Data structures

* Organize your data to support various queries using little
time and/or space

Given n elements A[1..n]

Support SEARCH(A,X) :=is x in A?
Trivial solution: scan A. Takes time ©O(n)
Best possible given A, x.

What if we are first given A, are allowed to preprocess i,
can we then answer SEARCH queries faster?

How would you preprocess A”?

Given n elements A[1..n]
Support SEARCH(A,X) :=is x in A?
Preprocess step: Sort A. Takes time O(n log n), Space O(n)

SEARCH(A[1..n],x) := /* Binary search */
If n =1 then return YES if A[1] = x, and NO otherwise
else
if A[n/2] < x then return SEARCH(A[n/2..n])
else return SEARCH(A[1..n/2])

Time T(n) = ?

Given n elements A[1..n]
Support SEARCH(A,X) :=is x in A?
Preprocess step: Sort A. Takes time O(n log n), Space O(n)

SEARCH(A[1..n],x) := /* Binary search */
If n =1 then return YES if A[1] = x, and NO otherwise
else
if A[n/2] < x then return SEARCH(A[n/2..n])
else return SEARCH(A[1..n/2])

Time T(n) = O(log n).

Given n elements A[1..n] each < k, can you do faster?
Support SEARCH(A,x) :=is x in A?
DIRECT ADDRESS:
Preprocess step: Initialize S[1..k] to O
For (i=11ton) S[A[i]] = 1
T(n) = O(n), Space O(k)

SEARCH(A x) = ?

Given n elements A[1..n] each < k, can you do faster?
Support SEARCH(A,X) :=is x in A?
DIRECT ADDRESS:
Preprocess step: Initialize S[1..k] to O
For (i=11ton) S[A[i]] = 1
T(n) = O(n), Space O(k)

SEARCH(A,x) = return S[x]
T(n) = O(1)

Dynamic problems:
Want to support SEARCH, INSERT, DELETE
Support SEARCH(A,x) :=is x in A?

If numbers are small, < k
Preprocess: Initialize S to 0.
SEARCH(x) := return S[X]
INSERT(x) :=...77?
DELETE(x) :=...?77

Dynamic problems:
Want to support SEARCH, INSERT, DELETE
Support SEARCH(A,x) :=is x in A?

If numbers are small, < k
Preprocess: Initialize S to 0.
SEARCH(x) := return S[X]
INSERT(x) := S[x] =1
DELETE(x) :=S[x] =0

Time T(n) = O(1) per operation
Space O(k)

Dynamic problems:

Want to support SEARCH, INSERT, DELETE
Support SEARCH(A,x) :=is x in A?

What if numbers are not small?

There exist a number of data structure that support each
operation in O(log n) time

AVL tree, red-black tree, etc.

These data structures organize data in a tree

Binary tree is a graph whose vertices V can be divided in
three disjoint sets: root, left sub-tree, and right sub-tree

Alternatively: connected graph without cycles

right
subtree

 Example
V={a, b,c,d,ef g, h,i}. y
Root={a}. subtres

Left subtree:= {c}.

Right subtree:={b, d, e, f, g, h, i}.

Parent(b) = a

Leaves = nodes with no children
={c, f, i, h, d}

Binary Search Tree is a data structure where we store data
in nodes of a binary tree and refer to them as key of that

node.

The keys in a binary search tree are always stored in such
way to satisfy the binary search tree property:

Let x,y €V, ifyisinleft subtree of x => key(y) < key(x)
If y is in right subtree of Yo key(x) < key(y).

(7
O (5
OO
ORNG

Binary Search
Looking for k in tree T given root x:

tree-search(x,k) o

If x=NIL or k=key[X] o
(o)

then return x

if k< key[x] o o

then return tree-search(left[x],k)
else return tree-search(right[x],k) o °

Note: NIL stands for empty tree

Running time = the depth of the tree. = O(n), = Q(log n)
Tree is balanced if depth < 1+log n = search time O(log n)

Binary Search in a tree is a generalization of binary search

in an array that we saw before.

A sorted array can be thought of as a balanced tree

(we'll return to this shortly)

Trees make it easier to think about inserting and removing.

Insert x In a tree:

Search (x).

If X not found, create new node with x where x should have
been.

To maintain the tree balanced, we perform rotations

Delete x from a tree:

Search (x).

Remove the node with x.

To maintain the tree balanced, we perform rotations

Time O(log n) for both.
DEMO

Next:

More about trees vs. arrays, and heaps.

A binary tree is complete if all the nodes have two children
except the nodes in the last level.

A complete binary tree of depth d has 29 leaves and 29+1-1
nodes.

g ®
Example:
Depth of T=" . .

Number of leaves in T=7

Number of nodes in T=7
OOOO0OO0OC

A binary tree is complete if all the nodes have two children
except the nodes in the last level.

A complete binary tree of depth d has 29 leaves and 29+1-1
nodes.

g ®
Example:
Depth of T=3. . .

Number of leaves in T=7

Number of nodes in T=7
OOOO0OO0OC

A binary tree is complete if all the nodes have two children
except the nodes in the last level.

A complete binary tree of depth d has 29 leaves and 29+1-1
nodes.

g ®
Example:

Depth of T=3. . .
Number of leaves in T=23=8,

Number of nodes in T=?
OOOO0OO0OC

A binary tree is complete if all the nodes have two children
except the nodes in the last level.

A complete binary tree of depth d has 29 leaves and 29+1-1
nodes.

g ®
Example:

Depth of T=3. . .
Number of leaves in T=23=8,

Number of nodes in T=23+1 -1

=15.
OOOO0000C

Heap is an array that can be view as a nearly complete
binary tree, only the last level is missing leaves.

Specifically, the last level must be filled from left to right.

Note: A complete binary tree is a special case of a heap.

Navigating a heap:
Root is A[1].

Given index i to a node:
Parent(i) return i/2

Left-Child(i) return 2i

Right-Child(i) return 2i+1

Heaps are useful to dynamically maitain a set of elements
while allowing for extraction of Minimum/Maximum element
quickly

1

Min-heap
The values stored in the nodes satisfy: o
A[Parent(i)] < A[l].

2 3

| | "lEii’ "llll’
3 |9 10 11 12

Al11412|18|9|3|81(12{14|{16|10|9

Max-heap

1

The values stored in the nodes satisfy: e

A[Parent(i)] =2 AlJi].

2 3

5 6
3 %9 10 11 12

14

10

Extracting the minimum element
In min-heap A, the minimum element is A[1].

Extract-Min-heap(A)

min:= A[1];

A[1]:= A[heap-size];
heap-size:= heap-size — 1,
Min-heapify(A, 1)

Return min;

Let's see the steps

Extracting the minimum element
In min-heap A, the minimum element is A[1].

Extract-Min-heap(A)

min:= A[1];

A[1]:= A[heap-size];
heap-size:= heap-size — 1,
Min-heapify(A, 1)

Return min;

Extracting the minimum element
In min-heap A, the minimum element is A[1].

Extract-Min-heap(A)

min:= A[1];

A[1]:= A[heap-size];
heap-size:= heap-size —1,;
Min-heapify(A, 1)

Return min;

Extracting the minimum element
In min-heap A, the minimum element is A[1].

Extract-Min-heap(A)

min:= A[1];

A[1]:= A[heap-size];
heap-size:= heap-size — 1,
Min-heapify(A, 1)

Return min;

Min-heapify is a function that updates the heap so that is
maintains the min property

Maintaining a Min-heap
Given array A and index i, the trees rooted at left[i] and
Right[i] are Min-heap but A[i] maybe greater than its children.

Min-heapify restores the min-heap property.

Min-heapify(A,i)

Let j be the index of smallest node
among {A[i], A[Left[i]], A[Right[i]] }

If j # i then {
exchange AJi] and AJj]
Min-heapify(A, j)

}

Min-heapify(A,i)

Let) be the index of smallest node
among {A[i], A[Left[i]], A[Right[i]] }

If j # i then {
exchange A[i] and AJj]
Min-heapify(A, j)

}

Min-heapify(A,i) 1

Let) be the index of smallest node
among {A[i], A[Left[i]], A[Right[i]] }

If j # i then {
exchange A[i] and AJj]
Min-heapify(A, j)

}

Min-heapify(A,i) 1

Let) be the index of smallest node
among {A[i], A[Left[i]], A[Right[i]] }

If j # i then {
exchange A[i] and AJj]
Min-heapify(A, j)

}

Min-heapify(A,i) 1

Let) be the index of smallest node
among {A[i], A[Left[i]], A[Right[i]] }

If j # i then {
exchange A[i] and AJj]
Min-heapify(A, j)

}

Min-heapify(A,i) 1

Let) be the index of smallest node
among {A[i], A[Left[i]], A[Right[i]] }

If j # i then {
exchange A[i] and AJj]
Min-heapify(A, j)

}

Running time = ?

Min-heapify(A,i) 1

Let) be the index of smallest node
among {A[i], A[Left[i]], A[Right[i]] }

If j # i then {
exchange A[i] and AJj]
Min-heapify(A, j)

}

Running time = depth = O(log n)

Extracting the minimum element
In min-heap A, the minimum element is A[1].

Extract-Min-heap(A)

min:= A[1];

A[1]:= A[heap-size];
heap-size:= heap-size — 1,
Min-heapify(A, 1)

Return min;

Hence both Min-heapify and
Extract-Min-Heap take time O(log n).

Next: Given n elements, how do we initialize a heap?

Building Min-heap
Input: Array A, output: Min-heap A.

Build-Min-heap(A)

For (i:=[length[A}/2]; i <0; i--)
Min-heapify(A, i) }

Building Min-heap
Input: Array A, output: Min-heap A.

Build-Min-heap(A)

For (i:=[length[A}/2]; i <0; i--)
Min-heapify(A, i) }

Running time = O(% |, < o4 1 n/2h) h

=N O3 1< jogn N2")
=7

Building Min-heap
Input: Array A, output: Min-heap A.

Build-Min-heap(A)

For (i:=[length[A}/2]; i <0; i--)
Min-heapify(A, i) }

Running time = O(% |, < o4 1 n/2h) h
=N O3 < og n N2")
= O(n)

Insert-Min-heap
insert-Min-heap(A, key)

heap-size[A] := heap-size[A]+1;
A[heap-size].= key;

I.= heap-sizela];
While i>0 and A[parent(i)] > A[i]) {
exchange(A[parent(i)], A[i])

I.= parent[i]

}

Running time = O(log n).

Next:

Compact (also known as succinct) arrays

Bits vs. trits
» Store n"trits™ t;, t,, ..., t, € {0,1,2}
1]12]"3 &

In u bits by, b,, ..., b, e {0,1}

* Want:
Small space u (optimal =[nlg,31)
Fast retrieval: Get t. by probing few bits (optimal = 2)

Two solutions

» Arithmetic coding:

Store bits of (t,, ..., t.) € {0, 1, -1} /_\

Optimal space: | nlg, 3| =~ n-1.584
Bad retrieval: To get t. probe all > n bits

* Two bits per trit

Bad space: n-2
Optimal retrieval: Probe 2 bits &

Polynomial tradeoft

q q
e Dividentritst,, ..., t € {0,1,2} —A —A
n blogks of

» Arithmetic-code each block -U' Q
befo7lbgfoop

Space: [qlg,31n/q<(qlg, 3 + 1) n/q

olynomial
=nlgy 3 +n/g ptrgdeof‘f
between
Retrieval: Probe O(q) bits probes,

redundancy

