Physics 211

Sections 1 & 70 Dr. Geoffrey Lovelace Fall 2012 Lecture 8 (9/19/12)

- Announcements
- Survey results
- Relative velocity
 - Video: example of frames of reference
 - Computing velocities in different frames of reference
- Laws of motion
 - Force & net force
 - Introduction to first & second laws of motion
 - Example: projectile motion

Announcements

- Today at 11:59PM: Homework #3 due
- Tuesday, September 25 (Tuesday!): Exam #1
 - Bring: #2 pencils, eraser, sci. calculator
 - I provide: scantron form, formula sheet
- Homework #4 due in 1 week
 - Projectile practice & relative velocity
 - Introduction to the laws of motion

- Announcements
- Survey results
- Relative velocity
 - Video: example of frames of reference
 - Computing velocities in different frames of reference
- Laws of motion
 - Force & net force
 - Introduction to first & second laws of motion
 - Example: projectile motion

Survey results

- Most unsure about projectiles
 - Homework #4 includes a projectile tutorial
 - Last office hours before exam today
- Format for examples
 - 59% PowerPoint better
 - Easier to read, more organized
 - 14% Whiteboard better
 - Shows more steps, better for math
 - **-** 15% Use both

- Announcements
- Survey results
- Relative velocity
 - Video: example of frames of reference
 - Computing velocities in different frames of reference
- Laws of motion
 - Force & net force
 - Introduction to first & second laws of motion
 - Example: projectile motion

- Announcements
- Survey results
- Relative velocity
 - Video: example of frames of reference
 - Computing velocities in different frames of reference
- Laws of motion
 - Force & net force
 - Introduction to first & second laws of motion
 - Example: projectile motion

Frames of reference

• Velocity of A "as seen by" $B = \vec{v}_{AB}$

• $\vec{\mathbf{v}}_{AB} = \vec{\mathbf{v}}_{AC} + \vec{\mathbf{v}}_{CB}$

• $\vec{\mathbf{v}}_{AB} = -\vec{\mathbf{v}}_{BA}$

 $\vec{\mathbf{v}}_{\mathrm{BT}} = \vec{\mathbf{v}}_{\mathrm{BT}} + \vec{\mathbf{v}}_{\mathrm{BT}}$

- Announcements & survey results
- Relative velocity
 - Video: example of frames of reference
 - Computing velocities in different frames of reference
- Laws of motion
 - Force, net force
 - Introduction to first & second laws of motion
 - Example: projectile motion

Force

• Ch. 2-3: *kinematics* = description of motion

 \mathbf{F}_2

(a)

 \mathbf{F}_1

© 2010 Pearson Education

- Ch. 4: dynamics = causes of motion
- Force
 - Something capable of accelerating an object
 - Contact: push/pull
 - Action-at-a-distance: e.g. gravity
 - Force is a vector

Net force & acceleration

$\vec{\mathbf{F}}_{\text{net}} = \Sigma \vec{\mathbf{F}}_i = \vec{\mathbf{F}}_1 + \vec{\mathbf{F}}_2 + \cdots$

Net force & acceleration

(a)

$$\vec{\mathbf{F}}_{net} = \Sigma \vec{\mathbf{F}}_i = \vec{\mathbf{F}}_1 + \vec{\mathbf{F}}_2 + \cdots$$

 \mathbf{F}_2

(b) Zero net force (balanced forces)

 $\vec{\mathbf{a}} = \mathbf{0}$ $\vec{\mathbf{a}} = \vec{\mathbf{0}}$ $\vec{\mathbf{F}}_{1} = \vec{\mathbf{F}}_{1} + \vec{\mathbf{F}}_{2} \neq \mathbf{0}$ $\vec{\mathbf{a}} \neq \mathbf{0}$

 $ec{\mathbf{F}}_{ ext{net}} = ec{\mathbf{F}}_1 + ec{\mathbf{F}}_2 = \mathbf{0}$

(c) Nonzero net force (unbalanced forces) © 2010 Pearson Education, Inc.

Mass

- Inertia = tendency of an object to remain at rest or to remain in uniform motion (const. velocity)
 - How much an object "resists" accelerating
- Mass = measure of inertia (units kg)
 - Example: computers with same performance

2004 Power Mac G5 18 kg

2012 iPhone 5 0.1 kg

First 2 laws of motion

- First law: If $\vec{F}_{\mathrm{net}} = 0$, then...
 - Object at rest remain at rest
 - Object in motion remains in motion at a constant velocity

 $\dot{\mathbf{F}}_{net}$

 \mathcal{M}

- Second law: If $ec{\mathbf{F}}_{\mathrm{net}}
 eq \mathbf{0}$, then...
 - Object of mass *m* accelerates: $\vec{\mathbf{a}} =$

Clicker question #31

Question 4.4a Off to the Races I

From rest, we step on the gas of our Ferrari, providing a force F for 4 secs, speeding it up to a final speed v. If the applied force were only $\frac{1}{2} F$, how long would it have to be applied to reach the *same* final speed?

Clicker question #32

Question 4.1b Newton's First Law II

A hockey puck slides on ice at constant velocity. What is the *net* force acting on the puck?

more than its weight
equal to its weight
less than its weight but more than zero
depends on the speed of the puck
zero

Clicker question #33

Question 4.1c Newton's First Law III

You put your book on the bus seat next to you. When the bus stops suddenly, the book slides forward off the seat. Why?

a net force acted on it

no net force acted on it

it remained at rest

it did not move, but only seemed to

gravity briefly stopped acting on it

Force is a vector

Weight

• Weight = force of gravity College College $\vec{\mathbf{F}}_{\text{grav}} = \vec{W} = m\vec{\mathbf{g}} = -mg\hat{\mathbf{y}}$ Physics **Physics** 2mm $=\frac{F_y}{m}=\frac{-mg}{m}=-g$ $a_y =$ F 8 8 2F

 $\frac{2F}{2m} = g$

 \mathcal{X}

 $\frac{F}{-} = g$ m © 2010 Pearson Education, Inc.

Projectiles

Only force is weight

$$\vec{\mathbf{F}}_{\text{grav}} = \vec{W} = m\vec{\mathbf{g}} = -mg\hat{\mathbf{y}}$$
$$a_y = \frac{F_y^{\text{net}}}{m} = \frac{-mg}{m} = -g$$

Vertical motion: 2nd law

Horizontal motion: 1st law

© 2010 Pearson Education, Inc.

Clicker question #28c

Which is the *acceleration* at the **circled** time?

Class participation #8

- 1. Name
- 2. Equation (describe or write) that you most wish will be on the formula sheet for the exam