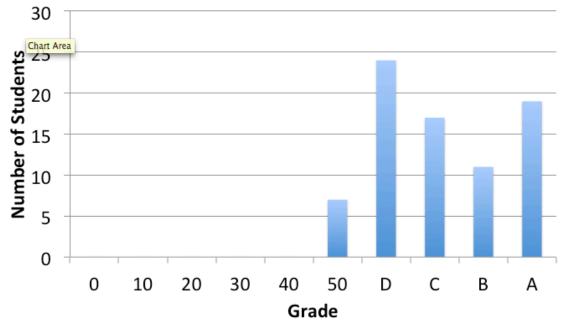

Physics 211

Sections 1 & 70 Dr. Geoffrey Lovelace Fall 2012 Lecture 19 (11/6/12)

Announcements

- Homework
 - Homework #9: out today, due in 1 week
- Exams: grades posted
- Reading: For Thursday: finish chapter 7
- Office hours: 4PM-5PM today
 - McCarthy Hall room 601B
 - Feel free to just come & work on the homework
- Exam #3: 1 week from Thursday


Lecture 19 outline

- Announcements
- Exam #3 followup
- Angular motion
 - Arc length, radians & degrees, small angles
 - Angular displacement
 - Angular & tangential velocity
- Circular motion
 - Period & frequency
 - Centripetal acceleration
 - Examples & demos

	Oct 23	Exam 2
	Oct 25	Linear momentum, conservation of linear momentum
	Oct 30	Conservation of linear momentum, collisions
Today	Nov 1	Center of mass, rockets, HW #8 due
	Nov 6	Circular motion, gravitation
	Nov 8	Gravitation, Kepler's laws
	Nov 13	Special feature: temperature, heat, entropy HW #9 due
	Nov 15	Exam 3
	Nov 20	Fall Recess — No class
	Nov 22	Fall Recess — No class
	Nov 27	Rigid body rotation, torque, rotational dynamics
	Nov 29	Rotational dynamics, rotational energy, HW #10 due
	Dec 4	Angular momentum, conservation of angular momentur
	Dec 6	Harmonic motion, HW #11 due
	Dec 11	Harmonic motion & waves
	Dec 13	Gravitational waves, harmonic motion, black holes, HW
	Dec 20	Final exam 9:30AM-11:20AM

Exam followup

• Distribution (after +3 bonus)

- Most-missed
 - Moving bus, you move forward as the bus comes to an immediate stop. What force caused you to move?
 Newton's first law.

Question 4.1c Newton's First Law III

You put your book on the bus seat next to you. When the bus stops suddenly, the book slides forward off the seat. Why?

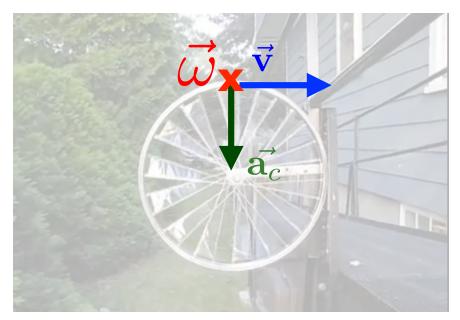
a net force acted on it

no net force acted on it

it remained at rest

it did not move, but only seemed to

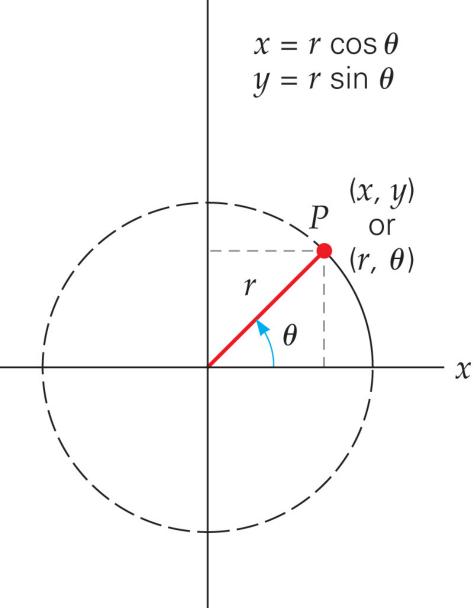
gravity briefly stopped acting on it


Lecture 19 outline

- Announcements
- Exam #3 followup
- Angular motion
 - Arc length, radians & degrees, small angles
 - Angular displacement
 - Angular & tangential velocity
- Circular motion
 - Period & frequency
 - Centripetal acceleration
 - Examples & demos

Example: wheel & record

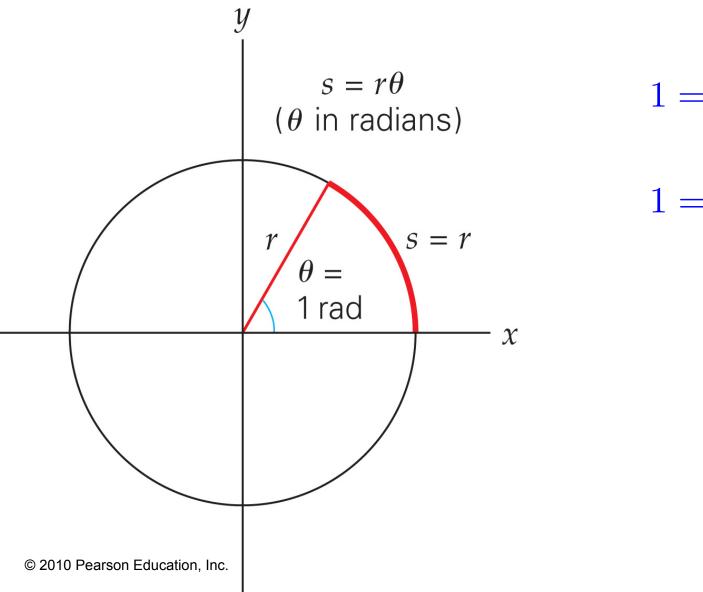
• Windmill

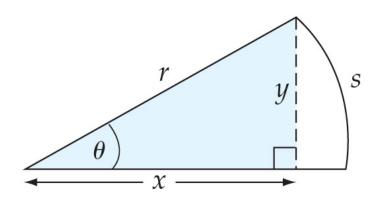


Record on record player
 http://www.youtube.com/watch?v=jtF-ol_m2QY

y 7.1 Angular Measure

The position of an object can be described using polar coordinates—r and θ —rather than x and y. The figure at left gives the conversion between the two descriptions.


7.1 Angular Measure

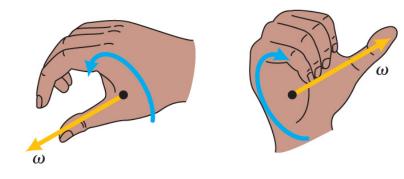

 2π rad

360°

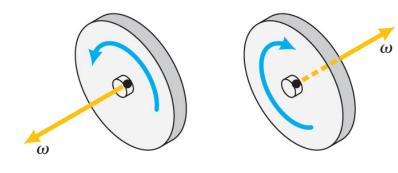
 $\frac{360^{\circ}}{2\pi \text{ rad}}$

It is most convenient to measure the angle θ in radians, since then arc length $S = r\theta$

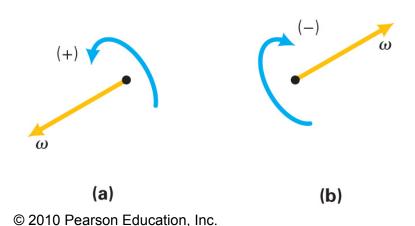
7.1 Angular Measure


 θ not small: θ (in rad) = $\frac{S}{r}$ $\sin \theta = \frac{y}{r}$ $\tan \theta = \frac{y}{r}$ $y \square s$ small: $\boldsymbol{\theta}$ $y \approx s$ $x \approx r$ θ (in rad) = $\frac{S}{r} \approx \frac{y}{r} \approx \frac{y}{r}$ θ (in rad) $\approx \sin \theta \approx \tan \theta$

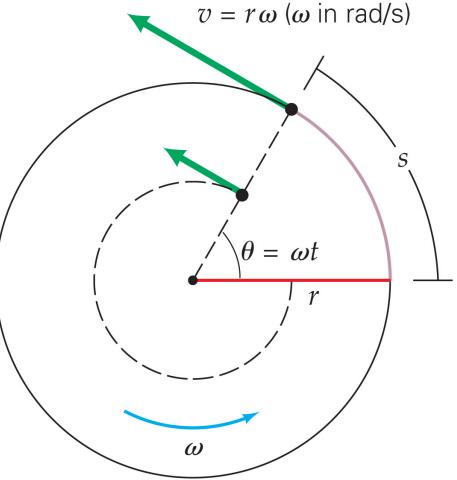
© 2010 Pearson Education, Inc.


The small-angle approximation is very useful, as it allows the substitution of θ for sin θ when the angle is sufficiently small.

In analogy to the linear case, we define the average and instantaneous angular speed:


$$\overline{\omega} = \frac{\Delta\theta}{\Delta t} = \frac{\theta - \theta_{o}}{t - t_{o}}$$
$$\omega = \frac{\theta}{t} \quad \text{or} \quad \theta = \omega t$$

The direction of the angular velocity is along the axis of rotation, and is given by a right-hand rule.


Important: Don't use your left hand for the right-hand rule!

Relationship between tangential and angular speeds: $v = r \omega (\omega \ln r)$

$$v = r\omega$$

This means that parts of a rotating object farther from the axis of rotation move faster.

The period is the time it takes for one rotation; the frequency is the number of rotations per second.

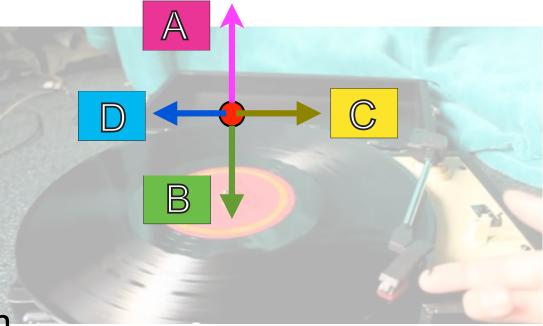
$$f = \frac{1}{T}$$

The relation of the frequency to the angular speed:

$$\omega = \frac{2\pi}{T} = 2\pi f$$

Clicker question #84 The record rotates clockwise. What is the angular velocity direction at the red dot?

- Up along the axle Down along the axle To the right
- To the loft


A

B

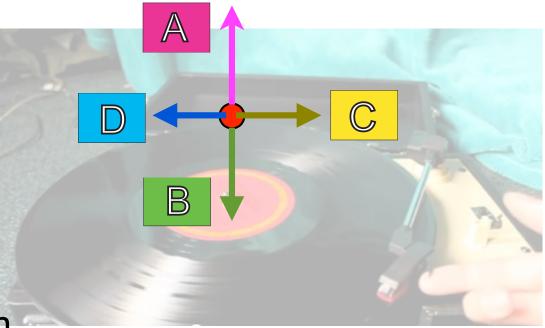
C

 \mathbb{D}

- To the left
- Angular velocity doesn't have a direction

Clicker question #85 The record rotates clockwise. What is the tangential velocity direction at the red dot?

- Up along the axle Down along the axle
- To the right


A

B

C

 \mathbb{D}

- To the left
- Tangential velocity doesn't have a direction

Clicker question #86 The record rotates clockwise. How are the angular speeds related at points x and o?

largest at x largest at o

equal at x and o

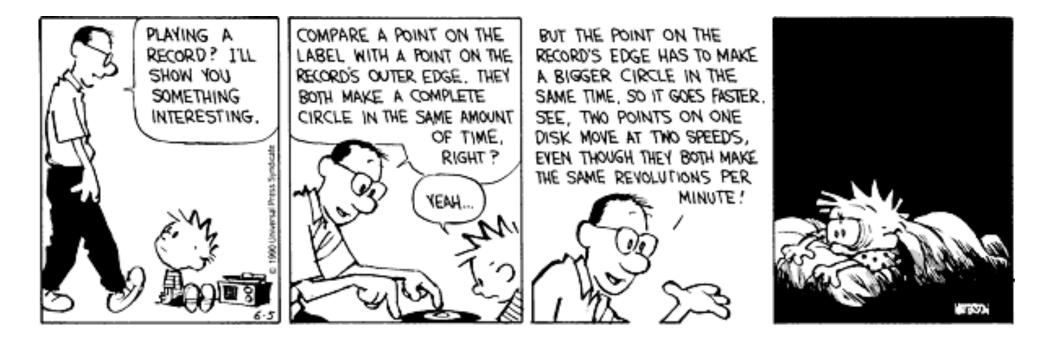
C

Depends on how fast the record spins

Clicker question #87 The record rotates clockwise. Which point has a faster tangential speed?

largest at x largest at o

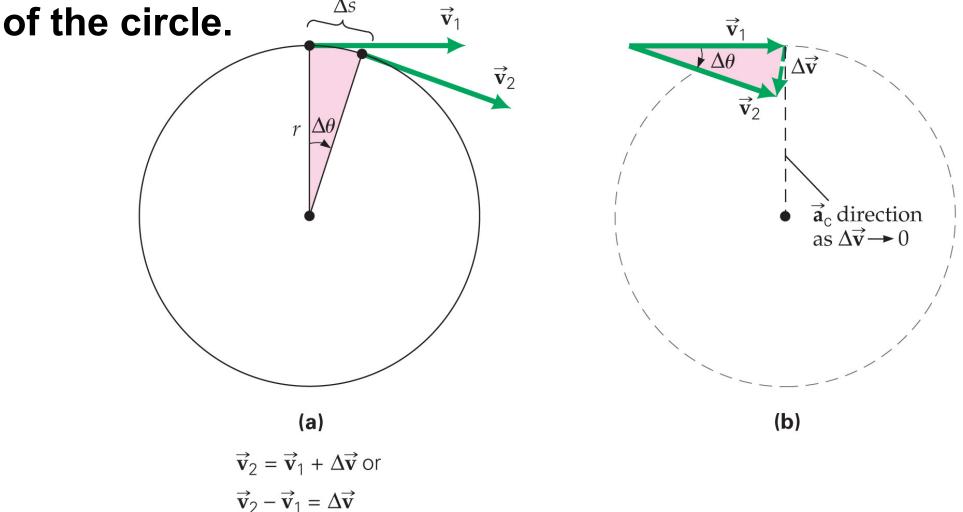
equal at x and o



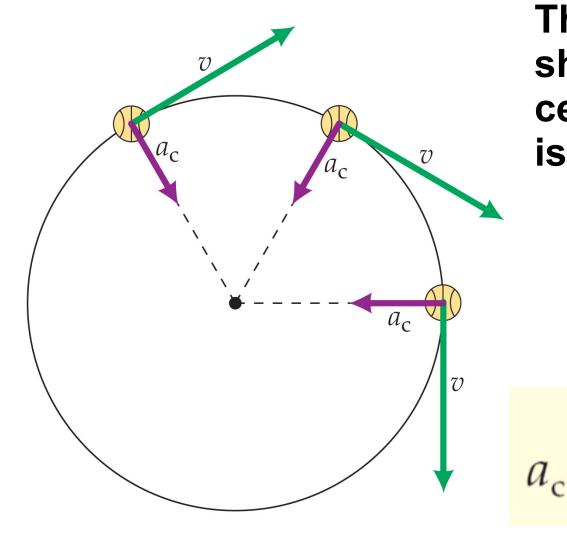
C

Depends on how fast the record spins

Example: record player



Lecture 19 outline


- Announcements
- Exam #3 followup
- Angular motion
 - Arc length, radians & degrees, small angles
 - Angular displacement
 - Angular & tangential velocity
- Circular motion
 - Period & frequency
 - Centripetal acceleration
 - Examples & demos

7.3 Uniform Circular Motion and Centripetal Acceleration

A careful look at the change in the velocity vector of an object moving in a circle at constant speed shows that the acceleration is toward the center

7.3 Uniform Circular Motion and Centripetal Acceleration

The same analysis shows that the centripetal acceleration is given by:

$$a_{\rm c} = \frac{v^2}{r}$$

 $(r\omega)^2$

7.3 Uniform Circular Motion and Centripetal Acceleration

The centripetal force is the mass multiplied by the centripetal acceleration.

$$F_{\rm c} = ma_{\rm c} = \frac{mv^2}{r}$$

This force is the net force on the object. As the force is always perpendicular to the velocity, it does no work.

Circular motion examples

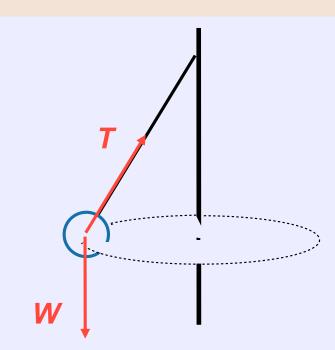
- Circular motion
 - Tetherball

http://www.youtube.com/watch?v=MGx_xxn2I0w

- Centrifuge

http://www.youtube.com/watch?v=FACvmZJpRLs

Question 7.1 Tetherball


In the game of tetherball,

the struck ball whirls

around a pole. In what

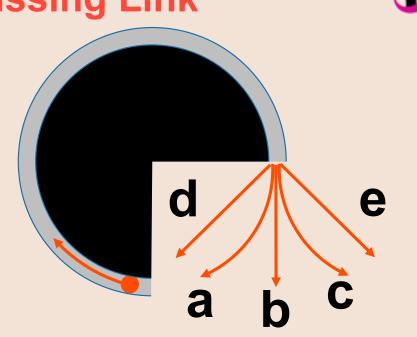
direction does the net

force on the ball point?

toward the top of the pole

B toward the ground

along the horizontal component of the tension force


A

along the vertical component of the tension force

tangential to the circle

Question 7.3 Missing Link

A Ping-Pong ball is shot into a circular tube that is lying flat (horizontal) on a tabletop. When the Ping-Pong ball leaves the track, which path will it follow?

Question 7.6a Going in Circles I

You're on a Ferris wheel moving in a vertical circle. When the Ferris wheel is at rest, the normal force *N* exerted by your seat is equal to your weight *mg*. How does *N* change at the top of the Ferris wheel when you are in motion?

- a) N remains equal to mg
- b) N is smaller than mg
- c) *N* is larger than *mg*
- d) none of the above

Ex. 7.5

Lab centrifuge operates at 12000 revolutions per minute (rpm). Centripetal accel. of red blood cell that is 8.0 cm from center?

Given: angular velocity ω radius r

Goal: centripetal accel. a_c

```
Principle: centripetal accel.

a_c = \omega^2 r

a_c = \left(1.2 \times 10^4 \frac{\text{rev}}{\min} \frac{2\pi \text{ rad}}{\text{rev}} \frac{1 \min}{60 \text{ s}}\right)^2 (0.08 \text{m})

a_c = 1.3 \times 10^5 \text{m} = 1.3 \times 10^4 g
```

- 1.Read carefully 2.Draw a sketch
- 3.Given? Goal?
- 4. Principles & equations?
- 5.Calculate
- 6.Plug in numbers
- 7.Is answer reasonable?

 ω

Class participation

- 0. Name
- 1. What is its angular velocity?
- 2. The earth is 1.5 x 10¹¹ m from the sun. What is the earth's tangential velocity?

(Formula sheet:)

$$\omega = \frac{2\pi}{T} = 2\pi f$$

$$v = r\omega$$