
Polynomials and Fast Fourier Transform (FFT)



Polynomials

A(x) = ∑ i=0
n-1 ai x

i         a polynomial of degree n-1

Evaluate at a point x = b in time ?



Polynomials

A(x) = ∑ i=0
n-1 ai x

i         a polynomial of degree n-1

Evaluate at a point x = b in time O(n): Horner's rule:
Compute an-1 x,

               an-2 + an-1x2 ,

               an-3 + an-2 x + an-1 x3 

               …

Each step O(1) operations, multiply by and add coefficient.

There are ≤ n steps.  O(n) time



Summing Polynomials

∑ i=0
n-1 ai x

i         a polynomial of degree n-1

∑ i=0
n-1 bi x

i         a polynomial of degree n-1

∑ i=0
n-1 ci x

i         the sum polynomial of degree n-1

ci = ai + bi 

Time O(n)



How to multiply polynomials?

∑ i=0
n-1 ai x

i         a polynomial of degree n-1

∑ i=0
n-1 bi x

i         a polynomial of degree n-1

∑ i=0
2n-2 ci x

i         the product polynomial of degree n-1

ci = ∑ j ≤ i aj bi-j 

Trivial algorithm: time O(n2 )
FFT gives time O(n log n)



Polynomial representations

Coefficient: (a0 ,a1 , a2 ,... an-1)

Point-value: have points x0 , x1 , … xn-1 in mind

Represent polynomials A(X) by pairs
{ (x0 , y0 ), (x1 , y1 ), … }                       A(xi ) = yi 

To multiply in point-value, just need O(n) operations.



Approach to polynomial multiplication:

A, B given as coefficient representation

1) Convert A, B to point-value representation

2) Multiply C = AB in point-value representation

3) Convert C back to coefficient representation

2) done esily in time O(n)

FFT allows to do 1) and 3) in time O(n log n).

Note: For C we need 2n-1 points; we'll just think “n”



From coefficient to point-value:

From point-value representation, note above matrix is 
invertible (if points distinct)

Alternatively, Lagrange's formula

y0 

y1 

…
…
…
yn-1

a0 

a1 

…
…
…
an-1

=



We need to evaluate A at points x1 … xn  in time O(n log n)

Idea: divide and conquer:

A(x) = A0 (x) + x A1 (x)
where A0 (x) has the even-degree terms, A1 (x) the odd

Example:

A = a0  + a1 x + a2 x2  + a3 x3

A0 (x) = a0  + a2 x2

A1 (x) = a1 x + a3 x3

How is this useful?



We need to evaluate A at points x1 … xn  in time O(n log n)

Idea: divide and conquer:

A(x) = A0 (x) + x A1 (x)
where A0 (x) has the even-degree terms, A1 (x) the odd

Note: A(x) = A0 (x2 ) + x A1 (x2)

If my points are x1 , x2 , xn/2 , -x1 , -x2 , -xn/2 

I just need the evaluations of A0 , A1  at points x1
2

 , x2
2, xn/2

2
 

T(n) ≤ 2 T(n/2) + O(n), with solution O(n log n). Are we done?



We need to evaluate A at points x1 … xn  in time O(n log n)

Idea: divide and conquer:

A(x) = A0 (x) + x A1 (x)
where A0 (x) has the even-degree terms, A1 (x) the dd

Note: A(x) = A0 (x2 ) + x A1 (x2)

If my points are x1 , x2 , xn/2 , -x1 , -x2 , -xn/2 

I just need the evaluations of A0 , A1  at points x1
2

 , x2
2, xn/2

2
 

T(n) ≤ 2 T(n/2) + O(n), with solution O(n log n). Are we done?

Need points which can be iteratively decomposed in + and -



Complex numbers:



ωn = n-th primitive root of unity

ωn
0 , … ,ωn

n-1 

n-th roots of unity

We evaluate polynomial A
of degree n-1
at roots of unity
ωn

0 , … ,ωn
n-1 

Fact: The n squares of the n-th roots of unity are:
         first the n/2 n/2-th roots of unity,
         then again the n/2 n/2-th roots of unity.

  from coefficient to point-value in O(n log n) (complex) steps



It only remains to go from point-value to coefficient represent.

We need to invert F

F



It only remains to go from point-value to coefficient represent.

Fact: (F-1)j,k = ωn
-jk  /  n        Note, j,k  {0,1,..., n-1}∈

To compute inverse, use FFT with ω-1 instead of ω,
then divide by n.


