Data structures

 Organize your data to support various queries using little time and/or space

- Given n elements A[1..n]
- Support SEARCH(A,x) := is x in A?
- Trivial solution: scan A. Takes time Θ(n)
- Best possible given A, x.
- What if we are first given A, are allowed to preprocess it, can we then answer SEARCH queries faster?
- How would you preprocess A?

- Given n elements A[1..n]
- Support SEARCH(A,x) := is x in A?
- Preprocess step: Sort A. Takes time O(n log n), Space O(n)
- Time T(n) = ?

- Given n elements A[1..n]
- Support SEARCH(A,x) := is x in A?
- Preprocess step: Sort A. Takes time O(n log n), Space O(n)
- Time $T(n) = O(\log n)$.

- Given n elements A[1..n] each ≤ k, can you do faster?
- Support SEARCH(A,x) := is x in A?
- DIRECT ADDRESS:
- Preprocess step: Initialize S[1..k] to 0
 For (i = 1 to n) S[A[i]] = 1
- T(n) = O(n), Space O(k)
- SEARCH(A,x) = ?

- Given n elements A[1..n] each ≤ k, can you do faster?
- Support SEARCH(A,x) := is x in A?
- DIRECT ADDRESS:
- Preprocess step: Initialize S[1..k] to 0
 For (i = 1 to n) S[A[i]] = 1
- T(n) = O(n), Space O(k)
- SEARCH(A,x) = return S[x]
- T(n) = O(1)

- Dynamic problems:
- Want to support SEARCH, INSERT, DELETE
- Support SEARCH(A,x) := is x in A?
- If numbers are small, ≤ k

Preprocess: Initialize S to 0.

SEARCH(x) := return S[x]

INSERT(x) := ...??

DELETE(x) := ...??

- Dynamic problems:
- Want to support SEARCH, INSERT, DELETE
- Support SEARCH(A,x) := is x in A?
- If numbers are small, ≤ k

Preprocess: Initialize S to 0.

SEARCH(x) := return S[x]

INSERT(x) := S[x] = 1

DELETE(x) := S[x] = 0

- Time T(n) = O(1) per operation
- Space O(k)

- Dynamic problems:
- Want to support SEARCH, INSERT, DELETE
- Support SEARCH(A,x) := is x in A?
- What if numbers are not small?
- There exist a number of data structure that support each operation in O(log n) time
- AVL tree, red-black tree, etc.
- These data structures organize data in a tree

Binary tree is a graph whose vertices V can be divided in three disjoint sets: root, left sub-tree, and right sub-tree

Alternatively: connected graph without cycles

Example

V={a, b, c, d, e, f, g, h, i}.

Root= $\{a\}$.

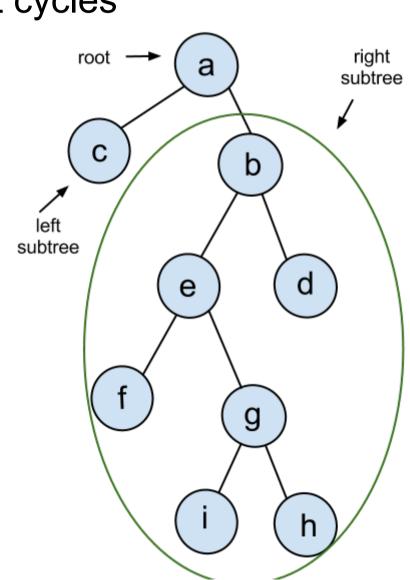
Left subtree:= {c}.

Right subtree:={b, d, e, f, g, h, i}.

Parent(b) = a

Leaves = nodes with no children

$$= \{c, f, i, h, d\}$$

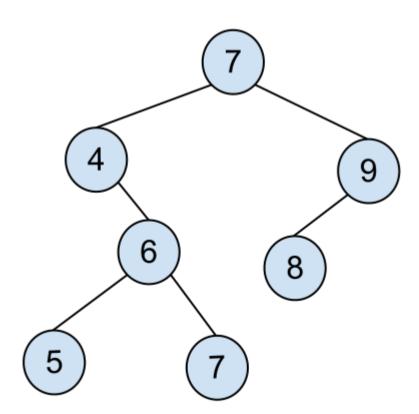


Binary Search Tree is a data structure where we store data in nodes of a binary tree and refer to them as key of that node.

The keys in a binary search tree are always stored in such way to satisfy the binary search tree property:

Let $x,y \in V$, if y is in left subtree of $x \Longrightarrow key(y) \le key(x)$ if y is in right subtree of $y \Longrightarrow key(x) < key(y)$.

Example:



Binary Search

Looking for k in tree T given root x: tree-search(x,k) If x=NIL or k=key[x] then return x if k< key[x] then return tree-search(left[x],k) else return tree-search(right[x],k) (5

Note: NIL stands for empty tree

Running time = the depth of the tree. = O(n), = $\Omega(\log n)$ Tree is balanced if depth $\leq 1 + \log n \Rightarrow \text{search time } O(\log n)$ Binary Search in a tree is a generalization of binary search in an array that we saw before.

A sorted array can be thought of as a balanced tree (we'll return to this shortly)

Trees make it easier to think about inserting and removing.

Insert x in a tree:

Search (x).

If x not found, create new node with x where x should have been.

To maintain the tree balanced, we perform rotations

Delete x from a tree:

Search (x).

Remove the node with x.

To maintain the tree balanced, we perform rotations

Time O(log n) for both.

DEMO

Next:

More about trees vs. arrays, and heaps.

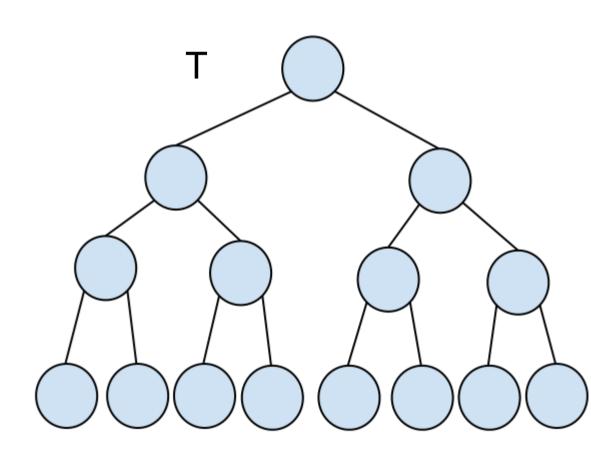
A complete binary tree of depth d has 2^d leaves and 2^{d+1}-1 nodes.

Example:

Depth of T=?

Number of leaves in T=?

Number of nodes in T=?



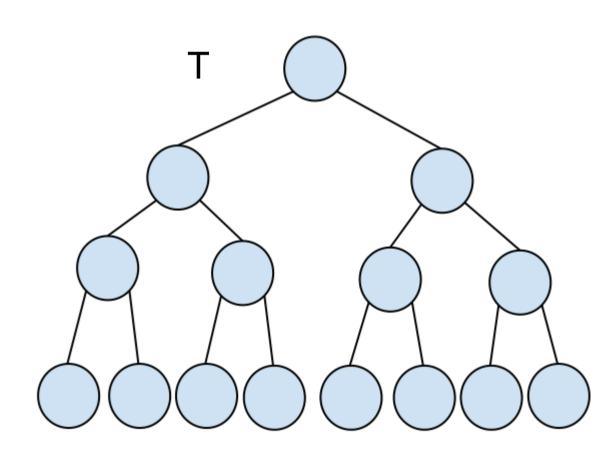
A complete binary tree of depth d has 2^d leaves and 2^{d+1}-1 nodes.

Example:

Depth of T=3.

Number of leaves in T=?

Number of nodes in T=?



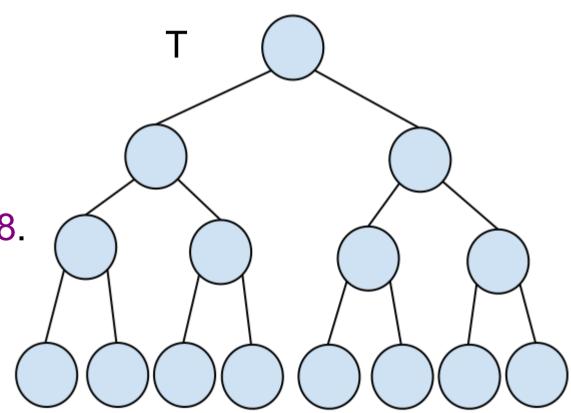
A complete binary tree of depth d has 2^d leaves and 2^{d+1}-1 nodes.

Example:

Depth of T=3.

Number of leaves in $T=2^3=8$.

Number of nodes in T=?



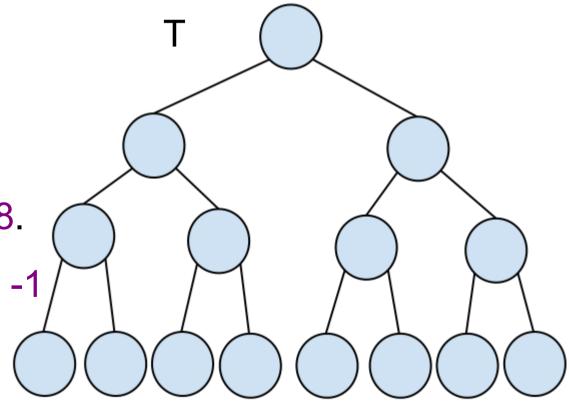
A complete binary tree of depth d has 2^d leaves and 2^{d+1}-1 nodes.

Example:

Depth of T=3.

Number of leaves in $T=2^3=8$.

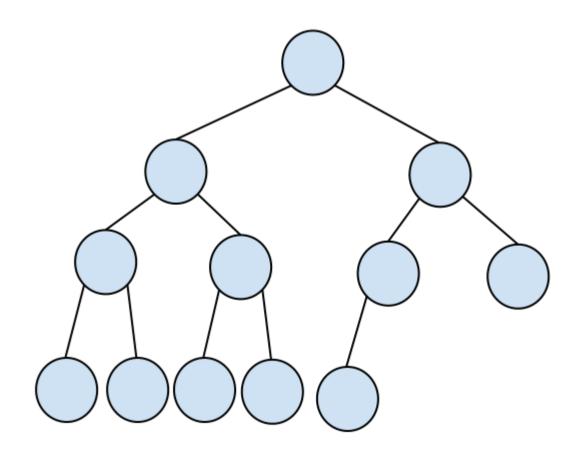
Number of nodes in $T=2^{3+1}-1$ =15.



Heap is an array that can be view as a nearly complete binary tree, only the last level is missing leaves.

Specifically, the last level must be filled from left to right.

Note: A complete binary tree is a special case of a heap.



Navigating a heap:

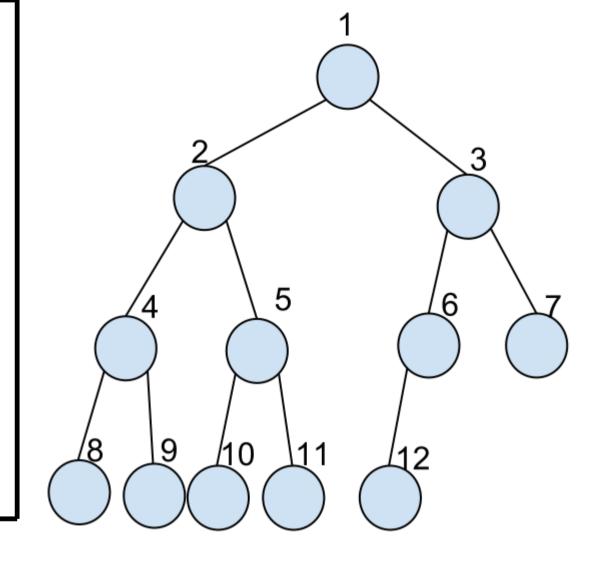
Root is A[1].

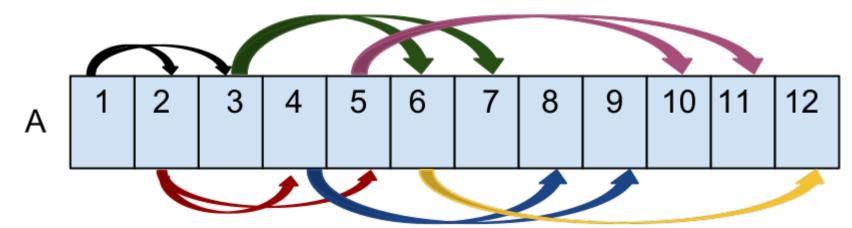
Given index i to a node:

Parent(i) return i/2

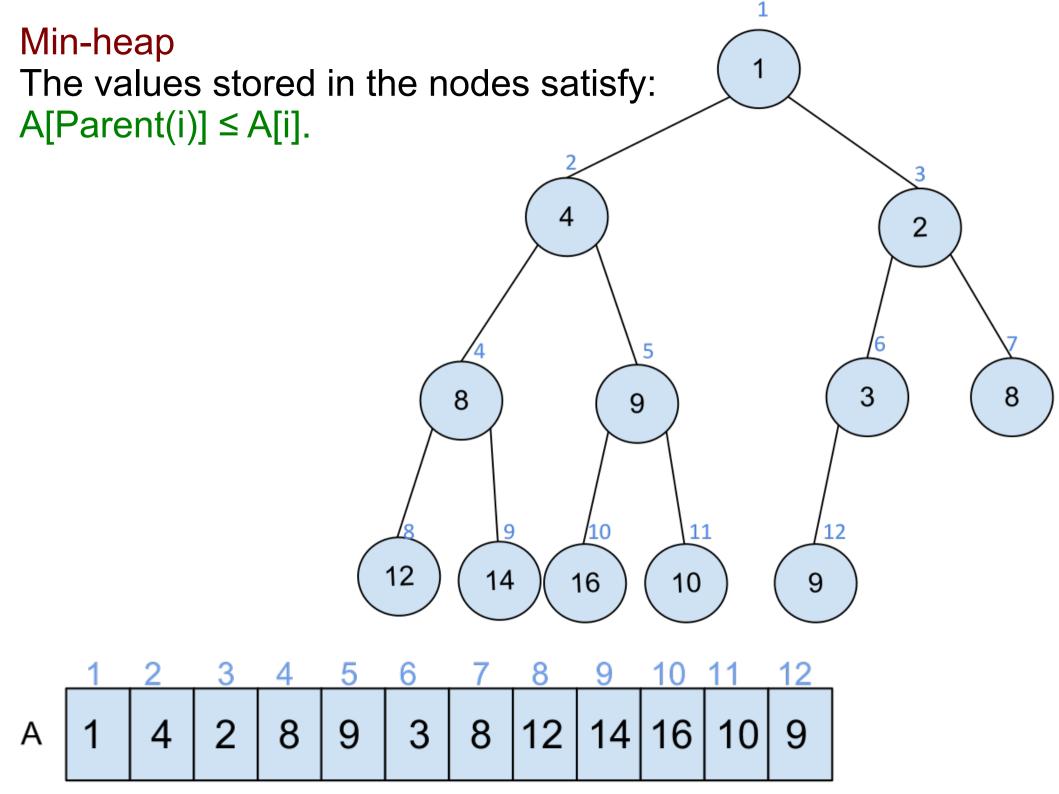
Left-Child(i) return 2i

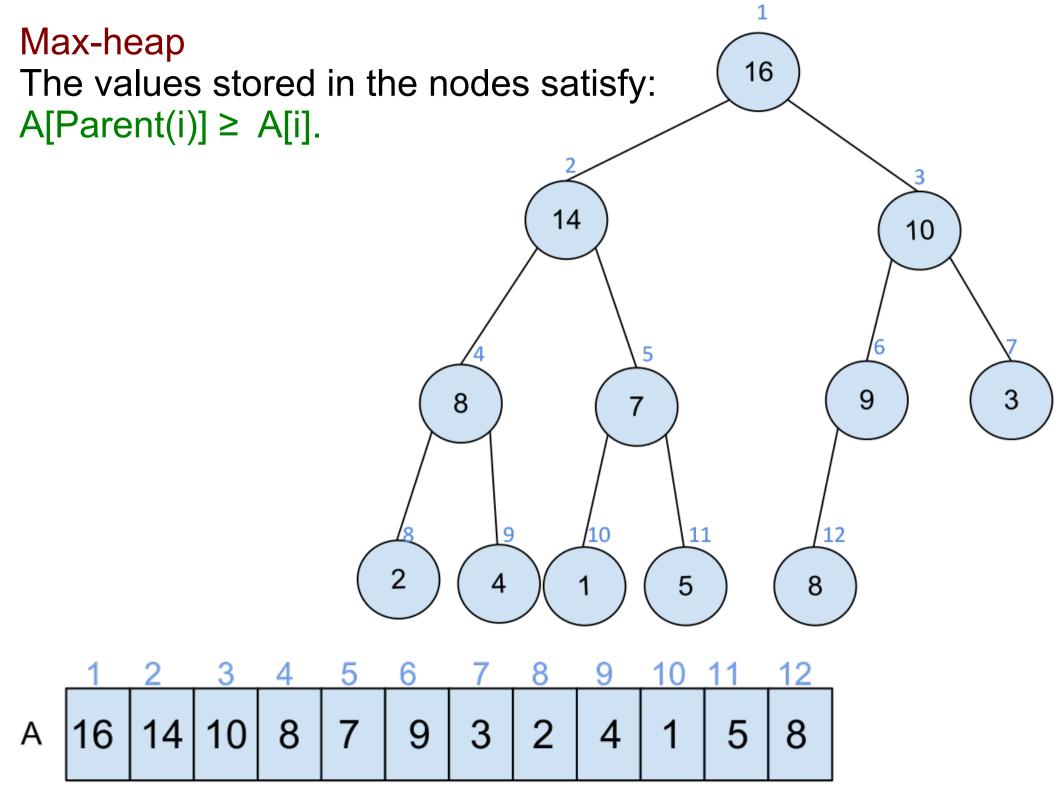
Right-Child(i) return 2i+1





Heaps are useful to dynamically maitain a set of elements while allowing for extraction of Minimum/Maximum element quickly

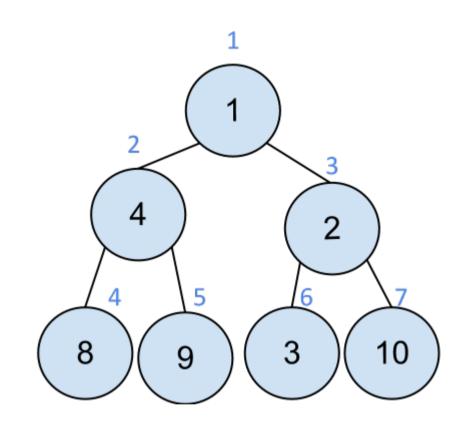




In min-heap A, the minimum element is A[1].

```
Extract-Min-heap(A)
```

```
min:= A[1];
A[1]:= A[heap-size];
heap-size:= heap-size - 1;
Min-heapify(A, 1)
Return min;
```

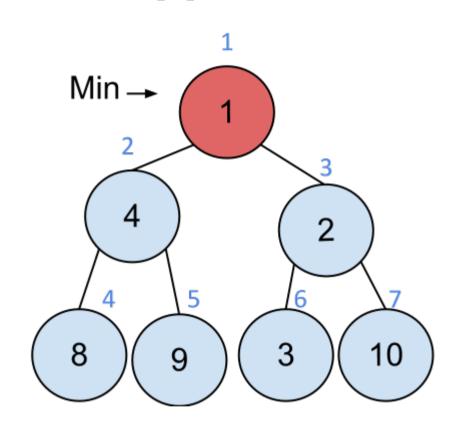


Let's see the steps

In min-heap A, the minimum element is A[1].

```
Extract-Min-heap(A)
```

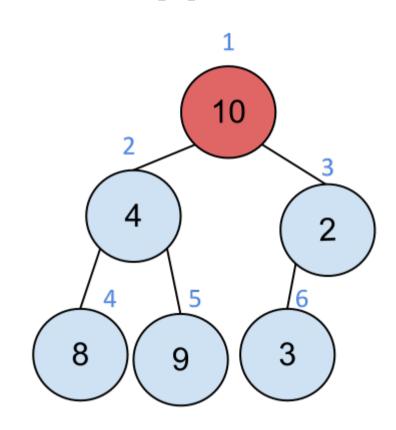
```
min:= A[1];
A[1]:= A[heap-size];
heap-size:= heap-size - 1;
Min-heapify(A, 1)
Return min;
```



In min-heap A, the minimum element is A[1].

```
Extract-Min-heap(A)
```

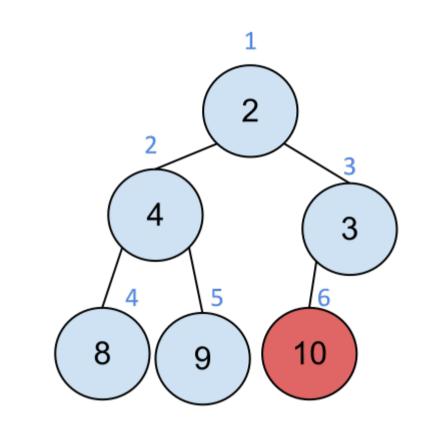
```
min:= A[1];
A[1]:= A[heap-size];
heap-size:= heap-size -1;
Min-heapify(A, 1)
Return min;
```



In min-heap A, the minimum element is A[1].

```
Extract-Min-heap(A)
```

```
min:= A[1];
A[1]:= A[heap-size];
heap-size:= heap-size - 1;
Min-heapify(A, 1)
Return min;
```



Min-heapify is a function that updates the heap so that is maintains the min property

Maintaining a Min-heap

Given array A and index i, the trees rooted at left[i] and Right[i] are Min-heap but A[i] maybe greater than its children.

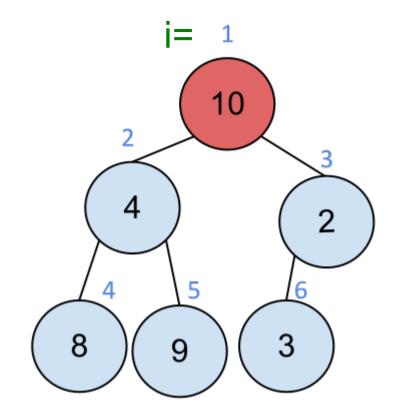
Min-heapify restores the min-heap property.

```
Min-heapify(A,i)
 Let j be the index of smallest node
  among {A[i], A[Left[i]], A[Right[i]] }
If j \neq i then {
  exchange A[i] and A[j]
  Min-heapify(A, j)
```

```
Min-heapify(A,i)

Let j be the index of smallest node among {A[i], A[Left[i]], A[Right[i]] }

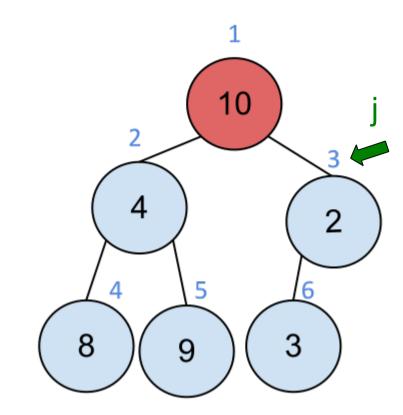
If j ≠ i then {
  exchange A[i] and A[j]
  Min-heapify(A, j)
}
```



```
Min-heapify(A,i)

Let j be the index of smallest node among {A[i], A[Left[i]], A[Right[i]] }

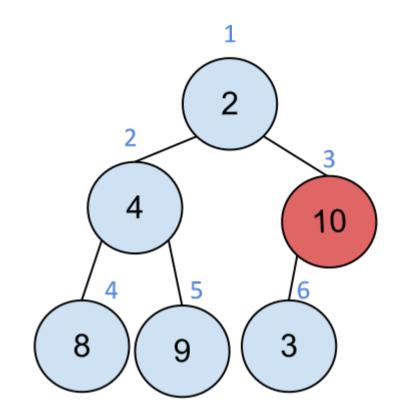
If j ≠ i then {
   exchange A[i] and A[j]
   Min-heapify(A, j)
}
```



```
Min-heapify(A,i)

Let j be the index of smallest node among {A[i], A[Left[i]], A[Right[i]] }

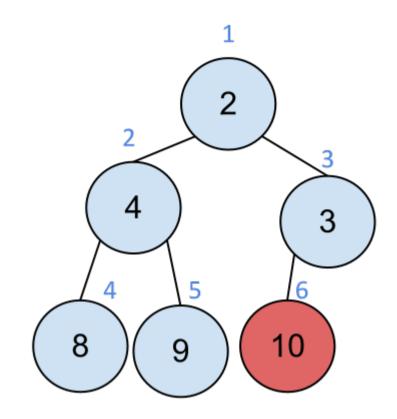
If j ≠ i then {
   exchange A[i] and A[j]
   Min-heapify(A, j)
}
```



```
Min-heapify(A,i)

Let j be the index of smallest node among {A[i], A[Left[i]], A[Right[i]] }

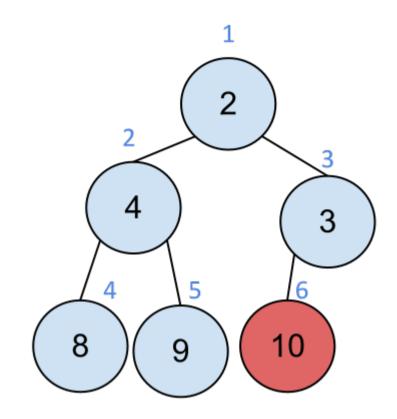
If j ≠ i then {
   exchange A[i] and A[j]
   Min-heapify(A, j)
}
```



```
Min-heapify(A,i)

Let j be the index of smallest node among {A[i], A[Left[i]], A[Right[i]] }

If j ≠ i then {
   exchange A[i] and A[j]
   Min-heapify(A, j)
}
```

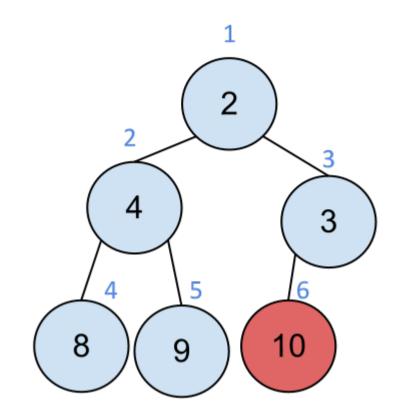


Running time = ?

```
Min-heapify(A,i)

Let j be the index of smallest node among {A[i], A[Left[i]], A[Right[i]] }

If j ≠ i then {
   exchange A[i] and A[j]
   Min-heapify(A, j)
}
```

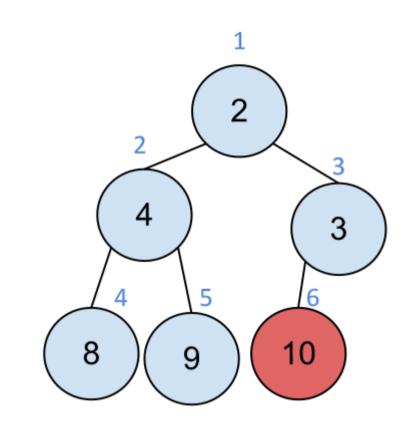


Running time = depth = O(log n)

In min-heap A, the minimum element is A[1].

```
Extract-Min-heap(A)
```

```
min:= A[1];
A[1]:= A[heap-size];
heap-size:= heap-size - 1;
Min-heapify(A, 1)
Return min;
```



Hence both Min-heapify and Extract-Min-Heap take time O(log n).

Next: Given n elements, how do we initialize a heap?

Building Min-heap

Input: Array A, output: Min-heap A.

```
Build-Min-heap(A)
```

```
For (i:=[length[A]/2]; i <0; i--)
Min-heapify(A, i) }
```

Building Min-heap

Input: Array A, output: Min-heap A.

```
Build-Min-heap(A)
```

```
For (i:=[length[A]/2]; i <0; i--)
Min-heapify(A, i) }
```

```
Running time = O(\sum_{h < log n} n/2^h) h
= n O(\sum_{h < log n} h/2^h)
= ?
```

Building Min-heap

Input: Array A, output: Min-heap A.

```
Build-Min-heap(A)
```

```
For (i:=[length[A]/2]; i <0; i--)
Min-heapify(A, i) }
```

```
Running time = O(\sum_{h < log n} n/2^h) h
= n O(\sum_{h < log n} h/2^h)
= O(n)
```

Insert-Min-heap

```
insert-Min-heap(A, key)
heap-size[A] := heap-size[A]+1;
A[heap-size]:= key;
i:= heap-size[a];
While i>0 and A[parent(i)] > A[i]) {
   exchange(A[parent(i)], A[i])
    i:= parent[i]
```

Running time = O(log n).

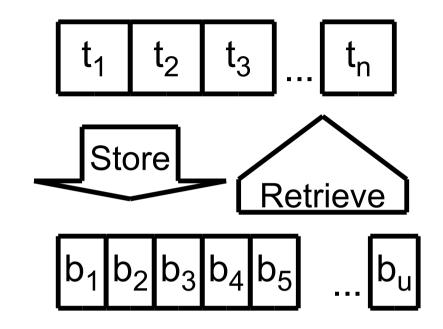
Next:

Compact (also known as succinct) arrays

Bits vs. trits

• Store n "trits" $t_1, t_2, ..., t_n \in \{0, 1, 2\}$

In u bits $b_1, b_2, ..., b_u \in \{0,1\}$



Want:

Small space u (optimal = $\lceil n \lg_2 3 \rceil$)

Fast retrieval: Get t by probing few bits (optimal = 2)

Two solutions

• Arithmetic coding:

Store bits of
$$(t_1, ..., t_n) \in \{0, 1, ..., 3^n - 1\}$$

Optimal space: $\lceil n \lg_2 3 \rceil \approx n \cdot 1.584$

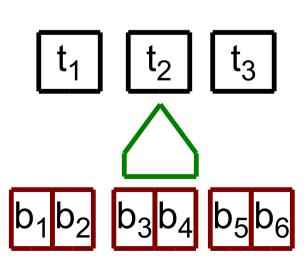
Bad retrieval: To get t_i probe all > n bits



Two bits per trit

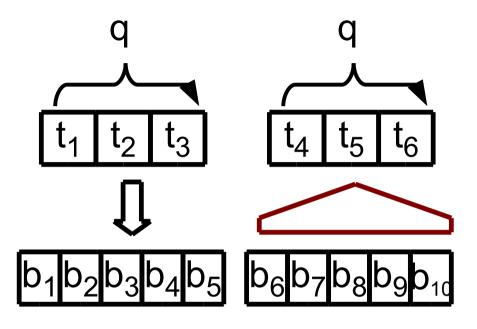
Bad space: n-2

Optimal retrieval: Probe 2 bits



Polynomial tradeoff

- Divide n trits $t_1, ..., t_n \in \{0,1,2\}$ in blocks of q
- Arithmetic-code each block



Space:
$$[q lg_2 3] n/q < (q lg_2 3 + 1) n/q$$

= $n lg_2 3 + n/q$

Retrieval: Probe O(q) bits

polynomial tradeoff between probes, redundancy