
  

Divide and conquer

1) Divide your problem into subproblems

2) Solve the subproblems recursively, that is,
run the same algorithm on the subproblems
(when the subproblems are very small, solve them from 
scratch)

3) Combine the solutions to the subproblems into a solution 
of the original problem



  

Divide and conquer

Recursion is “top-down” start from big problem, and make it 
smaller

Every divide and conquer algorithm can be written without 
recursion, in an iterative “bottom-up” fashion:
solve smallest subproblems, combine them, and continue

Sometimes recursion is a bit more elegant



  

Merge sort (low, high) {

   if (high-low <= 1) return;  //Smallest subproblems

   //Divide into subproblems low..split and split..high

   split = (low+high) / 2;

   

   MergeSort(low, split);    //Solve subproblem recursively

   MergeSort(split, high);  //Solve subproblem recursively

   //Combine solutions

     merge sorted sequences a[low..split] and a[split ..high] 

     into the single sorted sequence a[low..high] 

}



  

Merge sort (low, high) {

   if (high-low <= 1) return;

   split = (low+high) / 2;

   MergeSort(low, split);

   MergeSort(split, high);

   Merge

}

   copy a[low ... split-1] to    

                        scratch array;   

   m1 = 0;

   m2 = split;

   i = low;

   while (i < m2 && m2 < high)

      if (scratch[m1] <= a[m2])

         a[i++]=scratch[m1++];

      else

         a[i++]=a[m2++];

   while (i < m2)

      a[i++]=scratch[m1++];



  

Merge sort:

demo



  

MergeSort(low, high){ 

if (high-low <= 1) return;

   split = (low+high) / 2;

   MergeSort(low, split);

   MergeSort(split, high);

   Merge

   a[low..split] and a[split ..high]

   into a[low..high] }

Analysis of running time T(n)

T(n) = 2 T(n/2) + c n            (time cn includes merge etc.)

At level i we have 2i cn/2i  = cn

Numbers of levels is log(n)  T(n) = cn log n⇨

...



  

Analysis of space

How many extra array elements we need?

O(n) because we need a scratch array of size O(n) to be 
able to merge the two sorted sequences into one sorted 
sequence.

MergeSort(low, high){ 

if (high-low <= 1) return;

   split = (low+high) / 2;

   MergeSort(low, split);

   MergeSort(split, high);

   Merge the two sorted sequences 
a[low..split] and a[split ..high] into the 
single sorted sequence a[low..high] }



  

Quick sort:

QuickSort(low, high)

  {

  if (high-low <= 1) return;

  partition(low, high) and return split;

  QuickSort(low, split);

  QuickSort(split+1, high); 

}

Partition rearranges the input array a[low..high] into two 
(possibly empty) sub-arrays  a[low.. split] and a[split+1.. high] 

each element in a[low.. split] is ≤ a[split],

each element in a[split.. high] is ≥ a[split]. 



  

Quick sort:

QuickSort(low, high)

  {

  if (high-low <= 1) return;

  partition(low, high) and return split,

  QuickSort(low, split);

  QuickSort(split+1, high); 

  }

The choice of split determines the running time of Quick sort. 
If the partitioning is balanced, Quick sort is as fast as Merge 
sort, if the partitioning is unbalanced, Quick sort is as slow as 
Bubble sort.



  

Quick sort(low, high)

   if (high-low <= 1) return;

   pivot = a[high-1];

   split = low;

   for (i=low; i<high-1; i++)

      if (a[i] <pivot) {

         swap a[i] and a[split];

         split++;

      }

  swap a[high-1] and a[split];

  QuickSort(low, split);

  QuickSort(split+1, high);

   Return;    

   

Partition w.r.t. last 
element



  

Analysis of running time

T(n) = worst-case number of comparisons in Quick sort 
on an arrays of length  n.

T(n) depends on the choice of 

the pivot element split.
● Choosing pivot deterministically

● Choosing pivot randomly 

 QuickSort(low, high)
  {
  if (high-low <= 1) return;
  partition(low, high) and  
return split,
  QuickSort(low, split);
  QuickSort(split+1, high); 
  }



  

Analysis of running time

T(n) = worst-case number of comparisons in Quick sort 
on an arrays of length  n.

● Choosing pivot deterministically:

the worst case happens when one sub-array is empty 
and the other is of size n-1, in this case :

T(n)= T(n-1) + T(0) + c n

       = ?



  

Analysis of running time

T(n) = worst-case number of comparisons in Quick sort 
on an arrays of length  n.

● Choosing pivot deterministically:

the worst case happens when one sub-array is empty 
and the other is of size n-1, in this case :

T(n)= T(n-1) + T(0) + c n

      = O(n2).

● Choosing pivot randomly we can guarantee

T(n) = O(n log n) with high probability



  

Batcher's Odd-Even Mergesort 

This is just like Merge sort except that the merge 
subroutine is replaced with a subroutine whose 
comparisons do not depend on the input.

Useful if you want to sort with a (non-programmable) 
piece of hardware



  

Batcher's Odd-Even Mergesort 

This is just like Merge sort except that the merge 
subroutine is replaced with a subroutine whose 
comparisons do not depend on the input.

Assumption: 

Size of the input sequence, n, is a power of 2.



  

Odd-even-Mergesort (a[1..n]) {

if n > 1 then

  odd-even-Mergesort(a[1.. n/2]);

  odd-even-Mergesort(a [n/2+1 .. n]); 

  odd-even-merge(a[1..n]);

}

Same structure as Merge sort

But Odd-even-merge is more complicated, recursive



  

odd-even-merge(a[1..n]); {
  if n = 2 then compare-exchange(1,2);
  else {
    odd-even-merge(a[2,4 .. n]); //even subsequence

odd-even-merge(a[1,3,5 .. n-1]); //odd subsequence

for i  {1,3,5, … n-1}∈  do
compare-exchange(i, i +1);

}

Compare-exchange(x,y) compares a[x] and a[y] and 
swaps them if necessary

Merges correctly if a[1.. n/2] and a [n/2+1 .. n] are sorted



  

odd-even-merge(a[1..n]);
  if n = 2 then compare-exchange(1,2);
  else

odd-even-merge(a[2,4 .. n]);
odd-even-merge(a[1,3,5 .. n-1]); 
for i  {1,3,5, … n-1}∈  do
compare-exchange(i, i +1);

0-1 principle: If we sort correctly all sequences of 0 and 1,
then we sort correctly all sequences



  

odd-even-merge(a[1..n]);
  if n = 2 then compare-exchange(1,2);
  else

odd-even-merge(a[2,4 .. n]);
odd-even-merge(a[1,3,5 .. n-1]); 
for i  {1,3,5, … n-1}∈  do
compare-exchange(i, i +1);

http://www.iti.fh-flensburg.de/lang/algorithmen/sortieren/networks/oem.htm 



  

Analysis of running time

T(n) = number of comparisons. 

        = 2T(n/2)+ T'(n) .

      

T'(n) = number of operations in   
            odd-even-merge

         = 2T'(n/2)+c n = ?

   
odd-even-merge(a[1..n]);
  if n = 2 then
    compare-exchange(1,2);
  else
    odd-even-merge(a[2,4 .. n]);
    odd-even-merge(a[1,3,5 .. n-1]); 
    for i  {1,3,5, … n-1}∈  do
    compare-exchange(i, i +1);

OE-Mergesort (a[1..n]) 
if n > 1 then
  OE-Mergesort(a[1.. n/2]);
  OE-Mergesort(a [n/2+1 .. n]); 
  OE-merge(a[1..n]);



  

Analysis of running time

T(n) = number of comparisons. 

    = 2T(n/2)+ T'(n)

    = 2T(n/2)+ O(n log n).

        = ?

 

      

T'(n) = number of operations in   
            odd-even-merge

         = 2T'(n/2)+c n = O(n logn).

odd-even-merge(a[1..n]);
  if n = 2 then
    compare-exchange(1,2);
  else
    odd-even-merge(a[2,4 .. n]);
    odd-even-merge(a[1,3,5 .. n-1]); 
    for i  {1,3,5, … n-1}∈  do
    compare-exchange(i, i +1);

OE-Mergesort (a[1..n]) 
if n > 1 then
  OE-Mergesort(a[1.. n/2]);
  OE-Mergesort(a [n/2+1 .. n]); 
  OE-merge(a[1..n]);



  

Analysis of running time

T(n) = number of comparisons. 

    = 2T(n/2)+ T'(n)

    = 2T(n/2)+ O(n log n)

        = O(n log2 n).

 

      

odd-even-merge(a[1..n]);
  if n = 2 then
    compare-exchange(1,2);
  else
    odd-even-merge(a[2,4 .. n]);
    odd-even-merge(a[1,3,5 .. n-1]); 
    for i  {1,3,5, … n-1}∈  do
    compare-exchange(i, i +1);

OE-Mergesort (a[1..n]) 
if n > 1 then
  OE-Mergesort(a[1.. n/2]);
  OE-Mergesort(a [n/2+1 .. n]); 
  OE-merge(a[1..n]);



  

Sorting 
algorithm

Time Space Assumption/
Advantage

Bubble sort Θ(n2) O(1) Easy to code

Counting sort Θ(n+k) O(n+k) Input range is [0..k]

Radix sort Θ(d(n+k)) O(n+k) Inputs are d-digit 
integers in base k

Quick sort 
(deterministic)

O(n2) O(1)

Quick sort 
(Randomized)

O(n log n) O(1)

Merge sort O (n log n) O(n)

Odd-even 
merge sort

O (n log2 n) O(1) Comparisons are 
independent of input



  

● View other divide-and-conquer algorithms

● Some related to sorting

Next



  

● Input: A[1], …, A[n], and h
Desired output: B[h] for B = sorted version of A

● Can do with sorting, would take O(n log n)

● Now we give O(n) algorithm

Selecting h-th smallest element



  

● Divide array in consecutive blocks of 5

● Find median of each

● Find median of medians, x

● Partition array according to x. Let x be k-th element

● If k = h return x, if k > h recurse on left, if k < h 
recurse on right

Selecting h-th smallest element



  

● Divide array in consecutive blocks of 5
● Find median of each
● Find median of medians, x
● Partition array according to x. Let x be k-th element
● If k = h return x, if k > h recurse on left, if k < h 

recurse on right

● Analysis: When partitioning according to x, half the 
medians will be ≥ x. Each contributes ≥ 3 elements 
from their 5. So we throw away ≥ ?



  

● Divide array in consecutive blocks of 5
● Find median of each
● Find median of medians, x
● Partition array according to x. Let x be k-th element
● If k = h return x, if k > h recurse on left, if k < h 

recurse on right

● Analysis: When partitioning according to x, half the 
medians will be ≥ x. Each contributes ≥ 3 elements 
from their 5. So we throw away ≥ 3n/10 elements

● T(n) ≤ ?



  

● Divide array in consecutive blocks of 5
● Find median of each
● Find median of medians, x
● Partition array according to x. Let x be k-th element
● If k = h return x, if k > h recurse on left, if k < h 

recurse on right

● Analysis: When partitioning according to x, half the 
medians will be ≥ x. Each contributes ≥ 3 elements 
from their 5. So we throw away ≥ 3n/10 elements

● T(n) ≤ T(n/5) + T(7n/10) + O(n)
● T(n) = ? (not immediate)



  

● Divide array in consecutive blocks of 5
● Find median of each
● Find median of medians, x
● Partition array according to x. Let x be k-th element
● If k = h return x, if k > h recurse on left, if k < h 

recurse on right

● Analysis: When partitioning according to x, half the 
medians will be ≥ x. Each contributes ≥ 3 elements 
from their 5. So we throw away ≥ 3n/10 elements

● T(n) ≤ T(n/5) + T(7n/10) + O(n)
● T(n) = O(n) because 1/5 + 7/10 = 9/10 < 1



  

Closest pair of points

Input: 

  Set P of n points in the plane

Output: 

   Two points x
1 
and x

2
 with the shortest (Euclidean) 

distance from each other.

 



  

Closest pair of points

Input: 

  Set P of n points in the plane

Output: 

   Two points x
1 
and x

2
 with the shortest (Euclidean) 

distance from each other.

● For the following algorithm we assume that we have 
two arrays X and Y, each containing all the points of P. 

● X is sorted so that the x-coordinates are increasing

● Y is sorted so that y-coordinates are increasing.



  

Closest pair of points

Divide: find a vertical line L that bisects P into two sets 

P
L
:= { points in P that are on L or to the left of L}.

P
R
:= { points in P that are to the right of L}.

Such that |P
L
|= n/2

 
and P

R
= n/2        (plus or minus 1)

Easy to do given that we have X that's sorted.

Next: Conquer

 



  

Closest pair of points

Divide: find a vertical line L that bisects P into two sets 

P
L
:= { points in P that are on L or to the left of L}.

P
R
:= { points in P that are to the right of L}.

Such that |P
L
|= n/2

 
and P

R
= n/2        (plus or minus 1)

Conquer: Make two recursive calls to find the closest pair 
of point in P

L
 and P

R
.

Let the closest distances in P
L
 and P

R 
be δ

L
 and δ

R 
,and 

let  δ = min(δ
L
 , δ

R
).

Note computing X and Y for P
L
 and P

R
 is easy

Next: Combine 



  

Closest pair of points

Divide: find a vertical line L that bisects P into two sets 

P
L
:= { points in P that are on L or to the left of L}.

P
R
:= { points in P that are to the right of L}.

Such that |P
L
|= n/2

 
and P

R
= n/2        (plus or minus 1)

Conquer: Make two recursive calls to find the closest pair 
of point in P

L
 and P

R
.

Let the closest distances in P
L
 and P

R 
be δ

L
 and δ

R 
,and    

let  δ = min(δ
L
 , δ

R
).

Combine: The closest pair is either the one with distance δ 
or it is a pair with one point in P

L
 and the other in P

R 
with 

distance less than δ.                                       (No saving?)



  

Closest pair of points

Combine: The closest pair is either the one with distance δ 
or it is a pair with one point in P

L
 and the other in P

R 
with 

distance less than δ.

If such a pair exists it must be in a δ x 2δ box straddling L. 

How do we find it?

 



  

We can find such pairs if any exist by:

● Create Y' by removing from Y points that are not in 2δ-
wide vertical strip.

● For each point p  Y', Check the distance between p and ∈
the seven following points (why 7?) If any of them are 
closer than δ, update the closest pair and the shortest 
distance δ.

● Return δ and the closest pair. 

● (Here p would be somewhere

on top edge of box.)



  

 Why 7?

We know all pairs of points in P
L 
have distance ≥ δ

so at most 4 points in P
L 
can be in a δXδ square left of L.

Similarly to the right.

This gives 8 points, and one of them

is your current p



  

Analysis of running time

Similar to Merge sort:

T(n) = number of operations

T(n) = 2 T(n/2) + c n

        = O(n log n).

Exercise: What is the space requirement?

 



  

Addition 

Input: two n-digit integers a, b in base w

                                                        (think w = 2, 10)

Output: One integer c=a + b.

Operations allowed: only on digits

The simple way to add takes ?



  

Addition 

Input: two n-digit integers a, b in base w

                                                        (think w = 2, 10)

Output: One integer c=a + b.

Operations allowed: only on digits

The simple way to add takes O(n)

optimal?



  

Addition 

Input: two n-digit integers a, b in base w

                                                        (think w = 2, 10)

Output: One integer c=a + b.

Operations allowed: only on digits

The simple way to add takes O(n)

This is optimal, since we need at least to write c



  

Multiplication 

Input: two n-digit integers a, b in base w

                                                        (think w = 2, 10)

Output: One integer c=a∙b.

Operations allowed: only on digits

Simple way takes ?

        23958233
            5830 ×
    ------------
        00000000 ( =      23,958,233 ×     0)
       71874699  ( =      23,958,233 ×    30)
     191665864   ( =      23,958,233 ×   800)
    119791165    ( =      23,958,233 × 5,000)
    ------------
    139676498390 ( = 139,676,498,390        )



  

Multiplication 

Input: two n-digit integers a, b in base w

                                                        (think w = 2, 10)

Output: One integer c=a∙b.

Operations allowed: only on digits

The simple way to multiply takes Ω(n2) 

Can we do this any faster?



  

Multiplication 

 Example: 

 2-digit numbers N
1
 and N

2
 in base w.

 N
1 
= a

0
+a

1
w.    

 N
2 
= b

0
+b

1
w.  

 

For this example, think w very large, like w = 232 



  

Multiplication 

 Example: 

 2-digit numbers N
1
 and N

2
 in base w.

 N
1 
= a

0
+a

1
w.    

 N
2 
= b

0
+b

1
w.  

 P  = N
1
N

2   

         
= a

0
b

0
+(a

0
b

1
+a

1
b

0
)w+a

1
b

1
w2

      = p
0 
+ p

1
w + p

2
w2.

This can be done with ? multiplications



  

Multiplication 

 Example: 

 2-digit numbers N
1
 and N

2
 in base w.

 N
1 
= a

0
+a

1
w.    

 N
2 
= b

0
+b

1
w.  

 P  = N
1
N

2   

         
= a

0
b

0
+(a

0
b

1
+a

1
b

0
)w+a

1
b

1
w2

      = p
0 
+ p

1
w + p

2
w2.

This can be done with 4 multiplications

Can we save multiplications, possibly increasing additions?



  

 

Compute

q
0
=a

0
b

0.

q
1
=(a

0
+a

1
)(b

1
+b

0
).

q
2
=a

1
b

1
.

Note:

 ⇨
p

0
=q

0
. 

p
1
=q

1
-q

0
-q

2
. 

p
2
=q

2
.

So the three digits of P are evaluated using 3 
multiplications rather than 4.
What to do for larger numbers?

q
0
=p

0
. 

q
1
=p

1
+p

0
+p

2
. 

q
2
=p

2
.

P = a
0
b

0
+(a

0
b

1
+a

1
b

0
)w+a

1
b

1
w2

     = p
0 
+ p

1
w + p

2
w2.



  

The Karatsuba algorithm

Input: two n-digit integers a, b in base w.

Output: One integer c = a∙b.

Divide:

   How?



  

The Karatsuba algorithm

Input: two n-digit integers a, b in base w.

Output: One integer c = a∙b.

Divide:

 m = n/2. 

 a = a
0
+ a

1 
wm.

 b = b
0
+ b

1
wm.

a∙b = a
0
b

0
+(a

0
b

1
+a

1
b

0
)wm + a

1
b

1
w2m 

       = p
0    

+      p
1            

wm  +  p
2   

w2m 



  

The Karatsuba algorithm

Input: two n-digit integers a, b in base w.

Output: One integer c = a∙b.

Divide:

 m = n/2. 

 a = a
0
+ a

1 
wm.

 b = b
0
+ b

1
wm.

Conquer:

q
0
=a

0
Xb

0
.

q
1
=(a

0
+a

1
)X(b

1
+b

0
).

q
2
=a

1
Xb

1
.

Each X is a 
recursive call

a∙b = a
0
b

0
+(a

0
b

1
+a

1
b

0
)wm + a

1
b

1
w2m 

       = p
0    

+      p
1            

wm  +  p
2   

w2m 



  

The Karatsuba algorithm

Input: two n-digit integers a, b in base w.

Output: One integer c = a∙b.

Divide:

 m = n/2. 

 a = a
0
+ a

1 
wm.

 b = b
0
+ b

1
wm.

Conquer:                                              Combine:

q
0
=a

0
Xb

0
.

q
1
=(a

0
+a

1
)X(b

1
+b

0
).

q
2
=a

1
Xb

1
.

p
0
=q

0
. 

p
1
=q

1
-q

0
-q

2
. 

p
2
=q

2
.

a∙b = a
0
b

0
+(a

0
b

1
+a

1
b

0
)wm + a

1
b

1
w2m 

       = p
0    

+      p
1            

wm  +  p
2   

w2m 

Each X is a 
recursive call



  

Analysis of running time

T(n) = number of operations.  

T(n) = 3 T(n/2) + O(n) 

        = ?

Can someone do this on the board?

 



  

Analysis of running time

T(n) = number of operations.  

T(n) = 3 T(n/2) + O(n) 

        = Θ(n log 3)                   (log in base 2)

        = O(n 1.59).

Karatsuba may be used in your computers to reduce, say, 
multiplication of 128-bit integers to 64-bit integers.

Algorithms taking essentially O(n log n) are known.

We will see them later. Still based on divide and conquer!



0 1 1 0

0 1 0 0

0 0 0 1

1 1 1 1

1 0 0 1

1 0 1 1

0 1 1 1

0 1 0 0

n=4

BA

1

Matrix Multiplication 

n x n matrixes. Note input length is n2 

Just to write down output need time Ω(n2)

The simple way to do matrix multiplication takes ?



0 1 1 0

0 1 0 0

0 0 0 1

1 1 1 1

1 0 0 1

1 0 1 1

0 1 1 1

0 1 0 0

n=4

BA

1

Matrix Multiplication 

n x n matrixes. Note input length is n2 

Just to write down output need time Ω(n2)

The simple way to do matrix multiplication takes O(n3).



  

Strassen's Matrix Multiplication 

Input: two nXn matrices A, B.

Output: One nXn matix C=A∙B.

 



  

Strassen's Matrix Multiplication

Divide:

Divide each of the input matrices A and B into 4 matrices 
of size n/2Xn/2, a follow:

 

        A
11    

A
12 

       
A= 

        A
21     

A
22

  

        B
11    

B
12 

       
B= 

        B
21     

B
22

  

            A
11    

A
12 

    
A.B=  

            A
21     

A
22

  

        B
11    

B
12 

        
  

        B
21     

B
22

  

        C
11    

C
12 

       
  =

        C
21     

C
22

  



  

Strassen's Matrix Multiplication

Conquer:

Compute the following 7 products:

M
1
=( A

11
+ A

22
)( B

11
+ B

22 
).

M
2
=( A

21
+ A

22
) B

11
.

M
3
= A

11
( B

12 
– B

22 
) .

M
4
= A

22
( B

21 
– B

11 
) .

M
5
=( A

11
+ A

12
) B

22
.

M
6
=( A

21 
– A

11
)( B

11
– B

12
) .

M
7
=( A

12 
– A

22
)( B

21
– B

22
) .

 

        A
11    

A
12 

       
A= 

        A
21     

A
22

  

        B
11    

B
12 

       
B= 

        B
21     

B
22

  



  

Strassen's Matrix Multiplication

Combine:

C
11

= M
1
+ M

4 
– M

5 
+ M

7
. 

C
12

= M
3
+ M

5 
. 

C
21

= M
2
+ M

4 
. 

C
22

= M
1
– M

2
+ M

3 
+ M

6 
. 

        C
11    

C
12 

       
 C=

        C
21     

C
22

  



  

Analysis of running time

T(n) = number of operations

T(n) = 7 T(n/2) + 18 {Time to do matrix addition}

        = 7 T(n/2) + Θ(n2)

        = ?

 



  

Analysis of running time

T(n) = number of operations

T(n) = 7 T(n/2) + 18 {Time to do matrix addition}

        = 7 T(n/2) + Θ(n2)

        = Θ(n log 7)

        = O(n 2.81).

 



  

Definition: ω is the smallest number such that 
multiplication of n x n matrices can be computed in 
time nω+ε  for every ε > 0

Meaning: time nω up to lower-order factors

ω ≥ 2 because you need to write the output

ω ≤ 2.81 Strassen, just seen

Determining ω is one of the most important problems
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