
  

● Organize your data to support various queries using little 
time and/or space

Data structures



  

● Given n elements A[1..n]

● Support SEARCH(A,x) := is x in A?

● Trivial solution: scan A. Takes time Θ(n)

● Best possible given A, x.

● What if we are first given A, are allowed to preprocess it,
can we then answer SEARCH queries faster?

● How would you preprocess A?



  

● Given n elements A[1..n]

● Support SEARCH(A,x) := is x in A?

● Preprocess step: Sort A. Takes time O(n log n), Space O(n)

● SEARCH(A[1..n],x) :=            /* Binary search */
  If n = 1 then return YES if A[1] = x, and NO otherwise
  else
    if A[n/2] ≤ x then return SEARCH(A[n/2..n])
                       else return SEARCH(A[1..n/2])

● Time T(n) = ?
 



  

● Given n elements A[1..n]

● Support SEARCH(A,x) := is x in A?

● Preprocess step: Sort A. Takes time O(n log n), Space O(n)

● SEARCH(A[1..n],x) :=            /* Binary search */
  If n = 1 then return YES if A[1] = x, and NO otherwise
  else
    if A[n/2] ≤ x then return SEARCH(A[n/2..n])
                       else return SEARCH(A[1..n/2])

● Time T(n) = O(log n).
 



  

● Given n elements A[1..n] each ≤ k, can you do faster?

● Support SEARCH(A,x) := is x in A?

● DIRECT ADDRESS:

● Preprocess step:           Initialize S[1..k] to 0
                                      For (i = 1 to n) S[A[i]] = 1

● T(n) = O(n), Space O(k)

● SEARCH(A,x) = ?



  

● Given n elements A[1..n] each ≤ k, can you do faster?

● Support SEARCH(A,x) := is x in A?

● DIRECT ADDRESS:

● Preprocess step:           Initialize S[1..k] to 0
                                      For (i = 1 to n) S[A[i]] = 1

● T(n) = O(n), Space O(k)

● SEARCH(A,x) = return S[x]
● T(n) = O(1)



  

● Dynamic problems:

● Want to support SEARCH, INSERT, DELETE

● Support SEARCH(A,x) := is x in A?

● If numbers are small, ≤ k
Preprocess: Initialize S to 0.
SEARCH(x) := return S[x]
INSERT(x) := …??
DELETE(x) := …??



  

● Dynamic problems:

● Want to support SEARCH, INSERT, DELETE

● Support SEARCH(A,x) := is x in A?

● If numbers are small, ≤ k
Preprocess: Initialize S to 0.
SEARCH(x) := return S[x]
INSERT(x) := S[x] = 1
DELETE(x) := S[x] = 0

● Time T(n) = O(1) per operation
● Space O(k)



  

● Dynamic problems:

● Want to support SEARCH, INSERT, DELETE

● Support SEARCH(A,x) := is x in A?

● What if numbers are not small?

● There exist a number of data structure that support each 
operation in O(log n) time

● AVL tree, red-black tree, etc.

● These data structures organize data in a tree



Binary tree is a graph whose vertices V can be divided in 
three disjoint sets: root, left sub-tree, and right sub-tree

Alternatively: connected graph without cycles

 

● Example 

V={a, b, c, d, e, f, g, h, i}.

Root={a}.

Left subtree:= {c}.

Right subtree:={b, d, e, f, g, h, i}.

Parent(b) = a

Leaves = nodes with no children

             = {c, f, i, h, d}



Binary Search Tree is a data structure where we store data  
in nodes of a binary tree and refer to them as key of that 
node.

The keys in a binary search tree are always  stored in such 
way to satisfy the binary search tree property:

 

Let x,y  V, if y is in left  subtree of x         key(y) ≤ key(x)∈
                   if y is in right subtree of y        key(x) < key(y).

Example:



Binary Search

Looking for k in tree T given root x:

tree-search(x,k)

  If x=NIL or k=key[x]

  then return x

  if k< key[x]

 then return tree-search(left[x],k)

 else return tree-search(right[x],k)

 

Note: NIL stands for empty tree

Running time  = the depth of the tree. = O(n), = Ω(log n)

Tree is balanced if depth ≤  1+log n   search time O(log n)⇨



Binary Search in a tree is a generalization of binary search

in an array that we saw before.

A sorted array can be thought of as a balanced tree

(we'll return to this shortly)

Trees make it easier to think about inserting and removing.



Insert x in a tree:

Search (x).

If x not found, create new node with x where x should have 
been.

To maintain the tree balanced, we perform rotations

Delete x from a tree:

Search (x).

Remove the node with x.

To maintain the tree balanced, we perform rotations

Time O(log n) for both.

DEMO



Next:

More about trees vs. arrays, and heaps.



A binary tree is complete if all the nodes have two children 
except the nodes in the last level.

A complete binary tree of depth d has 2d leaves and 2d+1-1 
nodes.

 

Example:

Depth of T=?

Number of leaves in T=?

Number of nodes in T=?

T



A binary tree is complete if all the nodes have two children 
except the nodes in the last level.

A complete binary tree of depth d has 2d leaves and 2d+1-1 
nodes.

 

Example:

Depth of T=3.

Number of leaves in T=?

Number of nodes in T=?

T



A binary tree is complete if all the nodes have two children 
except the nodes in the last level.

A complete binary tree of depth d has 2d leaves and 2d+1-1 
nodes.

 

Example:

Depth of T=3.

Number of leaves in T=23=8.

Number of nodes in T=?

T



A binary tree is complete if all the nodes have two children 
except the nodes in the last level.

A complete binary tree of depth d has 2d leaves and 2d+1-1 
nodes.

 

Example:

Depth of T=3.

Number of leaves in T=23=8.

Number of nodes in T=23+1 -1    
                                  =15.

T



Heap is an array that can be view as a nearly complete 
binary tree, only the last level is missing leaves.

Specifically, the last level must be filled from left to right.

Note: A complete binary tree is a special case of a heap.

 



Navigating a heap:

Root is A[1].

Given index i to a node:

Parent(i) return i/2

Left-Child(i) return 2i

Right-Child(i) return 2i+1



Heaps are useful to dynamically maitain a set of elements 
while allowing for extraction of Minimum/Maximum element 
quickly



Min-heap
The values stored in the nodes satisfy:
A[Parent(i)] ≤ A[i].



Max-heap
The values stored in the nodes satisfy:
A[Parent(i)] ≥  A[i].



Extracting the minimum element
In min-heap A , the minimum element is A[1].

Extract-Min-heap(A)
 
 min:= A[1];
 A[1]:= A[heap-size];
 heap-size:= heap-size – 1;
 Min-heapify(A, 1)
 Return min;

Let's see the steps



Extracting the minimum element
In min-heap A , the minimum element is A[1].

Extract-Min-heap(A)

 min:= A[1];
 A[1]:= A[heap-size];
 heap-size:= heap-size – 1;
 Min-heapify(A, 1)
 Return min;



Extracting the minimum element
In min-heap A , the minimum element is A[1].

Extract-Min-heap(A)

 min:= A[1];
 A[1]:= A[heap-size];
 heap-size:= heap-size –1;
 Min-heapify(A, 1)
 Return min;



Extracting the minimum element
In min-heap A , the minimum element is A[1].

Extract-Min-heap(A)

 min:= A[1];
 A[1]:= A[heap-size];
 heap-size:= heap-size –  1;
 Min-heapify(A, 1)
 Return min;

Min-heapify is a function that updates the heap so that is 
maintains the min property



Maintaining a Min-heap
Given array A and index i,  the trees rooted at left[i] and 
Right[i] are Min-heap but A[i] maybe greater than its children. 

Min-heapify restores the min-heap property.

Min-heapify(A,i)

  Let j be the index of smallest node
    among {A[i], A[Left[i]], A[Right[i]] }

 If j ≠ i then {
    exchange A[i] and A[j]
    Min-heapify(A, j)
 }



Min-heapify(A,i)

  Let j be the index of smallest node
    among {A[i], A[Left[i]], A[Right[i]] }

 If j ≠ i then {
    exchange A[i] and A[j]
    Min-heapify(A, j)
 }

i=



Min-heapify(A,i)

  Let j be the index of smallest node
    among {A[i], A[Left[i]], A[Right[i]] }

 If j ≠ i then {
    exchange A[i] and A[j]
    Min-heapify(A, j)
 }

j



Min-heapify(A,i)

  Let j be the index of smallest node
    among {A[i], A[Left[i]], A[Right[i]] }

 If j ≠ i then {
    exchange A[i] and A[j]
    Min-heapify(A, j)
 }



Min-heapify(A,i)

  Let j be the index of smallest node
    among {A[i], A[Left[i]], A[Right[i]] }

 If j ≠ i then {
    exchange A[i] and A[j]
    Min-heapify(A, j)
 }



Min-heapify(A,i)

  Let j be the index of smallest node
    among {A[i], A[Left[i]], A[Right[i]] }

 If j ≠ i then {
    exchange A[i] and A[j]
    Min-heapify(A, j)
 }

Running time = ?



Min-heapify(A,i)

  Let j be the index of smallest node
    among {A[i], A[Left[i]], A[Right[i]] }

 If j ≠ i then {
    exchange A[i] and A[j]
    Min-heapify(A, j)
 }

Running time = depth = O(log n)



Extracting the minimum element
In min-heap A , the minimum element is A[1].

Extract-Min-heap(A)

 min:= A[1];
 A[1]:= A[heap-size];
 heap-size:= heap-size –  1;
 Min-heapify(A, 1)
 Return min;

Hence both Min-heapify and
                   Extract-Min-Heap take time O(log n).

Next: Given n elements, how do we initialize a heap?



Building Min-heap
Input: Array A, output: Min-heap A. 

Build-Min-heap(A)

 For ( i:=[length[A]/2]; i <0; i--)
       Min-heapify(A, i) }



Building Min-heap
Input: Array A, output: Min-heap A. 

Build-Min-heap(A)

 For ( i:=[length[A]/2]; i <0; i--)
       Min-heapify(A, i) }

Running time = O(∑ h < log n  n/2h ) h

                       = n O(∑ h < log n  h/2h )
                       = ? 



Building Min-heap
Input: Array A, output: Min-heap A. 

Build-Min-heap(A)

 For ( i:=[length[A]/2]; i <0; i--)
       Min-heapify(A, i) }

Running time = O(∑ h < log n  n/2h ) h

                       = n O(∑ h < log n  h/2h )
                       = O(n)



Insert-Min-heap

insert-Min-heap(A, key)

 heap-size[A] := heap-size[A]+1;
 A[heap-size]:= key;

 i:= heap-size[a];

 While i>0 and A[parent(i)] > A[i]) {
     exchange(A[parent(i)], A[i])
      i:= parent[i]
 }

Running time = O(log n).



Next:

Compact (also known as succinct) arrays



  

● Store n “trits” t1, t2, …, tn   {0,1,2}

    In u bits b1, b2, …, bu    {0,1}

● Want:

Small space u  (optimal = n lg2 3 )

Fast retrieval: Get ti  by probing few bits   (optimal = 2)

Bits vs. trits

t1 t2 t3 tn

b1 b2 b3 b4 b5

...

bu...

Store
Retrieve



  

● Arithmetic coding:

Store bits of (t1, …, tn)  {0, 1, …, 3n – 1}

Optimal space:  n lg2 3    n·1.584

   Bad retrieval: To get ti  probe all > n bits

● Two bits per trit

Bad space: n·2
    Optimal retrieval: Probe 2 bits

Two solutions

t1 t2 t3

b1 b2 b3 b4 b5

t1 t2 t3

b1 b2 b3 b4 b5 b6



  

● Divide n trits t1, …, tn   {0,1,2}

in blocks of q

● Arithmetic-code each block

Space: q lg2 3 n/q < (q lg2 3 + 1) n/q

           = n lg2 3 + n/q

   Retrieval: Probe O(q) bits

Polynomial tradeoff

t1 t2 t3 t4 t5 t6

b1 b2b3 b4 b5 b6 b7 b8 b9b10

polynomial
tradeoff
between
probes,

redundancy

q q


