Physics 211

Sections 1 & 70 Dr. Geoffrey Lovelace Fall 2012 Lecture 24 (12/04/12)

Lecture 24 outline

- Announcements
- Angular momentum
 - Definition
 - Conservation
 - Examples & demos
- Bonus examples
 - Rotational energy / power / work
 - Torque
 - Rotational dynamics

Announcements

- Homework #10: due **today** at 11:59PM
- Homework #11: due December 13 at 11:59PM
- Reading: Start chapter 13: vibrations & waves
 - Last new chapter
- Office hours: 4PM-5PM today
 - Bonus office hours today only: 10AM-11AM
 - McCarthy Hall room 601B
- Final exam December 20, 9:30AM-11:20AM
 - Skip the final? See me in office hours!
 - Emphasize material since Exam #3 (cumulative)

	Date	Event
Today	Nov 15	Exam 3
	Nov 20	Fall Recess — No class
	Nov 22	Fall Recess — No class
	Nov 27	Rigid body rotation, torque
	Nov 29	Rotational dynamics, rotational energy
	Dec 4	Angular momentum, rigid body wrap-up HW #10 due
	Dec 6	Harmonic motion
	Dec 11	Harmonic motion & waves
	Dec 13	Gravitational waves, harmonic motion, black holes, HW #11 due
	Dec 20	Final exam 9:30AM–11:20AM

Lecture 24 outline

- Announcements
- Angular momentum
 - Definition
 - Conservation
 - Examples & demos
- Bonus examples
 - Rotational energy / power / work
 - Torque
 - Rotational dynamics

Angular momentum

- Units: $kg \cdot m^2/s$
- Magnitude
 - Particle

 $\vec{\mathbf{L}}$ $\vec{\mathbf{r}}$ \vec{r}

 $L = r_{\perp}p = r_{\perp}mv = r_{\perp}m(r_{\perp})\omega = mr_{\perp}^{2}\omega$ $I = \frac{1}{2}MR^{2}$

- Rigid body

$$L = \sum \left(m_i r_{\perp i}^2 \right) \omega = I \omega$$

- Direction: right-hand rule, same as $\vec{\omega}$ so $\vec{\mathbf{L}} = I\vec{\omega}$
- $\vec{\mathbf{p}} = \text{linear momentum}$
- $\vec{\mathbf{r}} = \text{radial vector}$
- $r_{\perp} = \text{moment arm}$
 - $\vec{\mathbf{L}} = angular momentum$
 - I =moment of inertia

 $\vec{\omega} =$ angular velocity

Angular momentum

- Newton's second law & momentum
- Linear momentum \vec{p}

 $\vec{\mathbf{p}} = m\vec{\mathbf{v}}$ $\vec{\mathbf{F}}_{\text{net}} = \frac{\Delta\vec{\mathbf{p}}}{\Delta t}$

• Conservation laws $\vec{\mathbf{F}}_{net} = 0 \Rightarrow \vec{\mathbf{p}} = const$

$$\vec{\mathbf{F}}_{net} = net force$$

Angular momentum $\vec{\mathbf{L}}$ $\vec{\mathbf{L}} = I\vec{\omega}$ $\vec{\tau}_{net} = \frac{\Delta \vec{\mathbf{L}}}{\Delta t}$

- $\vec{\tau}_{\rm net} = 0 \Rightarrow \vec{\mathbf{L}} = \text{const}$
 - $\vec{\tau}_{net} = net torque$
- No external net force: momentum conserved
- No external net torque: angular momentum conserved

 A person sits on a slowly spinning stool holding weights, arms extended. What happens to the person's angular momentum after pulling the weights inward?

Increases in magnitude Decreases in magnitude Changes direction Remains constant

 A person sits on a slowly spinning stool holding weights, arms extended. What happens to the person's moment of inertia after pulling the weights inward?

Increases

Decreases

Depends on speed of weights

Remains constant

 A person sits on a slowly spinning stool holding weights, arms extended. What happens to the person's angular velocity after pulling the weights inward?

Increases in magnitude Decreases in magnitude Changes direction Remains constant

Angular momentum examples

• Figure skater

http://www.youtube.com/watch?v=AQLtcEAG9v0

 $L \approx 25 \text{ kg} \cdot \text{m}^2/\text{s}$

© 2010 Pearson Education, Inc

 $I \approx 6 \text{ kg} \cdot \text{m}^2$ $I \approx 2 \text{ kg} \cdot \text{m}^2$

Example: skater

 If the skater's initial angular velocity is 40 rpm, what is it after reducing her moment of inertia as shown?

 $I \approx 6 \text{ kg} \cdot \text{m}^2$ $I \approx 2 \text{ kg} \cdot \text{m}^2$

 $\vec{\mathbf{L}} =$ angular momentum I =moment of inertia $\vec{\omega} =$ angular velocity

Given:

 $\omega_0 = 40 \text{rev}/\text{min}$ $I_0 = 6 \text{ kg} \cdot \text{m}^2$ $I_f = 2 \text{ kg} \cdot \text{m}^2/\text{s}$ **Goal:** ω_f **Principle & eqns.**

Conservation of angular momentum

$$L = I\omega \qquad \qquad L_f = L_0$$

Example: skater

Given:

 $\omega_0 = 40 \text{rev/min}$ $I_0 = 6.0 \text{ kg} \cdot \text{m}^2$ $I_f = 2.0 \text{ kg} \cdot \text{m}^2/\text{s}$ **Goal:** ω_f

$$L_0 = I_0 \omega_0 = I_f \omega_f$$
$$\omega_f = \frac{I_0}{I_f} \omega_f$$
$$\omega_f = \frac{6.0 \text{ kg} \cdot \text{m}^2}{2.0 \text{ kg} \cdot \text{m}^2} (40 \text{ rev/min})$$
$$= 120 \text{ rev/min}$$

Principle & eqns.

Conservation of angular momentum

 $L = I\omega \qquad L_f = L_0$

 $\vec{\mathbf{L}} =$ angular momentum

- I =moment of inertia
- $\vec{\omega} = angular velocity$

Question 8.12 Spinning Bicycle Wheel

You are holding a spinning bicycle wheel while standing on a stationary turntable. If you suddenly flip the wheel over so that it is spinning in the opposite direction, the turntable will:

remain stationary

spin in the same direction as the wheel (before flipping)

spin in the same direction as wheel (after flipped)

• The tidal interaction between the earth & the moon is decreasing Earth's angular velocity, making days slightly longer (21st century will be 25 s longer than 20th).

What happens to moon's **angular momentum** as a result?

 The tidal interaction between the earth & the moon is decreasing Earth's angular velocity, making days slightly longer (21st century 25 s longer than 20th).

What happens to moon's **angular momentum** as a result?

Angular momentum: helicopters

• Helicopter

http://www.youtube.com/watch?v=nWk0jUfGrto

© 2010 Pearson Education, Inc.

Angular momentum examples

Spinning black holes
E.g. Cygnus X-1

$$L_{\rm Cygnus X-1} \approx 10^{44} \rm kg \cdot m^2/s$$

X-rays from matter falling into Cygnus X-1

• Electrons: intrinsic angular momentum ("spin") (chemistry) $L_{\rm ElectronSpin} \approx 10^{-34} {\rm kg} \cdot {\rm m}^2/{\rm s}$

Lecture 24 outline

- Announcements
- Angular momentum
 - Definition
 - Conservation
 - Examples & demos
- Bonus examples
 - Rotational energy / power / work
 - Torque
 - Rotational dynamics

Example: king of torque

The Chevy "King of Torque" Silverado outputs 650 ft•lb = 880 m•N of torque at 1600 rpm.
a) What is the power output of the "360-horsepower" engine under these conditions?

b) A torque of 880 m•N is applied to a wheel (moment of inertia 0.5 kg•m²). What is its angular acceleration?

Example: king of torque

The Chevy "King of Torque" Silverado outputs 650 ft•lb = 880 m•N of torque at 1600 rpm.
a) What is the power output of the "360-horsepower" engine under these conditions?

Given: $\tau = 880 \text{ m} \cdot \text{N}$ Principle $\omega = 1600 \text{ rpm} = 170 \text{ rad/s}$ $P = \tau \omega$

Principle & eqns.

 $P = \tau$

Goal: *P* =?

 $P = (880 \text{ m} \cdot \text{N}) (170 \text{ rad/s}) = 150 \text{ kW} = 200 \text{ hp}$

Example: king of torque

 b) A torque of 880 m•N is applied to a wheel (moment of inertia 0.5 kg•m²). What is its angular acceleration?

Given: $\tau = 880 \text{ m} \cdot \text{N}$ $I = 0.5 \text{ kg} \cdot \text{m}^2$

Goal: $\alpha = ?$

Principle & eqns.

Newton's second law (rotational) $\vec{\tau} = I \vec{\alpha}$

$$\alpha = \frac{\tau}{I} = \frac{880 \text{ m} \cdot \text{N}}{0.5 \text{ kg} \cdot \text{m}^2} = 1800 \text{ rad/s}^2$$

Ex. 8.15

 A uniform, solid cylinder (mass = 1.0 kg) rolls without slipping (speed = 1.8 m/s) on a level surface. What fraction of the total kinetic energy is rotational?

M = 1.0 kg v = 1.8 m/s $I = \frac{1}{2}mR^2$

Given: $M = 1.0 \text{ kg} \quad v = 1.8 \text{ m/s}$

Goal: $K_{\rm rot}/(K_{\rm rot}+K_{\rm trans})$

Principles & equations:

 $K_{\rm rot} = \frac{1}{2}I\omega^2 \quad K_{\rm trans} = \frac{1}{2}mv^2$

 $v = R\omega$ (roll without slipping)

Ex. 8.15

M = 1.0 kg v = 1.8 m/s $I = \frac{1}{2}mR^2$

Given: $M = 1.0 \text{ kg} \quad v = 1.8 \text{ m/s}$ Goal: $K_{\text{rot}}/(K_{\text{rot}} + K_{\text{trans}})$ Principles & equations: $K_{\text{rot}} = \frac{1}{2}I\omega^2 \quad K_{\text{trans}} = \frac{1}{2}mv^2$

 $v = R\omega$ (roll without slipping)

$$\frac{K_{\rm rot}}{K_{\rm rot} + K_{\rm trans}} = \frac{\frac{1}{2}I\omega^2}{\frac{1}{2}I\omega^2 + \frac{1}{2}mv^2} = \frac{I\omega^2}{I\omega^2 + mR^2\omega^2} = \frac{I\omega^2}{I\omega^2 + 2I\omega^2} = \frac{1}{1+2} = \frac{1}{3}$$

Ex. 8.13

• A mass *m* hangs from a pulley of mass *M* and radius *R*. What is the linear acceleration of the mass?

Given: mass *m*, pulley mass *M*, radius *R* Goal: block acceleration *a* Principle & eqns.: Newton's second law, free body diagrams, rolling without slipping

© 2010 Pearson Education. Inc

Ex. 8.13 Given: mass *m*, pulley mass *M*, radius *R* Goal: block acceleration *a*

Principle & eqns.: Newton's second law, free body diagrams, tangential accel.

Class participation #23

- 0. Full name
- 1. Like best about the class?
- 2. Like least about the class?