL] 1S 2R 185 B 1985 Pl IS DS Bois

C., W.

* Picture by Virginia V. = Vassilevska

From http://rjlipton.files.wordpress.com/2012/02/history.jpg

