Physics 211

Sections 1 & 70 Dr. Geoffrey Lovelace Fall 2012 Lecture 26 (12/11/12)

Lecture 26 outline

- Announcements
- Simple harmonic motion (SHM) wrapup
 - Equations of motion
 - Damped harmonic motion
- Wave motion
 - Definitions
 - Examples
 - Interference
 - Reflection, dispersion, diffraction
- Student Opinion Questionnaires (SOQs)
- Class participation (including followup)

Announcements

- Homework #11: due Thursday, 12/13 at 11:59PM
- Office hours: 4PM-5PM today
 - McCarthy Hall room 601B
- Final exam December 20, 9:30AM-11:20AM
 - Skip the final? See me in office hours!
 - Emphasize material since Exam #3 (cumulative)
- Today: Student Opinion Questionnaire (SOQ)

	Date	Event
	Nov 15	Exam 3
	Nov 20	Fall Recess — No class
Today	Nov 22	Fall Recess — No class
	Nov 27	Rigid body rotation, torque
	Nov 29	Rotational dynamics, rotational energy
	Dec 4	Angular momentum, rigid body wrap-up HW #10 due
	Dec 6	Harmonic motion
	Dec 11	Harmonic motion & waves
	Dec 13	Gravitational waves, harmonic motion, black holes, HW #11 due
	Dec 20	Final exam 9:30AM-11:20AM

Lecture 26 outline

- Announcements
- Simple harmonic motion (SHM) wrapup
 - Equations of motion
 - Damped harmonic motion
- Wave motion
 - Definitions
 - Examples
 - Interference
 - Reflection, dispersion, diffraction
- Student Opinion Questionnaires (SOQs)
- Class participation (including followup)

Mass *m* on a spring *k*

- The classic SHM
- SHM & uniform circular motion

Equations of motion • Equation of motion = function x(t)describing motion Shadow on block $y = A \sin \omega t$ y = +A+4 +u6 at t > 0y=0 $y = A \sin \theta$ $= A \sin \omega t$ at t = 0y = -AScreen -y(a) (b)

Equations of motion

• Equation of motion = function x(t) describing motion

Equations of motion

• Equation of motion = function x(t) describing motion

© 2010 Pearson Education, Inc.

Equations of motion

• Summary: 4 possible equations of motion

$y = A\sin\omega t$	$y = -A\sin\omega t$
$y = A \cos \omega t$	$y = -A\cos\omega t$

- Strategy
 - Use the equation that satisfies the given initial conditions
 - Use radians for angles, set calculator to rad

Ex. 13.3: pothole

Your car (m=1500 kg) has 4 wheels, each connected to an identical spring (shock) and bearing 1/4 of the car's mass.
a) Empty car hits a pothole, bouncs at 1.2Hz. Spring const *k*?
b) With 4 people (75 kg each) aboard, oscillation frequency *f*_{full}?

Which of the following is the *first* step to solve the problem?

- A Draw a diagram
- B Write what you know ("Given")
- C Plug in numbers
- Read the problem carefully
 - Write what you want to find ("Goal")

Ex. 13.3: pothole

• Your car (m=1500 kg) has 4 wheels, each connected to an identical spring, so each wheel bears 1/4 of the mass.

a) Empty car hits a pothole, bouncs at 1.2Hz. Spring const k? b) With 4 people (75 kg each) aboard, oscillation frequency f_{full} ?

Given:
$$m_{\text{empty}} = M_{\text{car}/4} = 375 \text{ kg}$$
 $f_{\text{empty}} = 1.2 \text{ Hz}$
 $m_{\text{full}} = M_{\text{car}/4} + m_{\text{person}} = 450 \text{ kg}$
Goal: $k = ?$ $f_{\text{full}} = ?$
Principles & equations:
Simple harmonic motion, $f = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$ Strategy: get k , then can get f for any mass

Clicker question #120

• Compared to the empty car, the **frequency** of oscillation of the full car's springs is $m_{\text{empty}} = M_{\text{car}/4} = 375 \text{ kg}$ $m_{\text{full}} = M_{\text{car}/4} + m_{\text{person}} = 450 \text{ kg}$

- Much (2x or more) smaller
- B Slightly (less than 2x) smaller
- C Unchanged
- Slightly (less than 2x) larger
 - Much (2x or more) larger

Ex. 13.3: pothole

Given: $m_{\text{empty}} = M_{\text{car}/4} = 375 \text{ kg}$ $f_{\text{empty}} = 1.2 \text{ Hz}$ $m_{\text{full}} = M_{\text{car}/4} + m_{\text{person}} = 450 \text{ kg}$

Goal: $k = ? f_{full} = ?$

Principles & equations: $f = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$ Simple harmonic motion, mass on spring

$$f^2 = \frac{\kappa}{4\pi^2 m}$$
$$4\pi^2 f^2 m = k$$

1

$$4\pi^{2} f_{\text{empty}}^{2} m_{\text{empty}} = k = 4\pi^{2} (1.2 \text{ Hz})^{2} (375 \text{ kg}) = 2.1 \times 10^{4} \text{ N/m}$$
$$f_{\text{full}} = \frac{1}{2\pi} \sqrt{\frac{k}{m_{\text{full}}}} = \frac{1}{2\pi} \sqrt{\frac{2.1 \times 10^{4} \text{ N/m}}{450 \text{ kg}}} = 1.1 \text{ Hz}$$
$$\textbf{Reasonable?}$$

Damped harmonic motion

- In real life, friction takes energy from oscillator
 - Amplitude decays exponentially

Clicker question #121

Question 13.11 Damped Pendulum

After a pendulum starts swinging, its amplitude gradually decreases with time because of friction.

What happens to the period of the pendulum during this time ?

period increases

period does not change

C period decreases

Lecture 26 outline

- Announcements
- Simple harmonic motion (SHM) wrapup
 - Equations of motion
 - Damped harmonic motion
- Wave motion
 - Definitions
 - Examples
 - Interference
 - Reflection, dispersion, diffraction
- Student Opinion Questionnaires (SOQs)
- Class participation (including followup)

Wave motion

- Regular, rhythmic propagation of disturbance through space and time
 - Propagation through space: energy transferred
 - Wave pulse: return to equilibrium after pulse passes
 - Propagation through time: particles can oscillate in time as disturbance passes

Periodic wave motion

- Source: oscillating disturbance
- E.g.: source in simple harmonic motion
 - Sinusoidal in space: "snapshot" of wave is sine curve
 - Sinusoidal in time: each particle moves in SHM

http://www.upscale.utoronto.ca/GeneralInterest/Harrison/Spectra/Spectra.html

 $v = \lambda/T = \lambda f$

- Amplitude $A = \max$. displacement
- Wavelength λ = crest-to-crest distance
- Period T = time for one wavelength to go by a given point
- Frequency f = number of wavelengths per second to go by
- Wave speed v = speed wave travels = 1 wavelength / period

Clicker question #122

Question 13.15a Wave Motion I

Consider a wave on a string moving to the right, as shown below.

What is the direction of the velocity of a particle at the point labeled **A** ?

Examples of waves

- Transverse, wave speed = speed of light
 - Electromagnetic waves (light, radio, x-ray, ...)

- Gravitational waves...see Thursday's lecture

Examples of waves

- Transverse, wave speed = speed of light
- Longitudinal, wave speed = speed of sound = 340 m/s
 - Sound waves
 - Frequency f = 440 Hz for "A" above middle "C"
 - Double (halve) frequency to go up (down) octave
 - Music: superposition of many different sinusoidal waves https://sites.google.com/site/jasonrlovelace/scores-and-audio

Lecture 26 outline

- Announcements
- Simple harmonic motion (SHM) wrapup
 - Equations of motion
 - Damped harmonic motion
- Wave motion
 - Definitions
 - Examples
 - Interference
 - Reflection, dispersion, diffraction
- Student Opinion Questionnaires (SOQs)
- Class participation (including followup)

Student opinion questionnaire (SOQ)

- I will leave the room during this evaluation
- Procedure
 - Volunteer #1: Administer the evaluation
 - Read instructions aloud
 - Hand out evaluations
 - Beckman, Khalife, Koobatian, McMillan, Oh, Peek, & Ronilo get form FA12-20685-70
 - Everyone else gets form FA12-13159-01
 - Call time after 10 minutes.
 - Place back in envelope.
 - Volunteers #1 & #2: Take envelope to the physics dept. office
- Thank you for your feedback!