Physics 211

Sections 1 & 70 Dr. Geoffrey Lovelace Fall 2012 Lecture 9 (9/27/12)

- Announcements
- Laws of motion
 - Newton's 3 laws of motion
 - Weight & mass
 - Example: blocks & strings
- Exam results

Announcements

- Exams graded; grades posted to Titanium soon
- Homework #4: due today, 11:59PM
 - Projectiles
 - Forces, laws of motion
- Homework #5: assigned today, due in 1 week
 - Forces, Laws of motion
 - Will announce on piazza when available
- Reading: chapter 4

- Announcements
- Laws of motion
 - Newton's 3 laws of motion
 - Weight & mass
 - Example: blocks & string
- Exam results

Newton's first law

- Net force: $\vec{\mathbf{F}}_{net} \equiv \Sigma \vec{\mathbf{F}}_i$
- If the **net force** on an object is zero...
 - If at rest, object remains at rest
 - If moving, moves at a constant velocity
- Demo: air track, air soccer

Question 4.2a Cart on Track I

Consider a cart on a horizontal frictionless table. Once the cart has been given a push and released, what will happen to the cart? A slowly come to a stop
 B continue with constant acceleration
 C continue with decreasing acceleration
 C continue with constant velocity
 immediately come to a stop

Question 4.1b Newton's First Law II

A hockey puck slides on ice at constant velocity. What is the *net* force acting on the puck?

more than its weight equal to its weight less than its weight but more than zero depends on the speed of the puck zero

Question 4.1a Newton's First Law I

A book is lying at rest on a table. The book will remain there at rest because:

- there is a net force but the book has too much inertia
- B

there are no forces acting on it at all

- it does move, but too slowly to be seen
- there is no net force on the book

there is a net force, but the book is too heavy to move

Normal force

- Normal force
 - Direction: perpendicular to surface
 - Magnitude: exactly enough so object remains on surface

Normal force

- Normal force
 - Direction: perpendicular to surface
 - Magnitude: exactly ^y
 enough so
 object remains
 on surface

Newton's second law

If the net force on an object of mass *m* is nonzero...
 F

$$\vec{\mathbf{a}} = \frac{\mathbf{r}_{net}}{m}$$

- Vector equation
- Applies to entire system or to parts of system
- Demo: air track

Question 4.2b Cart on Track II

A cart pushed & released on a frictionless track moves at constant velocity. What would have to be done in order to have the cart continue with constant acceleration?

Question 4.5 Force and Mass

A force *F* acts on mass *M* for a time interval *T*, giving it a final speed *v*. If the same force acts for the same time on a different mass 2*M*, what would be the final speed of the bigger mass?

4v A B **2**v C V $\frac{1}{2}V$ \square ¹⁄₄V

Question 4.4a Off to the Races I

From rest, we step on the gas of our Ferrari, providing a force F for 4 secs, speeding it up to a final speed v. If the applied force were only $\frac{1}{2} F$, how long would it have to be applied to reach the *same* final speed?

Newton's third law

- If force \vec{F}_{AB} on A by B, then...
 - Force on B by A is $\vec{\mathbf{F}}_{\mathrm{BA}}=-\vec{\mathbf{F}}_{\mathrm{AB}}$
 - Relates forces acting on *different* objects
- Demo: the wall pushes me around
- Video: fire extinguisher & skateboard <u>http://www.youtube.com/watch?v=kiolcgnQqpY</u> <u>http://www.youtube.com/watch?v=pVRgfDSAGOA</u>

 WALL-E is moving rightward and wants to slow down. Which way should he aim?

• WALL-E is moving rightward and wants to slow down. Which arrow is his desired acceleration?

 WALL-E wants to accelerate left. Which direction should be force on Wall-E by pellets?

WALL-E wants to accelerate left. Which way should he point the fire extinguisher?

WALL-E wants to accelerate left. Which way should he point the fire extinguisher?

Newton's third law

• Con. Ex. 4.5 in textbook: find all force pairs

Newton's 3 laws

- Summary

 - 1. If $\vec{\mathbf{F}}_{net} = \vec{\mathbf{0}}$ then $\vec{\mathbf{a}} = \vec{\mathbf{0}}$ 2. If $\vec{\mathbf{F}}_{net} \neq \vec{\mathbf{0}}$ then $\vec{\mathbf{a}} = \frac{\vec{\mathbf{F}}_{net}}{\vec{\mathbf{n}}}$ m
 - 3. $\vec{\mathbf{F}}_{\mathrm{BA}} = -\vec{\mathbf{F}}_{\mathrm{AB}}$
- The challenges
 - Conceptual: often counter-intuitive predictions
 - Quantitative: applying to problems

- Announcements
- Laws of motion
 - Newton's 3 laws of motion
 - Weight & mass
 - Example: blocks & string
- Exam results

- Announcements
- Laws of motion
 - Newton's 3 laws of motion
 - Weight & normal force
 - Example: blocks & string: next time
- Exam results

- Announcements
- Laws of motion
 - Newton's 3 laws of motion
 - Weight & normal force
 - Example problems
- Exam results

Exam results

- 39 points possible, +2 points added to all, average = 78.5%
- Questions? Review your exam? Stop by my office hours

