Polynomials and Fast Fourier Transform (FFT)

Polynomials

 $A(x) = \sum_{i=0}^{n-1} a_i x^i$ a polynomial of degree n-1

Evaluate at a point x = b in time ?

Polynomials

 $A(x) = \sum_{i=0}^{n-1} a_i x^i$ a polynomial of degree n-1

Evaluate at a point x = b in time O(n): Horner's rule: Compute $a_{n-1} x$,

$$a_{n-2} + a_{n-1}x^2$$
,
 $a_{n-3} + a_{n-2}x + a_{n-1}x^3$

Each step O(1) operations, multiply by and add coefficient.

There are \leq n steps. \rightarrow O(n) time

. . .

Summing Polynomials

 $\sum_{i=0}^{n-1} a_i x^i$ a polynomial of degree n-1

 $\sum_{i=0}^{n-1} b_i x^i$ a polynomial of degree n-1

$\sum_{i=0}^{n-1} c_i x^i$ the sum polynomial of degree n-1

 $c_i = a_i + b_i$

Time O(n)

How to multiply polynomials?

 $\sum_{i=0}^{n-1} a_i x^i$ a polynomial of degree n-1

 $\sum_{i=0}^{n-1} b_i x^i$ a polynomial of degree n-1

 $\sum_{i=0}^{2n-2} c_i x^i$ the product polynomial of degree n-1 $c_i = \sum_{j \le i} a_j b_{i-j}$

Trivial algorithm: time O(n²) FFT gives time O(n log n) **Polynomial representations**

Coefficient: $(a_0, a_1, a_2, \dots, a_{n-1})$

Point-value: have points x_0 , x_1 , ... x_{n-1} in mind Represent polynomials A(X) by pairs { (x_0 , y_0), (x_1 , y_1), ... } A(x_i) = y_i

To multiply in point-value, just need O(n) operations.

Approach to polynomial multiplication:

- A, B given as coefficient representation
- 1) Convert A, B to point-value representation
- 2) Multiply C = AB in point-value representation
- 3) Convert C back to coefficient representation

- 2) done esily in time O(n)
- FFT allows to do 1) and 3) in time O(n log n).

Note: For C we need 2n-1 points; we'll just think "n"

From coefficient to point-value:

From point-value representation, note above matrix is invertible (if points distinct)

Alternatively, Lagrange's formula

We need to evaluate A at points $x_1 \dots x_n$ in time O(n log n)

Idea: divide and conquer:

 $A(x) = A^0(x) + x A^1(x)$ where $A^0(x)$ has the even-degree terms, $A^1(x)$ the odd

Example:

$$A = a_0 + a_1 x + a_2 x^2 + a_3 x^3$$
$$A^0 (x) = a_0 + a_2 x^2$$
$$A^1 (x) = a_1 x + a_3 x^3$$

How is this useful?

We need to evaluate A at points $x_1 \dots x_n$ in time O(n log n)

Idea: divide and conquer:

 $\begin{aligned} A(x) &= A^0 \; (x) + x \; A^1 \; (x) \\ \text{where } A^0 \; (x) \text{ has the even-degree terms, } A^1 \; (x) \text{ the odd} \end{aligned}$

Note:
$$A(x) = A^0 (x^2) + x A^1 (x^2)$$

If my points are x_1 , x_2 , $x_{n/2}$, $-x_1$, $-x_2$, $-x_{n/2}$

I just need the evaluations of A^0 , A^1 at points x_1^2 , x_2^2 , $x_{n/2}^2$

 $T(n) \le 2 T(n/2) + O(n)$, with solution $O(n \log n)$. Are we done?

We need to evaluate A at points $x_1 \dots x_n$ in time O(n log n)

Idea: divide and conquer:

 $\begin{aligned} A(x) &= A^0 \; (x) + x \; A^1 \; (x) \\ \text{where } A^0 \; (x) \text{ has the even-degree terms, } A^1 \; (x) \text{ the dd} \end{aligned}$

Note:
$$A(x) = A^0 (x^2) + x A^1 (x^2)$$

If my points are $x_1^{}$, $x_2^{}$, $x_{n/2}^{}$, $-x_1^{}$, $-x_2^{}$, $-x_{n/2}^{}$

I just need the evaluations of A^0 , A^1 at points x_1^2 , x_2^2 , $x_{n/2}^2$

 $T(n) \le 2 T(n/2) + O(n)$, with solution $O(n \log n)$. Are we done?

Need points which can be iteratively decomposed in + and -

 ω_n = n-th primitive root of unit[•]

 ω_n^{0} , ..., ω_n^{n-1} n-th roots of unity

We evaluate polynomial A of degree n-1 at roots of unity $\omega_n^{0}, \ldots, \omega_n^{n-1}$

Fact: The n squares of the n-th roots of unity are: first the n/2 n/2-th roots of unity, then again the n/2 n/2-th roots of unity.

➔ from coefficient to point-value in O(n log n) (complex) steps

It only remains to go from point-value to coefficient represent.

F

We need to invert F

It only remains to go from point-value to coefficient represent.

$$\begin{pmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega_n & \omega_n^2 & \omega_n^3 & \cdots & \omega_n^{n-1} \\ 1 & \omega_n^2 & \omega_n^4 & \omega_n^6 & \cdots & \omega_n^{2(n-1)} \\ 1 & \omega_n^3 & \omega_n^6 & \omega_n^9 & \cdots & \omega_n^{3(n-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega_n^{n-1} & \omega_n^{2(n-1)} & \omega_n^{3(n-1)} & \cdots & \omega_n^{(n-1)(n-1)} \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ \vdots \\ a_{n-1} \end{pmatrix}$$

Fact:
$$(F^{-1})_{j,k} = \omega_n^{-jk} / n$$
 Note, $j,k \in \{0,1,..., n-1\}$

To compute inverse, use FFT with ω^{-1} instead of ω , then divide by n.