Physics 211

Sections 1 & 70 Dr. Geoffrey Lovelace Fall 2012 Lecture 25 (12/06/12)

Lecture 25 outline

- Announcements
- Simple harmonic motion (SHM)
 - SHM, amplitude, period, frequency, energy
 - Connection to uniform circular motion
 - Demo & examples: mass on a spring & others
- Equations of motion for object in SHM
 - Position & initial conditions, velocity, accel.
 - Damping

Announcements

- Homework #11: out today, due 12/13 at 11:59PM
- Reading: Finish chapter 13: vibrations & waves
- Office hours: 10AM-11AM, 4PM-5PM today
 - McCarthy Hall room 601B
- Final exam December 20, 9:30AM-11:20AM
 - Skip the final? See me in office hours!
 - Emphasize material since Exam #3 (cumulative)
- Tuesday: official student evaluations
 - Please bring a #2 pencil & eraser

	Date	Event
Today	Nov 15	Exam 3
	Nov 20	Fall Recess — No class
	Nov 22	Fall Recess — No class
	Nov 27	Rigid body rotation, torque
	Nov 29	Rotational dynamics, rotational energy
	Dec 4	Angular momentum, rigid body wrap-up HW #10 due
	Dec 6	Harmonic motion
	Dec 11	Harmonic motion & waves
	Dec 13	Gravitational waves, harmonic motion, black holes, HW #11 due
	Dec 20	Final exam 9:30AM–11:20AM

Lecture 25 outline

- Announcements
- Simple harmonic motion (SHM)
 - SHM, amplitude, period, frequency, energy
 - Connection to uniform circular motion
 - Demo & examples: mass on a spring & others
- Equations of motion for object in SHM
 - Position & initial conditions, velocity, accel.
 - Damping

Simple harmonic motion (SHM)

- SHM = oscillating ("back & forth") motion due to restoring force
 - "Simple:" simplest restoring force F = -kx
 - "Harmonic:" sin, cos describe motion
- Properties
 - Amplitude $A = \max$. displacement x from equilibrium position
 - Period T = time of one cycle
 - Frequency f = cycles/s, angular frequency ω : rad/s
 - Energy: $E \propto A^2$ $\omega = 2\pi f = \frac{2\pi}{T}$ $f = \frac{1}{T}$

Mass m on a spring k

• Restoring force pulls toward equilibrium (x=0)

Question 13.1a Harmonic Motion I

A mass on a spring in SHM has amplitude *A* and period *T*. What is the total distance traveled by the mass after a time interval *T*?

Question 13.1b Harmonic Motion II

Question 13.2 Speed and Acceleration

A mass on a spring in SHM has amplitude *A* and period *T*. At what point in the motion is v = 0and a = 0 simultaneously?

$$A \quad x = A$$

$$B \quad x > 0 \text{ but } x < A$$

$$C \quad x = 0$$

$$x < 0$$

$$none \text{ of the above}$$

$$x = -A \quad x = 0 \quad x = A$$

Mass m on a spring k

- The classic SHM
- SHM & uniform circular motion

Mass m on a spring K

x = A

U = 0

x = -A

x = 0

- The classic SHM
 - **Restoring force**

F = -kx

 Energy oscillates between kinetic, potential

$$E = \frac{1}{2}mv^{2} + \frac{1}{2}kx^{2}$$

$$E = \frac{1}{2}mv^{2} + \frac{1}{2}kx^{2}$$

- Period & frequency $T = \frac{1}{f} = 2\pi \sqrt{\frac{m}{k}}$

 $\omega = 1$

<u>k</u>

Potential well

• A way to visualize energy exchange in SHM

- "Everything is a mass on a spring"
 - Any potential energy, near minimum, \approx parabola

Question 13.5a Energy in SHM I

A mass oscillates in simple harmonic motion with amplitude A. If the mass is doubled, but the amplitude is not changed, what will happen to the total energy of the system?

Question 13.5b Energy in SHM II

If the amplitude of a simple harmonic oscillator is doubled, which of the following quantities will change the most?

Other examples of SHM

Pendulum

 $T = 2\pi \sqrt{\frac{l}{g}}$

(small angle displacement) $l = 2\pi \sqrt{\frac{l}{2}}$

- Tuning fork & musical instruments, voltage from outlet
- Perturbed floating object mass *M*, cross-sectional area *a*, accel. of gravity g, water density ρ
- Insect wings $T = 2\pi \sqrt{\frac{m}{k}}$

$$T = 2\pi \sqrt{\frac{M}{\rho ag}}$$

• Black hole after merger http://www.youtube.com/watch?v=L478ZPy_2Ys

Question 13.8a Period of a Pendulum I

Two pendula have the same length, but different masses attached to the string. How do their periods compare?

period is greater for the greater massperiod is the same for both casesperiod is greater for the smaller mass

Question 13.4 To the Center of the Earth

Class participation

• 0. Full name

• 1. *Question 13.9* Grandfather Clock

A grandfather clock has a weight at the bottom of the pendulum that can be moved up or down. If the clock is running slow, what should you do to adjust the time properly?

