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PREFACE

What makes the ACM-ICPC the contest it is today? It’s the people. The ACM International
Collegiate Programming Contest (ICPC) community spans 1,838 universities in 88 countries. It
includes great people at leading IT companies with IBM leading the way. We have tremendous
support from Microsoft, AT&T, Apple, Texas Instruments, Sun, Google, Borland, Intel, and the
myriad of companies that step forward each year to help our competitors compete on a global
stage.

This book is dedicated to great institutional support. The UPE Computer Science Honor
Society has supported the contest since its inception in 1970. ACM has provided venues and
support since 1977. Baylor University has fostered the contest from the 1982 Championship,
through establishing the Baylor Contest Model at the regionals that was adopted by the Finals in
1985, and then in the late 1980’s assisting with the first major sponsorship and headquartering the
ACM-ICPC to this day.

This book is dedicated to that collegial spirit that quietly provides a major component of the
backbone and integrity of the ACM International Collegiate Programming Contest, the spirit that
is typified by being there day in and day out to assist and not rule, to shine the spotlight on others,
to be content with the outcome of a good deed. At Baylor, we call it the Baylor spirit. But, that
spirit permeates humanity if we only tend it a bit and care.

This book is dedicated to people of that spirit drawn from academia and industry, people like
Miguel Revilla and his crew who selflessly make the ACM-ICPC Problem Archive available at the
Competitive Learning Institute web site for all to try. Their work at the University of Valladolid
On-Line Judge system has graded over 7,000,000 solutions to problems since its inception, at no
cost to those who would better hone their skills.

At the end of the day, the contest is about challenging the next generation to build their
problem-solving prowess to the highest possible levels so that they can be equipped to challenge
the problems the current generations cannot solve and the problems that are to come. It takes
team work, know how, genius, and committed coaches to make that happen. It takes volunteers
to put on the thousands of regionals and commitment to preserve the results decade after decade.

And, it takes a great team of judges to come up with the challenges for these students. So,
on behalf of the ICPC Community, I would like to express my appreciation to Dick Rinewalt, Jo
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Perry, and the outstanding World Finals Judges from 1991-2006 for contributing these problems
for your enjoyment.

In future editions, we will provide insight into the contests from this era and acknowledgement
of the many great volunteers who have given thousands of person years to make the ICPC fun and
who amplify the opportunities of tens of thousands of students world-wide.

We may tell you about Problem F, about maintenance men blowing rows of computers minutes
before a Finals, about using a B-B gun to shoot down errant balloons, about super computers that
weighted less on departure than arrival to China, about Naval security in Hawaii, a bomb scare
during an Awards Ceremony, too few i-nodes in Unix, heads of state who have helped the ICPC,
a parting gift of a 1,000 Microsoft posters, a team from Eastern Europe who, at the fall of Iron
Curtain, hitch-hiked to Belgium to compete in a regional, a young man from Mexico who gave me
a $1 and told me he would get it back when he qualified for the World Finals and did, another
team placing 6th and pledging to return for the Championship Trophy and did.

Maybe I’ll share stories about my Baylor colleagues Pat Hynan, Jeff Donahoo, Don Gaitros,
Mark Measures, Mike Korpi, Joel Korpi, Jim Nolen, Bill Booth, Sharon Humphrey, David Sturgill,
Brian Sitton, and Ben Kelley who regularly give of the time and effort. Or possibly I’ll share tales
of James Comer and border guards, Joe DeBlasi, Steve Bourne, Henry Bassman, Jim Adams,
Brenda Chow, Gabby Silberman, Rod D’Silva, John Clevenger, C.J. Hwang, Vladimir Parfenov,
Yong Yu, Boba Mannova, Kiyoshi Ishihata, Katsuhiko Kakehi, Debbie Kilbride, Roy Andersson,
Tom Verhoeff, Vladimir Parfenov, Roman Elizarov, Tim deBoer, Chris Rudin, the Traxlers, Fredrik
Neimela, Greg Lee, Jan Madey, Nik Tapus, Ali Orooji, Orlando Madrigal, Sallie Henry, Raewyn
Boersen, Ricardo Dahab among a few of the great champions of the contest.

Maybe I will tell you why the contest should be called Melinda’s Programming Contest. I
haven’t yet touched the hem of the garment of acknowledgement or even skimmed the surface of
the great debt I owe to the ICPC family.

I hope you enjoy the book. Give Miguel Revilla and the University of Valladolid a real pat on
the back. He is the first Fellow of the Competitive Learning Institute and has done the lion’s share
of work pulling this book together.

In whatever small way I have contributed to the harmony of the ICPC community, I can never
express my good fortune to be married to the Mom of the ICPC, Marsha Henderson Poucher
or the joy I have in my daughters Elaine, Karen, and Melinda, my grandchild Kristen, and my
sons-in-laws Dale Chang and Ken Patterson. Family makes a difference.

William B. Poucher
Baylor University, Texas

March 2009



ABOUT THE CONTEST

The ACM International Collegiate Programming Contest (ICPC) traces its roots to a competition
held at Texas A&M in 1970 hosted by the Alpha Chapter of the UPE Computer Science Honor
Society. The idea quickly gained popularity within the United States and Canada as an innovative
initiative to challenge the top students in the emerging field of computer science.

The contest evolved into a multi-tier competition with the first Finals held at the ACM Com-
puter Science Conference in 1977. Operating under the auspices of ACM and headquartered at
Baylor University since 1989, the contest has expanded into a global network of universities hosting
regional competitions that advance teams to the ACM-ICPC World Finals.

Since IBM became sponsor in 1997, the contest has increased by a factor of eight. Participation
has grown to involve several tens of thousands of the finest students and faculty in computing
disciplines at 1,838 universities from 88 countries on six continents.

The contest fosters creativity, teamwork, and innovation in building new software programs,
and enables students to test their ability to perform under pressure. Quite simply, it is the oldest,
largest, and most prestigious programming contest in the world.

The annual event is comprised of several levels of competition:

• Local Contests – Universities choose teams or hold local contests to select one or more teams
to represent them at the next level of competition. Selection takes place from a field of over
300,000 students in computing disciplines worldwide.

• Regional Contests (September to December 2008) – This year, participation increased from
6,700 to 7,109 teams representing 1,838 universities from 88 countries on six continents com-
peting at 259 sites.

• World Finals (April 18-22, 2009, Stockholm) – One hundred (100) world finalist teams will
compete for awards, prizes and bragging rights in Stockholm hosted by KTH - Royal Institute
of Technology. These teams represent the best of the great universities on six continents -
the cream of the crop.
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Battle of the Brains

The contest pits teams of three university students against eight or more complex, real-world
problems, with a grueling five-hour deadline. Huddled around a single computer, competitors race
against the clock in a battle of logic, strategy and mental endurance.

Teammates collaborate to rank the difficulty of the problems, deduce the requirements, design
test beds, and build software systems that solve the problems under the intense scrutiny of expert
judges. For a well-versed computer science student, some of the problems require precision only.
Others require a knowledge and understanding of advanced algorithms. Still others are simply too
hard to solve – except, of course, for the world’s brightest problem-solvers.

Judging is relentlessly strict. The students are given a problem statement - not a requirements
document. They are given an example of test data, but they do not have access to the judges’
test data and acceptance criteria. Each incorrect solution submitted is assessed a time penalty.
You don’t want to waste your customer’s time when you are dealing with the supreme court of
computing. The team that solves the most problems in the fewest attempts in the least cumulative
time is declared the winner.

To learn more about the ICPC, please visit http://acmicpc.org or http://icpc.baylor.edu/. Visit
IBM’s podcast series at http://battleofthebrains.podbean.com/ for insights from past contestants
and current IBM executives.

Contest Growth

ACM, IBM, and Baylor University are thrilled that the contest continues to attract the best
and brightest students from around the world, with tens of thousands of participants on 7,109
teams representing 1,838 universities in 88 countries. Since the beginning of IBM’s sponsorship in
1997, when 840 teams competed, participation has increased by more than a factor of eight. For
more information on previous contests, and last year’s final standings and problem sets, please see
http://icpc.baylor.edu / or http://www.ibm.com/university/acmcontest/.
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A Firetruck

The Center City fire department collaborates with the transportation department to maintain
maps of the city which reflects the current status of the city streets. On any given day, several
streets are closed for repairs or construction. Firefighters need to be able to select routes from the
firestations to fires that do not use closed streets.

Central City is divided into non-overlapping fire districts, each containing a single firestation.
When a fire is reported, a central dispatcher alerts the firestation of the district where the fire is
located and gives a list of possible routes from the firestation to the fire. You must write a program
that the central dispatcher can use to generate routes from the district firestations to the fires.

Input

The city has a separate map for each fire district. Streetcorners of each map are identified by
positive integers less than 21, with the firestation always on corner #1. The input file contains
several test cases representing different fires in different districts.

• The first line of a test case consists of a single integer which is the number of the streetcorner
closest to the fire.

• The next several lines consist of pairs of positive integers separated by blanks which are
the adjacent streetcorners of open streets. (For example, if the pair 4 7 is on a line in the
file, then the street between streetcorners 4 and 7 is open. There are no other streetcorners
between 4 and 7 on that section of the street.)

• The final line of each test case consists of a pair of 0’s.

Output

For each test case, your output must identify the case by number (CASE #1, CASE #2, etc). It must
list each route on a separate line, with the streetcorners written in the order in which they appear
on the route. And it must give the total number routes from firestation to the fire. Include only
routes which do not pass through any streetcorner more than once. (For obvious reasons, the fire
department doesn’t want its trucks driving around in circles.)

Output from separate cases must appear on separate lines.

The following sample input and corresponding correct output represents two test cases.
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Sample Input

6
1 2
1 3
3 4
3 5
4 6
5 6
2 3
2 4
0 0
4
2 3
3 4
5 1
1 6
7 8
8 9
2 5
5 7
3 1
1 8
4 6
6 9
0 0

Sample Output

CASE 1:
1 2 3 4 6
1 2 3 5 6
1 2 4 3 5 6
1 2 4 6
1 3 2 4 6
1 3 4 6
1 3 5 6
There are 7 routes from the firestation to streetcorner 6.
CASE 2:
1 3 2 5 7 8 9 6 4
1 3 4
1 5 2 3 4
1 5 7 8 9 6 4
1 6 4
1 6 9 8 7 5 2 3 4
1 8 7 5 2 3 4
1 8 9 6 4
There are 8 routes from the firestation to streetcorner 4.
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B Triangular Vertices

Consider the points on an infinite grid of equilateral triangles as shown below:

Note that if we number the points from left to right and top to bottom, then groups of these
points form the vertices of certain geometric shapes. For example, the sets of points {1,2,3} and
{7,9,18} are the vertices of triangles, the sets {11,13,26,24} and {2,7,9,18} are the vertices of
parallelograms, and the sets {4,5,9,13,12,7} and {8,10,17,21,32,34} are the vertices of hexagons.

Write a program which will repeatedly accept a set of points on this triangular grid, analyze
it, and determine whether the points are the vertices of one of the following “acceptable” figures:
triangle, parallelogram, or hexagon. In order for a figure to be acceptable, it must meet the
following two conditions:

1) Each side of the figure must coincide with an edge in the grid.
and 2) All sides of the figure must be of the same length.

Input

The input will consist of an unknown number of point sets. Each point set will appear on a
separate line in the file. There are at most six points in a set and the points are limited to the
range 1 . . . 32767.

Output

For each point set in the input file, your program should deduce from the number of points in
the set which geometric figure the set potentially represents; e.g., six points can only represent a



6 Competitive Learning Institute

hexagon, etc. The output must be a series of lines listing each point set followed by the results of
your analysis.

Sample Input

1 2 3
11 13 29 31
26 11 13 24
4 5 9 13 12 7
1 2 3 4 5
47
11 13 23 25

Sample Output

1 2 3 are the vertices of a triangle
11 13 29 31 are not the vertices of an acceptable figure
26 11 13 24 are the vertices of a parallelogram
4 5 9 13 12 7 are the vertices of a hexagon
1 2 3 4 5 are not the vertices of an acceptable figure
47 are not the vertices of an acceptable figure
11 13 23 25 are not the vertices of an acceptable figure
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C Concurrency Simulator

Programs executed concurrently on a uniprocessor system appear to be executed at the same
time, but in reality the single CPU alternates between the programs, executing some number of
instructions from each program before switching to the next. You are to simulate the concurrent
execution of up to ten programs on such a system and determine the output that they will produce.

The program that is currently being executed is said to be running, while all programs awaiting
execution are said to be ready. A program consists of a sequence of no more than 25 statements,
one per line, followed by an end statement. The statements available are listed below.

Statement Type Syntax
Assignment variable = constant
Output print variable
Begin Mutual Exclusion lock
End Mutual Exclusion unlock
Stop Execution end

A variable is any single lowercase alphabetic character and a constant is an unsigned decimal
number less than 100. There are only 26 variables in the computer system, and they are shared
among the programs. Thus assignments to a variable in one program affect the value that might
be printed by a different program. All variables are initially set to zero.

Each statement requires an integral number of time units to execute. The running program
is permitted to continue executing instructions for a period of time called its quantum. When a
program’s time quantum expires, another ready program will be selected to run. Any instruction
currently being executed when the time quantum expires will be allowed to complete.

Programs are queued first-in-first-out for execution in a ready queue. The initial order of the
ready queue corresponds to the original order of the programs in the input file. This order can
change, however, as a result of the execution of lock and unlock statements.

The lock and unlock statements are used whenever a program wishes to claim mutually exclu-
sive access to the variables it is manipulating. These statements always occur in pairs, bracketing
one or more other statements. A lock will always precede an unlock, and these statements will
never be nested. Once a program successfully executes a lock statement, no other program may
successfully execute a lock statement until the locking program runs and executes the correspond-
ing unlock statement. Should a running program attempt to execute a lock while one is already in
effect, this program will be placed at the end of the blocked queue. Programs blocked in this fashion
lose any of their current time quantum remaining. When an unlock is executed, any program at
the head of the blocked queue is moved to the head of the ready queue. The first statement this
program will execute when it runs will be the lock statement that previously failed. Note that
it is up to the programs involved to enforce the mutual exclusion protocol through correct usage
of lock and unlock statements. (A renegade program with no lock/unlock pair could alter any
variables it wished, despite the proper use of lock/unlock by the other programs.)

Input

The first line of the input file consists of seven integers separated by spaces. These integers
specify (in order): the number of programs which follow, the unit execution times for each of
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the five statements (in the order given above), and the number of time units comprising the time
quantum. The remainder of the input consists of the programs, which are correctly formed from
statements according to the rules described above.

All program statements begin in the first column of a line. Blanks appearing in a statement
should be ignored. Associated with each program is an identification number based upon its
location in the input data (the first program has ID = 1, the second has ID = 2, etc.).

Output

Your output will contain of the output generated by the print statements as they occur during the
simulation. When a print statement is executed, your program should display the program ID,
a colon, a space, and the value of the selected variable. Output from separate print statements
should appear on separate lines.

A sample input and correct output are shown below.

Sample Input

3 1 1 1 1 1 1
a = 4
print a
lock
b = 9
print b
unlock
print b
end
a = 3
print a
lock
b = 8
print b
unlock
print b
end
b = 5
a = 17
print a
print b
lock
b = 21
print b
unlock
print b
end

Sample Output

1: 3
2: 3
3: 17
3: 9
1: 9
1: 9
2: 8
2: 8
3: 21
3: 21
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D The Domino Effect

A standard set of Double Six dominoes contains 28 pieces (called bones) each displaying two
numbers from 0 (blank) to 6 using dice-like pips. The 28 bones, which are unique, consist of the
following combinations of pips:

Bone # Pips Bone # Pips Bone # Pips Bone # Pips
1 0 | 0 8 1 | 1 15 2 | 3 22 3 | 6
2 0 | 1 9 1 | 2 16 2 | 4 23 4 | 4
3 0 | 2 10 1 | 3 17 2 | 5 24 4 | 5
4 0 | 3 11 1 | 4 18 2 | 6 25 4 | 6
5 0 | 4 12 1 | 5 19 3 | 3 26 5 | 5
6 0 | 5 13 1 | 6 20 3 | 4 27 5 | 6
7 0 | 6 14 2 | 2 21 3 | 5 28 6 | 6

All the Double Six dominoes in a set can he laid out to display a 7 x 8 grid of pips. Each layout
corresponds at least one “map” of the dominoes. A map consists of an identical 7 x 8 grid with the
appropriate bone numbers substituted for the pip numbers appearing on that bone. An example
of a 7 x 8 grid display of pips and a corresponding map of bone numbers is shown below.

7 x 8 grid of pips map of bone numbers
6 6 2 6 5 2 4 1 28 28 14 7 17 17 11 11
1 3 2 0 1 0 3 4 10 10 14 7 2 2 21 23
1 3 2 4 6 6 5 4 8 4 16 25 25 13 21 23
1 0 4 3 2 1 1 2 8 4 16 15 15 13 9 9
5 1 3 6 0 4 5 5 12 12 22 22 5 5 26 26
5 5 4 0 2 6 0 3 27 24 24 3 3 18 1 19
6 0 5 3 4 2 0 3 27 6 6 20 20 18 1 19

Write a program that will analyze the pattern of pips in any 7 × 8 layout of a standard set of
dominoes and produce a map showing the position of all dominoes in the set. If more than one
arrangement of dominoes yield the same pattern, your program should generate a map of each
possible layout.

Input

The input file will contain several of problem sets. Each set consists of seven lines of eight integers
from 0 through 6, representing an observed pattern of pips. Each set is corresponds to a legitimate
configuration of bones (there will be at least one map possible for each problem set). There is no
intervening data separating the problem sets.

Output

Correct output consists of a problem set label (beginning with Set #1) followed by an echo printing
of the problem set itself. This is followed by a map label for the set and the map(s) which
correspond to the problem set. (Multiple maps can be output in any order.) After all maps for a
problem set have been printed, a summary line stating the number of possible maps appears.

At least one line is skipped between the output from different problem sets as well as before
the text lines. One line separates also the different maps within the same problem set.
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Sample Input

5 4 3 6 5 3 4 6
0 6 0 1 2 3 1 1
3 2 6 5 0 4 2 0
5 3 6 2 3 2 0 6
4 0 4 1 0 0 4 1
5 2 2 4 4 1 6 5
5 5 3 6 1 2 3 1
4 2 5 2 6 3 5 4
5 0 4 3 1 4 1 1
1 2 3 0 2 2 2 2
1 4 0 1 3 5 6 5
4 0 6 0 3 6 6 5
4 0 1 6 4 0 3 0
6 5 3 6 2 1 5 3

Sample Output

Layout #1:
5 4 3 6 5 3 4 6
0 6 0 1 2 3 1 1
3 2 6 5 0 4 2 0
5 3 6 2 3 2 0 6
4 0 4 1 0 0 4 1
5 2 2 4 4 1 6 5
5 5 3 6 1 2 3 1

Maps resulting from layout #1 are:
6 20 20 27 27 19 25 25
6 18 2 2 3 19 8 8

21 18 28 17 3 16 16 7
21 4 28 17 15 15 5 7
24 4 11 11 1 1 5 12
24 14 14 23 23 13 13 12
26 26 22 22 9 9 10 10

There are 1 solution(s) for layout #1.

Layout #2:
4 2 5 2 6 3 5 4
5 0 4 3 1 4 1 1
1 2 3 0 2 2 2 2
1 4 0 1 3 5 6 5
4 0 6 0 3 6 6 5
4 0 1 6 4 0 3 0
6 5 3 6 2 1 5 3

Maps resulting from layout #2 are:
16 16 24 18 18 20 12 11
6 6 24 10 10 20 12 11
8 15 15 3 3 17 14 14
8 5 5 2 19 17 28 26

23 1 13 2 19 7 28 26
23 1 13 25 25 7 4 4
27 27 22 22 9 9 21 21

16 16 24 18 18 20 12 11
6 6 24 10 10 20 12 11
8 15 15 3 3 17 14 14
8 5 5 2 19 17 28 26

23 1 13 2 19 7 28 26
23 1 13 25 25 7 21 4
27 27 22 22 9 9 21 4

There are 2 solution(s) for layout #2.
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E Use of Hospital Facilities

County General Hospital is trying to chart its course through the troubled waters of the economy
and shifting population demographics. To support the planning requirements of the hospital, you
have been asked to develop a simulation program that will allow the hospital to evaluate alternative
configurations of operating rooms, recovery rooms and operations guidelines. Your program will
monitor the usage of operating rooms and recovery room beds during the course of one day.

County General Hospital has several operating rooms and recovery room beds. Each surgery
patient is assigned to an available operating room and following surgery the patient is assigned
to one of the recovery room beds. The amount of time necessary to transport a patient from an
operating room to a recovery room is fixed and independent of the patient. Similarly, both the
amount of time to prepare an operating room for the next patient and the amount of time to
prepare a recovery room bed for a new patient are fixed.

All patients are officially scheduled for surgery at the same time, but the order in which they
actually go into the operating rooms depends on the order of the patient roster. A patient entering
surgery goes into the lowest numbered operating room available. For example, if rooms 2 and 4
become available simultaneously, the next patient on the roster not yet in surgery goes into room
2 and the next after that goes into room 4 at the same time. After surgery, a patient is taken to
the available recovery room bed with the lowest number. If two patients emerge from surgery at
the same time, the patient with the lower number will be the first assigned to a recovery room
bed. (If in addition the two patients entered surgery at the same time, the one first on the roster
is first assigned a bed.)

Input

The input file contains data for a single simulation run. All numeric data in the input file are
integers, and successive integers on the same line are separated by blanks. The first line of the
file is the set of hospital configuration parameters to be used for this run. The parameters are, in
order:

Number of operating rooms (maximum of 10)
Number of recovery room beds (maximum of 30)
Starting hour for 1st surgery of day (based on a 24-hour clock)
Minutes to transport patient from operating room to recovery room
Minutes to prepare operating room for next patient
Minutes to prepare recovery room bed for next patient
Number of surgery patients for the day (maximum of 100)

This initial configuration data will be followed by pairs of lines of patient data as follows:

Line 1: Last name of patient (maximum of 8 characters)
Line 2: Minutes required for surgery Minutes required in the recovery room

Patient records in the input file are ordered according to the patient roster, which determines
the order in which patients are scheduled for surgery. The number of recovery room beds specified
in any configuration will be sufficient to handle patients arriving from surgery (No queuing of
patients for recovery room beds will be required). Computed times will not extend past 24:00.
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Output

Correct output shows which room and bed are used by each patient, and the time period they use
them along with a summary of the utilization of hospital facilities for that day. The output file
consists of a set of two tables describing the results of the simulation run.

The first table is in columnar form with appropriate column labels to show the number of each
patient (in the order the patient roster), the patient’s last name, the operating room number, the
time surgery beings and ends, the recovery bed number and the time the patient enters and leaves
the recovery room bed. The second table will also be in columnar form with appropriate column
labels summarizing the utilization of operating rooms and recovery room beds. This summary
indicates the facility type (room or bed), the facility number, the number of minutes used and
percentage of available time utilized. Available time is defined as the time in minutes from the
starting time for first surgery of day to the ending time of the last patient in a recovery room bed.

Sample input

5 12 07 5 15 10 16
Jones
28 140
Smith
120 200
Thompson
23 75
Albright
19 82
Poucher
133 209
Comer
74 101
Perry
93 188
Page
111 223
Roggio
69 122
Brigham
42 79
Nute
22 71
Young
38 140
Bush
26 121
Cates
120 248
Johnson
86 181
White
92 140
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Sample output

Patient Operating Room Recovery Room
# Name Room# Begin End Bed# Begin End
------------------------------------------------------
1 Jones 1 7:00 7:28 3 7:33 9:53
2 Smith 2 7:00 9:00 1 9:05 12:25
3 Thompson 3 7:00 7:23 2 7:28 8:43
4 Albright 4 7:00 7:19 1 7:24 8:46
5 Poucher 5 7:00 9:13 5 9:18 12:47
6 Comer 4 7:34 8:48 4 8:53 10:34
7 Perry 3 7:38 9:11 2 9:16 12:24
8 Page 1 7:43 9:34 6 9:39 13:22
9 Roggio 4 9:03 10:12 9 10:17 12:19

10 Brigham 2 9:15 9:57 8 10:02 11:21
11 Nute 3 9:26 9:48 7 9:53 11:04
12 Young 5 9:28 10:06 3 10:11 12:31
13 Bush 1 9:49 10:15 10 10:20 12:21
14 Cates 3 10:03 12:03 8 12:08 16:16
15 Johnson 2 10:12 11:38 4 11:43 14:44
16 White 5 10:21 11:53 7 11:58 14:18

Facility Utilization
Type # Minutes % Used
-------------------------
Room 1 165 29.68
Room 2 248 44.60
Room 3 258 46.40
Room 4 162 29.14
Room 5 263 47.30
Bed 1 282 50.72
Bed 2 263 47.30
Bed 3 280 50.36
Bed 4 282 50.72
Bed 5 209 37.59
Bed 6 223 40.11
Bed 7 211 37.95
Bed 8 327 58.81
Bed 9 122 21.94
Bed 10 121 21.76
Bed 11 0 0.00
Bed 12 0 0.00
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F Message Decoding

Some message encoding schemes require that an encoded message be sent in two parts. The first
part, called the header, contains the characters of the message. The second part contains a pattern
that represents the message. You must write a program that can decode messages under such a
scheme.

The heart of the encoding scheme for your program is a sequence of “key” strings of 0’s and
1’s as follows:

0, 00, 01, 10, 000, 001, 010, 011, 100, 101, 110, 0000, 0001, . . . , 1011, 1110, 00000, . . .

The first key in the sequence is of length 1, the next 3 are of length 2, the next 7 of length 3,
the next 15 of length 4, etc. If two adjacent keys have the same length, the second can be obtained
from the first by adding 1 (base 2). Notice that there are no keys in the sequence that consist only
of 1’s.

The keys are mapped to the characters in the header in order. That is, the first key (0) is
mapped to the first character in the header, the second key (00) to the second character in the
header, the kth key is mapped to the kth character in the header. For example, suppose the header
is:

AB#TANCnrtXc

Then 0 is mapped to A, 00 to B, 01 to #, 10 to T, 000 to A, ..., 110 to X, and 0000 to c.

The encoded message contains only 0’s and 1’s and possibly carriage returns, which are to be
ignored. The message is divided into segments. The first 3 digits of a segment give the binary
representation of the length of the keys in the segment. For example, if the first 3 digits are 010,
then the remainder of the segment consists of keys of length 2 (00, 01, or 10). The end of the
segment is a string of 1’s which is the same length as the length of the keys in the segment. So
a segment of keys of length 2 is terminated by 11. The entire encoded message is terminated by
000 (which would signify a segment in which the keys have length 0). The message is decoded by
translating the keys in the segments one-at-a-time into the header characters to which they have
been mapped.

Input

The input file contains several data sets. Each data set consists of a header, which is on a single
line by itself, and a message, which may extend over several lines. The length of the header is
limited only by the fact that key strings have a maximum length of 7 (111 in binary). If there
are multiple copies of a character in a header, then several keys will map to that character. The
encoded message contains only 0’s and 1’s, and it is a legitimate encoding according to the described
scheme. That is, the message segments begin with the 3-digit length sequence and end with the
appropriate sequence of 1’s. The keys in any given segment are all of the same length, and they
all correspond to characters in the header. The message is terminated by 000.

Carriage returns may appear anywhere within the message part. They are not to be considered
as part of the message.

Output

For each data set, your program must write its decoded message on a separate line. There should
not be blank lines between messages.
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Sample input

TNM AEIOU
0010101100011
1010001001110110011
11000
$#**\
0100000101101100011100101000

Sample output

TAN ME
##*\$
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G Code Generation

Your employer needs a backend for a translator for a very SIC machine (Simplified Instructional
Computer, apologies to Leland Beck). Input to the translator will be arithmetic expressions in
postfix form and the output will be assembly language code.

The target machine has a single register and the following instructions, where the operand is
either an identifier or a storage location.

L load the operand into the register
A add the operand to the contents of the register
S subtract the operand from the contents of the register
M multiply the contents of the register by the operand
D divide the contents of the register by the operand
N negate the contents of the register
ST store the contents of the register in the operand location

An arithmetic operation replaces the contents of the register with the expression result. Tem-
porary storage locations are allocated by the assembler for an operand of the form “$n” where n
is a single digit.

Input

The input file consists of several legitimate postfix expressions, each on a separate line. Expression
operands are single letters and operators are the normal arithmetic operators (+, -, *, /) and unary
negation (@).

Output

Output must be assembly language code that meets the following requirements:

1. One instruction per line with the instruction mnemonic separated from the operand (if any)
by one blank.

2. One blank line must separate the assembly code for successive expressions.

3. The original order of the operands must be preserved in the assembly code.

4. Assembly code must be generated for each operator as soon as it is encountered.

5. As few temporaries as possible should be used (given the above restrictions).

6. For each operator in the expression, the minimum number of instructions must be generated
(given the above restrictions).

Sample input

AB+CD+EF++GH+++
AB+CD+-
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Sample output

L A
A B
ST $1
L C
A D
ST $2
L E
A F
A $2
ST $2
L G
A H
A $2
A $1

L A
A B
ST $1
L C
A D
N
A $1
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A Spreadsheet Calculator

A spreadsheet is a rectangular array of cells. Cells contain data or expressions that can be evaluated
to obtain data. A “simple” spreadsheet is one in which data are integers and expressions are mixed
sums and differences of integers and cell references. For any expression, if each cell that is referenced
contains an integer, then the expression can be replaced by the integer to which the expression
evaluates. You are to write a program which evaluates simple spreadsheets.

Input

Input consists of a sequence of simple spreadsheets. Each spreadsheet begins with a line specifying
the number of rows and the number of columns. No spreadsheet contains more than 20 rows or 10
columns. Rows are labeled by capital letters A through T. Columns are labeled by decimal digits
0 through 9. Therefore, the cell in the first row and first column is referenced as A0; the cell in
the twentieth row and fifth column is referenced as T4.

Following the specification of the number of rows and columns is one line of data for each cell,
presented in row-major order. (That is, all cells for the first row come first, followed by all cells
for the second row, etc.)

Each cell initially contains a signed integer value or an expression involving unsigned integer
constants, cell references, and the operators + (addition) and - (subtraction).

If a cell initially contains a signed integer, the corresponding input line will begin with an
optional minus sign followed by one or more decimal digits.

If a cell initially contains an expression, its input line will contain one or more cell references
or unsigned integer constants separated from each other by + and - signs. Such a line must begin
with a cell reference. No expression contains more than 75 characters. No line of input contains
leading blanks. No expression contains any embedded blanks. However, any line may contain
trailing blanks.

The end of the sequence of spreadsheets is marked by a line specifying 0 rows and 0 columns.

Output

For each spreadsheet in the input, you are to determine the value of each expression and display the
resulting spreadsheet as a rectangular array of numbers with the rows and columns appropriately
labeled. In each display, all numbers for a column must appear right-justified and aligned with the
column label.

Operators are evaluated left to right in each expression; values in cells are always less than 10,000
in absolute value. Since expressions may reference cells that themselves contain expressions, the
order in which cells are evaluated is dependent on the expressions themselves.

If one or more cells in a spreadsheet contain expressions with circular references, then the output
for that spreadsheet should contain only a list of the unevaluated cells in row-major order, one per
line, with each line containing the cell label, a colon, a blank, and the cell’s original expression.

A blank line should appear following the output for each spreadsheet.
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Sample Input

2 2
A1+B1
5
3
B0-A1
3 2
A0
5
C1
7
A1+B1
B0+A1
0 0

Sample Output

0 1
A 3 5
B 3 -2

A0: A0
B0: C1
C1: B0+A1



World Finals 1992. Kansas City, Missouri 23

B Getting in Line

Computer networking requires that the computers in the network be linked.

This problem considers a “linear” network in which the computers are chained together so that
each is connected to exactly two others except for the two computers on the ends of the chain
which are connected to only one other computer. A picture is shown below. Here the computers
are the black dots and their locations in the network are identified by planar coordinates (relative
to a coordinate system not shown in the picture).

Distances between linked computers in the network are shown in feet.

For various reasons it is desirable to minimize the length of cable used.

Your problem is to determine how the computers should be connected into such a chain to
minimize the total amount of cable needed. In the installation being constructed, the cabling will
run beneath the floor, so the amount of cable used to join 2 adjacent computers on the network
will be equal to the distance between the computers plus 16 additional feet of cable to connect
from the floor to the computers and provide some slack for ease of installation.

The picture below shows the optimal way of connecting the computers shown above, and the
total length of cable required for this configuration is (4+16)+ (5+16) + (5.83+16) + (11.18+16)
= 90.01 feet.

Input

The input file will consist of a series of data sets. Each data set will begin with a line consisting
of a single number indicating the number of computers in a network. Each network has at least 2
and at most 8 computers. A value of 0 for the number of computers indicates the end of input.
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After the initial line in a data set specifying the number of computers in a network, each
additional line in the data set will give the coordinates of a computer in the network. These
coordinates will be integers in the range 0 to 150. No two computers are at identical locations and
each computer will be listed once.

Output

The output for each network should include a line which tells the number of the network (as
determined by its position in the input data), and one line for each length of cable to be cut
to connect each adjacent pair of computers in the network. The final line should be a sentence
indicating the total amount of cable used.

In listing the lengths of cable to be cut, traverse the network from one end to the
other. (It makes no difference at which end you start.) Use a format similar to the one shown
in the sample output, with a line of asterisks separating output for different networks and with
distances in feet printed to 2 decimal places.

Sample Input

6
5 19
55 28
38 101
28 62
111 84
43 116
5
11 27
84 99
142 81
88 30
95 38
3
132 73
49 86
72 111
0

Sample Output

**********************************************************
Network #1
Cable requirement to connect (5,19) to (55,28) is 66.80 feet.
Cable requirement to connect (55,28) to (28,62) is 59.42 feet.
Cable requirement to connect (28,62) to (38,101) is 56.26 feet.
Cable requirement to connect (38,101) to (43,116) is 31.81 feet.
Cable requirement to connect (43,116) to (111,84) is 91.15 feet.
Number of feet of cable required is 305.45.
**********************************************************
Network #2
Cable requirement to connect (11,27) to (88,30) is 93.06 feet.
Cable requirement to connect (88,30) to (95,38) is 26.63 feet.
Cable requirement to connect (95,38) to (84,99) is 77.98 feet.
Cable requirement to connect (84,99) to (142,81) is 76.73 feet.
Number of feet of cable required is 274.40.
**********************************************************
Network #3
Cable requirement to connect (132,73) to (72,111) is 87.02 feet.
Cable requirement to connect (72,111) to (49,86) is 49.97 feet.
Number of feet of cable required is 136.99.



World Finals 1992. Kansas City, Missouri 25

C Radio Direction Finder

A boat with a directional antenna can determine its present position with the help of readings
from local beacons. Each beacon is located at a known position and emits a unique signal. When
a boat detects a signal, it rotates its antenna until the signal is at maximal strength. This gives
a relative bearing to the position of the beacon. Given a previous beacon reading (the time, the
relative bearing, and the position of the beacon), a new beacon reading is usually sufficient to
determine the boat’s present position. You are to write a program to determine, when possible,
boat positions from pairs of beacon readings.

For this problem, the positions of beacons and boats are relative to a rectangular coordinate
system. The positive x-axis points east; the positive y-axis points north. The course is the direction
of travel of the boat and is measured in degrees clockwise from north. That is, north is 0o, east is
90o, south is 180o, and west is 270o. The relative bearing of a beacon is given in degrees clockwise
relative to the course of the boat. A boat’s antenna cannot indicate on which side the beacon is
located. A relative bearing of 90o means that the beacon is toward 90o or 270o.

The boat’s course is 75o.
The beacon has a relative bearing
of 45o from the boat’s course.

Input

The first line of input is an integer specifying the number of beacons (at most 30). Following that
is a line for each beacon. Each of those lines begins with the beacon’s name (a string of 20 or
fewer alphabetic characters), the x-coordinate of its position, and the y-coordinate of its position.
These fields are single-space separated.

Coming after the lines of beacon information is an integer specifying a number of boat scenarios
to follow. A boat scenario consists of three lines, one for velocity and two for beacon readings.
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Data on input line Meaning of data
course speed the boat’s course, the speed at which it is traveling
time#1 name#1 angle#1 time of first beacon reading, name of first beacon, relative

bearing of first beacon
time#2 name#2 angle#2 time of second reading, name of second beacon, relative

bearing of second beacon

All times are given in minutes since midnight measured over a single 24-hour period. The
speed is the distance (in units matching those on the rectangular coordinate system) over time.
The second line of a scenario gives the first beacon reading as the time of the reading (an integer),
the name of the beacon, and the angle of the reading as measured from the boat’s course. These
3 fields have single space separators. The third line gives the second beacon reading. The time for
that reading will always be at least as large as the time for the first reading.

Output

For each scenario, your program should print the scenario number (Scenario 1, Scenario 2, etc.)
and a message indicating the position (rounded to 2 decimal places) of the boat as of the time of
the second beacon reading. If it is impossible to determine the position of the boat, the message
should say “Position cannot be determined.” Sample input and corresponding correct output
are shown below.

Sample Input

4
First 2.0 4.0
Second 6.0 2.0
Third 6.0 7.0
Fourth 10.0 5.0
2
0.0 1.0
1 First 270.0
2 Fourth 90.0
116.5651 2.2361
4 Third 126.8699
5 First 319.3987

Sample Output

Scenario 1: Position cannot be determined
Scenario 2: Position is (6.00, 5.00)
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D Moth Eradication

Entomologists in the Northeast have set out traps to determine the influx of Jolliet moths into the
area. They plan to study eradication programs that have some potential to control the spread of
the moth population.

The study calls for organizing the traps in which moths have been caught into compact regions,
which will then be used to test each eradication program. A region is defined as the polygon with
the minimum length perimeter that can enclose all traps within that region. For example, the
traps (represented by dots) of a particular region and its associated polygon are illustrated below.

You must write a program that can take as input the locations of traps in a region and output
the locations of traps that lie on the perimeter of the region as well as the length of the perimeter.

Input

The input file will contain records of data for several regions. The first line of each record contains
the number (an integer) of traps for that region. Subsequent lines of the record contain 2 real
numbers that are the x- and y-coordinates of the trap locations. Data within a single record will
not be duplicated. End of input is indicated by a region with 0 traps.

Output

Output for a single region is displayed on at least 3 lines:

First line: The number of the region. (The first record corresponds to Region #1,
the second to Region #2, etc.)

Next line(s): A listing of all the points that appear on the perimeter of the region.
The points must be identified in the standard form “(x-coordinate,y-
coordinate)” rounded to a single decimal place. The starting point for
this listing is irrelevant, but the listing must be oriented clockwise and
begin and end with the same point. For collinear points, any order which
describes the minimum length perimeter is acceptable.

Last line: The length of the perimeter of the region rounded to 2 decimal places.

One blank line must separate output from consecutive input records.
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Sample Input

3
1 2
4 10
5 12.3
6
0 0
1 1
3.1 1.3
3 4.5
6 2.1
2 -3.2
7
1 0.5
5 0
4 1.5
3 -0.2
2.5 -1.5
0 0
2 2
0

Sample Output

Region #1:
(1.0,2.0)-(4.0,10.0)-(5.0,12.3)-(1.0,2.0)
Perimeter length = 22.10

Region #2:
(0.0,0.0)-(3.0,4.5)-(6.0,2.1)-(2.0,-3.2)-(0.0,0.0)
Perimeter length = 19.66

Region #3:
(0.0,0.0)-(2.0,2.0)-(4.0,1.5)-(5.0,0.0)-(2.5,-1.5)-(0.0,0.0)
Perimeter length = 12.52
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E Department of Redundancy Department

When designing tables for a relational database, a functional dependency (FD) is used to ex-
press the relationship between the different fields. A functional dependency is concerned with the
relationship of values of one set of fields to those of another set of fields.

The notation X->Y is used to denote that when supplied values to the field(s) in set X, the
assigned value for each field in set Y can be determined. For example, if a database table is to
contain fields for the social security number (S), name (N), address (A), and phone (P) and each
person has been assigned a unique value for S, the S field functionally determines the N, A and P
fields. This is written as S->NAP.

Develop a program that will identify each redundant FD in each input group of FDs. An FD
is redundant if it can be derived using other FDs in the group.

For example, if the group contains the FDs A->B, B->C, and A->C, then the third FD is redun-
dant since the field set C can be derived using the first two. (The A fields determine values for the
B fields, which in turn determine values for the fields in C.) In the group A->B, B->C, C->A, A->C,
C->B, and B->A, all the FDs are redundant.

Input

The input file contains an arbitrary number of groups of FDs. Each group is preceded by a line
containing an integer no larger than 100 specifying the number of FDs in that group. A group
with zero FDs indicates the end of the input.

Each FD in the group appears on a separate line containing two non-empty lists of field names
separated by the characters - and >. The lists of field names contain only uppercase alphabetic
characters. Functional dependency lines contain no blanks or tabs. There are no trivially redundant
FDs (for example, A->A).

For identification purposes, groups are numbered sequentially, starting with 1; the FDs are also
numbered sequentially, starting with 1 in each group.

Output

For each group, in order, your program must identify the group, each redundant FD in the group,
and a sequence of the other FDs in the group which were used to determine the indicated FD is
redundant. If more than one sequence of FDs can be used to show another FD is redundant, any
such sequence is acceptable, even if it is not the shortest proof sequence. Each FD in an acceptable
proof sequence must, however, be necessary. For example, in the set number 3 of the sample below,
the sequence of FDs ‘2 4’ can be used to show that the FD 5 is redundante, and then the solution
‘FD 5 is redundant using FDs: 2 4’ is also acceptable

If a group of FDs contains no redundancy, display No redundant FDs.
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Sample Input

3
A->BD
BD->C
A->C
6
P->RST
VRT->SQP
PS->T
Q->TR
QS->P
SR->V
5
A->B
A->C
B->D
C->D
A->D
3
A->B
B->C
A->D
0

Sample Output

Set number 1
FD 3 is redundant using FDs: 1 2

Set number 2
FD 3 is redundant using FDs: 1
FD 5 is redundant using FDs: 4 6 2

Set number 3
FD 5 is redundant using FDs: 1 3

Set number 4
No redundant FDs.
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F Othello

Othello is a game played by two people on an 8 x 8 board, using disks that are white on one side
and black on the other. One player places disks with the white side up and the other player places
disks with the black side up. The players alternate placing one disk on an unoccupied space on
the board. In placing a disk, the player must bracket at least one of the other color disks. Disks
are bracketed if they are in a straight line horizontally, vertically, or diagonally, with a disk of
the current player’s color at each end of the line. When a move is made, all the disks that were
bracketed are changed to the color of the player making the move. (It is possible that disks will
be bracketed across more than one line in a single move.)

Legal Moves for White
(2,3),(3,3),(3,5),(3,6)
(6,2),(7,3),(7,4),(7,5)

Board Configuration after
White Moves to (7,3)

Write a program to read a series of Othello games.

Input

The first line of the input is the number of games to be processed. Each game consists of a board
configuration followed by a list of commands. The board configuration consists of 9 lines. The
first 8 specify the current state of the board. Each of these 8 lines contains 8 characters, and each
of these characters will be one of the following:

‘-’ indicating an unoccupied square
‘B’ indicating a square occupied by a black disk
‘W’ indicating a square occupied by a white disk

The ninth line is either a ‘B’ or a ‘W’ to indicate which is the current player. You may assume
that the data is legally formatted.

Then a set of commands follows. The commands are to list all possible moves for the current
player, make a move, or quit the current game. There is one command per line with no blanks in
the input.
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Output

The commands and the corresponding outputs are formatted as follows:

List all possible moves for the current player. The command is an ‘L’ in the first column of
the line. The program should go through the board and print all legal moves for the current
player in the format (x, y) where x represents the row of the legal move and y represents its
column. These moves should be printed in row major order which means:

1) all legal moves in row number i will be printed before any legal move in row number j
if j is greater than i

and 2) if there is more than one legal move in row number i, the moves will be printed in
ascending order based on column number.

All legal moves should be put on one line. If there is no legal move because it is impossible for
the current player to bracket any pieces, the program should print the message “No legal
move.”

Make a move. The command is an ‘M’ in the first column of the line, followed by 2 digits in the
second and third column of the line. The digits are the row and the column of the space to
place the piece of the current player’s color, unless the current player has no legal move. If
the current player has no legal move, the current player is first changed to the other player
and the move will be the move of the new current player. You may assume that the move
is then legal. You should record the changes to the board, including adding the new piece
and changing the color of all bracketed pieces. At the end of the move, print the number
of pieces of each color on the board in the format “Black - xx White - yy” where xx is
the number of black pieces on the board and yy is the number of white pieces on the board.
After a move, the current player will be changed to the player that did not move.

Quit the current game. The command will be a ‘Q’ in the first column of the line. At this
point, print the final board configuration using the same format as was used in the input.
This terminates input for the current game.

You may assume that the commands will be syntactically correct. Put one blank line between
output from separate games and no blank lines anywhere else in the output.

Sample Input

2
--------
--------
--------
---WB---
---BW---
--------
--------
--------
W
L
M35
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L
Q
WWWWB---
WWWB----
WWB-----
WB------
--------
--------
--------
--------
B
L
M25
L
Q

Sample Output

(3,5) (4,6) (5,3) (6,4)
Black - 1 White - 4
(3,4) (3,6) (5,6)
--------
--------
----W---
---WW---
---BW---
--------
--------
--------

No legal move.
Black - 3 White - 12
(3,5)
WWWWB---
WWWWW---
WWB-----
WB------
--------
--------
--------
--------
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G Urban Elevations

An elevation of a collection of buildings is an orthogonal projection of the buildings onto a vertical
plane. An external elevation of a city would show the skyline and the faces of the “visible” buildings
of the city as viewed from outside the city from a certain direction. A southern elevation shows
no sides; it shows the perfectly rectangular faces of buildings or parts of faces of buildings not
obstructed on the south by taller buildings. For this problem, you must write a program that
determines which buildings of a city are visible in a southern elevation.

For simplicity, assume all the buildings for the elevation are perfect rectangular solids, each
with two sides that run directly east-west and two running directly north-south. Your program
will find the buildings that appear in a southern elevation based on knowing the positions and
heights of each city building. That data can be illustrated by a map of the city as in the diagram
on the left below. The southern elevation for that city is illustrated in the diagram on the right.

City map. Boldface numbers (in the upper
left of each building) identify the buildings.

Plain numbers (lower right) are the
buildings heights.

Southern Elevation. Only the shaded
buildings on the left are visible.

Input

Input for your program consists of the numeric description of maps of several cities. The first line
of each map contains the number of buildings in the city (a non-negative integer less than 101).
Each subsequent line of a map contains data for a single building – 5 real numbers separated by
spaces in the following order:

x-coordinate of the southwest corner
y-coordinate of the southwest corner
width of the building (length of the south side)
depth of the building (length of the west side)
height of the building

Each map is oriented on a rectangular coordinate system so that the positive x-axis points
east and the positive y-axis points north. Assume that all input for each map corresponds to a
legitimate map (the number of buildings is the same as the number of subsequent lines of input
for the map; no two buildings in a single map overlap). Input is terminated by the number 0
representing a map with no buildings.
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Output

Buildings are numbered according to where their data lines appear in the map’s input data –
building #1 corresponding to the first line of building data, building #2 data to the next line, and
building #n to the nth line of building data for that map. (Buildings on subsequent maps also
begin their numbering with 1.)

For each map, output begins with line identifying the map (map #1, map #2, etc.) On the next
line the numbers of the visible buildings as they appear in the southern elevation, ordered south-
to-north, west-to-east. This means that if building n and building m are visible buildings and if
the southwest corner of building n is west of the southwest corner of building m, then number n
is printed before number m. If building n and building m have the same x-coordinate for their
southwest corners and if building n is south of building m, then the number n is printed before
the number m.

For this program, a building is considered visible whenever the part of its southern face that
appears in the elevation has strictly positive area. One blank line must separate output from
consecutive input records.

Sample Input

14
160 0 30 60 30
125 0 32 28 60
95 0 27 28 40
70 35 19 55 90
0 0 60 35 80
0 40 29 20 60
35 40 25 45 80
0 67 25 20 50
0 92 90 20 80
95 38 55 12 50
95 60 60 13 30
95 80 45 25 50
165 65 15 15 25
165 85 10 15 35
0

Sample Output

For map #1, the visible buildings are numbered as follows:
5 9 4 3 10 2 1 14
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A Budget Travel

An American travel agency is sometimes asked to estimate the minimum cost of traveling from one
city to another by automobile. The travel agency maintains lists of many of the gasoline stations
along the popular routes. The list contains the location and the current price per gallon of gasoline
for each station on the list.

In order to simplify the process of estimating this cost, the agency uses the following rules of
thumb about the behavior of automobile drivers.

• A driver never stops at a gasoline station when the gasoline tank contains more than half
of its capacity unless the car cannot get to the following station (if there is one) or the
destination with the amount of gasoline in the tank.

• A driver always fills the gasoline tank completely at every gasoline station stop.

• When stopped at a gasoline station, a driver will spend $2.00 on snacks and goodies for the
trip.

• A driver needs no more gasoline than necessary to reach a gasoline station or the city limits
of the destination. There is no need for a “safety margin.”

• A driver always begins with a full tank of gasoline.

• The amount paid at each stop is rounded to the nearest cent (where 100 cents make a dollar).

You must write a program that estimates the minimum amount of money that a driver will
pay for gasoline and snacks to make the trip.

Input

Program input will consist of several data sets corresponding to different trips. Each data set
consists of several lines of information. The first 2 lines give information about the origin and
destination. The remaining lines of the data set represent the gasoline stations along the route,
with one line per gasoline station. The following shows the exact format and meaning of the input
data for a single data set.

Line 1: One real number – the distance from the origin to the destination

Line 2: Three real numbers followed by an integer

• The first real number is the gallon capacity of the automobile’s fuel tank.

• The second is the miles per gallon that the automobile can travel.

• The third is the cost in dollars of filling the automobiles tank in the origination city.

• The integer (less than 51) is the number of gasoline stations along the route.

Each remaining line: Two real numbers

• The first is the distance in miles from the origination city to the gasoline station.

• The second is the price (in cents) per gallon of gasoline sold at that station.
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All data for a single data set are positive. Gasoline stations along a route are arranged in
nondescending order of distance from the origin. No gasoline station along the route is further
from the origin than the distance from the origin to the destination. There are always enough
stations appropriately placed along the each route for any car to be able to get from the origin to
the destination.

The end of data is indicated by a line containing a single negative number.

Output

For each input data set, your program must print the data set number and a message indicating
the minimum total cost of the gasoline and snacks rounded to the nearest cent. That total cost
must include the initial cost of filling the tank at the origin. Sample input data for 2 separate data
sets and the corresponding correct output follows.

Sample Input

475.6
11.9 27.4 14.98 6
102.0 99.9
220.0 132.9
256.3 147.9
275.0 102.9
277.6 112.9
381.8 100.9
516.3
15.7 22.1 20.87 3
125.4 125.9
297.9 112.9
345.2 99.9
-1

Sample Output

Data Set #1
minimum cost = $27.31

Data Set #2
minimum cost = $38.09
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B Classifying Lots in a Subdivision

A subdivision consists of plots of land with each plot having a polygonal boundary. A surveyor has
surveyed the plots, and has given the location of all boundary lines. That is the only information
available, however, and more information is desired about the plots in the subdivision. Specifically,
planners wish to classify the lots by the number of boundary line segments (B=3,4,5,...) on the
perimeter of the lots.

Write a program that will take as input the surveyor’s data and produce as output the desired
information about the nature of the lots in the subdivision.

Input

The input file consists of several data sets. Each data set begins with a line containing the number
of line segments (4 ≤ N ≤ 200) in the survey. The following N lines each contain four integers
representing the Cartesian (x, y) coordinate pairs for the N points of a boundary line segment.
The input file is terminated with a 0.

Output

For each data set, provide output listing the number of lots in each classification of boundary line
segment counts (B=3,4,5,...). Do not include in your output those cases in which the classification
has no members. The output for each data set will begin with a line containing an appropriately
labeled data set number. Output for successive data sets will be separated by a blank line.

Figures 1 and 2 show two hypothetical subdivisions. In Figure 1 there are 12 boundary line
segments, and in Figure 2 there are 27. The sample input file below contains the data for these two
test cases. The plot in the upper left hand corner of Figure 2 has one line running from (16,16) to
(17,18) and another from (17,18) to (19,22). Thus this lot has a perimeter comprised of 5 boundary
line segments, though geometrically the lot is a 4-sided region. Similarly the perimeter of the plot
in the upper left hand corner of Figure 1 is comprised of 6 boundary line segments, though the lot
is pentagonal in shape.
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Sample Input

12
10 41 15 41
15 41 20 41
10 36 15 36
15 36 17 36
10 31 15 31
15 31 20 31
10 41 10 36
10 36 10 31
15 41 17 34
17 34 17 36
15 36 15 31
20 41 20 31
27
10 22 19 22
19 22 23 22
23 22 28 22
28 22 37 22
10 16 16 16
17 16 23 16
23 16 24 16
24 15 28 15
28 15 31 15
10 10 17 10
17 10 24 10
24 10 31 10
31 10 37 10
10 22 10 16
10 16 10 10
17 18 17 16
17 16 17 10
24 16 24 15
24 15 24 10
23 22 23 16
28 22 28 15
31 15 31 10
37 22 37 17
37 17 37 10
16 16 17 18
17 18 19 22
31 15 37 17
0
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Sample Output

Case 1
Number of lots with perimeter consisting of 4 surveyor’s lines = 1
Number of lots with perimeter consisting of 6 surveyor’s lines = 1
Number of lots with perimeter consisting of 7 surveyor’s lines = 1
Total number of lots = 3

Case 2
Number of lots with perimeter consisting of 4 surveyor’s lines = 1
Number of lots with perimeter consisting of 5 surveyor’s lines = 4
Number of lots with perimeter consisting of 6 surveyor’s lines = 3
Total number of lots = 8

Assumptions:

1. Each data set corresponds to a rectangular subdivision (as in Figures 1 and 2). The bound-
aries of the rectangular subdivision are parallel to the x and y axes.

2. All coordinates in the input file are positive integers in the range 1 to 10,000.

3. Boundary line segments in the input file do not extend past corners of lots. For example,
in Figure 1 the surveyor must survey from the point (10,41) to (15,41) and from (15,41) to
(20,41) rather than surveying the entire line (10,41) to (20,41).

4. At least one boundary line segment in each lot lies on the subdivisions bounding rectangle.
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C Kissin’ Cousins

The Oxford English Dictionary defines cousin as follows:

cous’in (kŭzn), n. (Also first cousin) child of one’s uncle or aunt; my second (third...)
cousin, my parents first (second...) cousins child; my first cousin once (twice...) re-
moved, my first cousin’s child (grandchild...), also my parent’s (grandparent’s...) first
cousin.

Put more precisely, any two persons whose closest common ancestor is (m + 1) generations away
from one person and (m + 1) + n generations away from the other are mth cousins nce removed.
Normally, m ≥ 1 and n ≥ 0, but being used to computers counting from 0, in this problem we
require m ≥ 0 and n ≥ 0. This extends the normal definition so that siblings are zeroth cousins.
We write such a relationship as cousin-m-n.

If one of the persons is an ancestor of the other, p generations away where p ≥ 1, they have a
relationship descendant-p. You may assume that a person is not an ancestor of himself/herself.

A relationship cousin-m1-n1 is closer than a relationship cousin-m2-n2 if m1 < m2 or (m1 =
m2 and n1 < n2). A relationship descendant-p1 is closer than a relationship descendant-p2 if
p1 < p2. A descendant-p relationship is always closer than a cousin-m-n relationship.

Write a program that accepts definitions of simple relationships between individuals and dis-
plays the closest cousin or descendant relationship, if any, which exists between arbitrary pairs
of individuals.

Input

Each line in the input begins with one of the characters #, R, F or E.

‘#’ lines are comments. Ignore them.

‘R’ lines direct your program to record a relationship between two different individuals. The first
5 characters following the ‘R’ constitute the name of the first person; the next 5 characters
constitute the name of the second. Case is significant. Following the names, possibly sepa-
rated from them by blanks, is a non-negative integer, k, defining the relationship. If k is 0,
then the named individuals are siblings. If k is 1, then the first named person is a child of
the second. If k is 2, then the first named person is a grandchild of the second, and so forth.
Ignore anything on the line following the integer.

‘F’ lines are queries; your program is to find the closest relationship, if any, which exists between
the two different persons whose 5 character names follow the ‘F’. Ignore anything on the line
following the second name. A query should be answered only with regard to ‘R’ lines which
precede the query in the input.

‘E’ There will be one ‘E’ line to mark the end of the input data. Ignore anything on or after the
‘E’ line.

Output

For each ‘F’ line, your program is to report the closest relationship that exists between the two
persons named aaaaa and bbbbb in one of the following formats:
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aaaaa and bbbbb are descendant-p.
aaaaa and bbbbb are cousin-m-n.

with m, n and p replaced by integers calculated as defined above. If no relationship exists between
the pair, your program is to output the following:

aaaaa and bbbbb are not related.

Sample Input

# A Comment!
RFred Joe 1 Fred is Joe’s son
RFran Fred 2
RJake Fred 1
RBill Joe 1
RBill Sue 1
RJean Sue 1
RJean Don 1
RPhil Jean 3
RStan Jean 1
RJohn Jean 1
RMary Don 1
RSusanMary 4
RPeg Mary 2
FFred Joe
FJean Jake
FPhil Bill
FPhil Susan
FJake Bill
FDon Sue
FStan John
FPeg John
FJean Susan
FFran Peg
FJohn Avram
RAvramStan 99
FJohn Avram
FAvramPhil
E

Diagram of the Sample Input

Sample Output

Fred and Joe are descendant-1.
Jean and Jake are not related.
Phil and Bill are cousin-0-3.
Phil and Susan are cousin-3-1.
Jake and Bill are cousin-0-1.
Don and Sue are not related.
Stan and John are cousin-0-0.
Peg and John are cousin-1-1.
Jean and Susan are cousin-0-4.
Fran and Peg are not related.
John and Avram are not related.
John and Avram are cousin-0-99.
Avram and Phil are cousin-2-97.
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D Golygons

Imagine a country whose cities have all their streets laid out in a regular grid. Now suppose that
a tourist with an obsession for geometry is planning expeditions to several such cities.

Starting each expedition from the central cross-roads of a city, the intersection labelled (0,0),
our mathematical visitor wants to set off north, south, east or west, travel one block, and view the
sights at the intersection (0,1) after going north, (0,-1) after going south, (1,0) after going east or
(-1,0) after going west. Feeling ever more enthused by the regularity of the city, our mathematician
would like to walk a longer segment before stopping next, going two blocks.

What’s more, our visitor doesn’t want to carry on in the same direction as before, nor wishes
to double back, so will make a 90o turn either left or right. The next segment should be three
blocks, again followed by a right-angle turn, then four, five, and so on with ever-increasing lengths
until finally, at the end of the day, our weary traveller returns to the starting point, (0,0).

The possibly self-intersecting figure described by these geometrical travels is called a golygon.

Unfortunately, our traveller will making these visits in the height of summer when road works
will disrupt the stark regularity of the cities’ grids. At some intersections there will be impassable
obstructions. Luckily, however, the country’s limited budget means there will never be more than
50 road works blocking the streets of any particular city. In an attempt to gain accountability to
its citizens, the city publishes the plans of road works in advance. Our mathematician has obtained
a copy of these plans and will ensure that no golygonal trips get mired in molten tar.

Write a program that constructs all possible golygons for a city.

Input

Since our tourist wants to visit several cities, the input file will begin with a line containing an
integer specifying the number of cities to be visited.

For each city there will follow a line containing a positive integer not greater than 20 indicating
the length of the longest edge of the golygon. That will be the length of the last edge which returns
the traveler to (0,0). Following this on a new line will be an integer from 0 to 50 inclusive which
indicates how many intersections are blocked. Then there will be this many pairs of integers, one
pair per line, each pair indicating the x and y coordinates of one blockage.

Output

For each city in the input, construct all possible golygons. Each golygon must be represented by a
sequence of characters from the set {n,s,e,w} on a line of its own. Following the list of golygons
should be a line indicating how many solutions were found. This line should be formatted as shown
in the example output. A blank line should appear following the output for each city.
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Sample Input

2
8
2
-2 0
6 -2
8
2
2 1
-2 0

Sample Output

wsenenws
Found 1 golygon(s).

Found 0 golygon(s).

Diagram of the 1st City
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E MIDI Preprocessing

MIDI (Musical Instrument Digital Interface) is a standard for communication involving computers
and synthesized music instruments. Part of the standard defines commands, which when trans-
mitted to a synthesizer, begin and end the sounding of a particular note. In this problem we will
consider processing simple MIDI “programs.” In the following example, three simultaneous notes
(a chord, with note numbers 60, 70 and 80) are played for 10 time units immediately followed by
a single note (number 62) for 2 time units.

0 ON 60
0 ON 70
0 ON 80
10 OFF 60
10 OFF 80
10 OFF 70
10 ON 62
12 OFF 62

Much existing music cannot be directly translated to this program form. Sometimes a note is
already “on” when the written music indicates that it is to be sounded again. For example:

0 ON 60
10 ON 60
12 OFF 60
20 OFF 60

A synthesizer will interpret this program to sound note 60 for 12 time units, not 20 as indicated.
We will not hear the separate sounding of the note at time 10, since turning on a note that is already
sounding will be ignored. By analogy, consider turning a light on and off. If it’s on, turning it on
again is ineffective. Likewise, the first time that a light is turned off, it is off!

When a note already on is to be sounded again, the program can be “fixed” by inserting an
OFF command for that note 1 time unit before the second ON command. Since there are already
at least two OFF commands in such circumstances, only the last of these should be retained; the
other should be eliminated from the program. The “fixed” program will cause the synthesizer to
behave as if the same note had been played twice in rapid succession.

Another problem exists in programs that turn a note on and off at the same time. Depending
on the ordering of the events in the program, either the note will be prematurely ended (if the
OFF command appears after the ON), or the second sounding of the note will not be heard. For
example:

0 ON 60 0 ON 60
10 ON 60 10 OFF 60
10 OFF 60 10 ON 60
20 OFF 60 20 OFF 60

In the example on the left, the note will be turned off at time 10. The example on the right
doesn’t leave the note off long enough to allow a human listener to detect the “punctuation” in
the sound. In both cases the correction is the same: move the OFF command so it is executed by
the synthesizer 1 time unit before the corresponding ON command.
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If an OFF command inserted 1 time unit before an ON as a result of the “fix” occurs at exactly
the same time as the preceding ON, the second ON and the OFF that occurs at the same time should
be eliminated.

Write a program that will accept an arbitrary number of MIDI programs and “fix” them as
described above.

Input

Each program contains an arbitrary number of lines. Each line contains, in order, the time that
the command is sent to the synthesizer (a non-negative integer), a command (either ON or OFF),
and a note (an integer in the range 1 to 127). These items are separated by one or more blanks.
Each program except the last is terminated with a line containing only the integer -1. The last
program is terminated by a line containing only the integer -2.

Output

The output is to be a “fixed” MIDI program in the same format as the input.

Assumptions:

1. The ON and OFF commands will always be in upper case letters.
2. The times associated with programs are in non-decreasing order.
3. All notes are initially OFF.
4. If different notes are to be turned on or off simultaneously, the order in which the corresponding

commands appear is unimportant.
5. Each ON command will have a matching OFF command following it in the program.
6. For ONE time and ONE tone, there is a maximum of 1 command ON and one command OFF.

Sample Input

0 ON 60
10 ON 60
12 OFF 60
20 OFF 60
-1
0 ON 60
5 ON 70
10 ON 60
10 OFF 60
15 OFF 70
15 ON 70
20 OFF 60
20 OFF 70
-1
0 ON 60
1 OFF 60
1 ON 60
10 OFF 60
-2

Sample Output

0 ON 60
9 OFF 60
10 ON 60
20 OFF 60
-1
0 ON 60
5 ON 70
9 OFF 60
10 ON 60
14 OFF 70
15 ON 70
20 OFF 60
20 OFF 70
-1
0 ON 60
10 OFF 60
-2
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F Puzzle

A children’s puzzle that was popular 30 years ago consisted of a 5×5 frame which contained 24
small squares of equal size. A unique letter of the alphabet was printed on each small square. Since
there were only 24 squares within the frame, the frame also contained an empty position which
was the same size as a small square. A square could be moved into that empty position if it were
immediately to the right, to the left, above, or below the empty position. The object of the puzzle
was to slide squares into the empty position so that the frame displayed the letters in alphabetical
order.

The illustration below represents a puzzle in its original configuration and in its configuration
after the following sequence of 6 moves:

1) The square above the empty position moves.
2) The square to the right of the empty position moves.
3) The square to the right of the empty position moves.
4) The square below the empty position moves.
5) The square below the empty position moves.
6) The square to the left of the empty position moves.

Write a program to display resulting frames given their initial configurations and sequences of
moves.

Input

Input for your program consists of several puzzles. Each is described by its initial configuration and
the sequence of moves on the puzzle. The first 5 lines of each puzzle description are the starting
configuration. Subsequent lines give the sequence of moves.

The first line of the frame display corresponds to the top line of squares in the puzzle. The
other lines follow in order. The empty position in a frame is indicated by a blank. Each display
line contains exactly 5 characters, beginning with the character on the leftmost square (or a blank
if the leftmost square is actually the empty frame position). The display lines will correspond to
a legitimate puzzle.
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The sequence of moves is represented by a sequence of As, Bs, Rs, and Ls to denote which
square moves into the empty position. A denotes that the square above the empty position moves;
B denotes that the square below the empty position moves; L denotes that the square to the left of
the empty position moves; R denotes that the square to the right of the empty position moves. It is
possible that there is an illegal move, even when it is represented by one of the 4 move characters.
If an illegal move occurs, the puzzle is considered to have no final configuration. This sequence
of moves may be spread over several lines, but it always ends in the digit 0. The end of data is
denoted by the character Z.

Output

Output for each puzzle begins with an appropriately labeled number (Puzzle #1, Puzzle #2, etc.).
If the puzzle has no final configuration, then a message to that effect should follow. Otherwise
that final configuration should be displayed.

Format each line for a final configuration so that there is a single blank character between two
adjacent letters. Treat the empty square the same as a letter. For example, if the blank is an
interior position, then it will appear as a sequence of 3 blanks – one to separate it from the square
to the left, one for the empty position itself, and one to separate it from the square to the right.

Separate output from different puzzle records by one blank line.

Note: The first record of the sample input corresponds to the puzzle illustrated above.

Sample Input

TRGSJ
XDOKI
M VLN
WPABE
UQHCF
ARRBBL0
ABCDE
FGHIJ
KLMNO
PQRS
TUVWX
AAA
LLLL0
ABCDE
FGHIJ
KLMNO
PQRS
TUVWX
AAAAABBRRRLL0
Z

Sample Output

Puzzle #1:
T R G S J
X O K L I
M D V B N
W P A E
U Q H C F

Puzzle #2:
A B C D

F G H I E
K L M N J
P Q R S O
T U V W X

Puzzle #3:
This puzzle has no final configuration.
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G Resource Allocation

A software development firm is willing to hire new programmers and to spend more money for
hardware and software systems in order to increase productivity in its programming divisions. For
lack of a better idea, management has defined increased productivity for a division as “incremental
lines of code” that the division produces. The company needs a resource allocation model to
determine how the money and new programmers should be divided among the divisions in order
to maximize the total productivity increase.

Each programming division is limited in how effectively it can utilize any new resources. For
example, one particular division will be able to use 0, 3, 5, or 6 new programmers effectively. (The
personnel organization within that division prevents it from being able to use 1, 2, 4, 7 or more
new programmers.) This gives 4 options for allocating new programmers to that division. There
are only 3 different options for allocation of additional money to that division. Therefore, there
are 12 possible allocation scenarios in this example. For each scenario, the company has estimated
the incremental lines of code that would be produced by that division.

You must write a program that recommends a precise allocation of resources among the di-
visions. For each division, your program must determine how many new programmers and how
much money should be allocated. Allocation of new programmers and money must be made to
maximize the total productivity increase – the sum of incremental lines of code over all divisions.
The total number of programmers allocated cannot exceed the total number of programmers that
the company is willing to hire. The total amount of money cannot exceed the total amount bud-
geted for the entire company. In the case where there are multiple optimal solutions, your program
may recommend any one of them.

Input

Input for your program consists of several allocation problems. All input data are non-negative
integers. The first 3 lines of input for each problem consists of:

d number of programming divisions
(0 < d ≤ 20 except when d is the end-of-file sentinel)

p total number of new programmers
b total amount of money budgeted for new computing resources

Following those 3 lines are input records for each programming division. The first record is for
division #1, the second for division #2, etc. Each division record is organized as follows:

n number of new programmer options (0 ≤ n ≤ 10)
x1x2 . . . xn list of new programmer options

(numbers are separated by blanks)
k number of new budget options (0 ≤ k ≤ 10)
b1b2 . . . bk cost of each new budget option (separated by blanks)
n× k table of integers the (i, j) table entry is the incremental lines of code produced

for allocation of xi new programmers and bj additional budget

It is possible to allocate 0 new programmers to any division and $0 for new hardware and
software – resulting in no increase in productivity for that division. This “null” allocation will be
explicitly shown.

Each allocation problem begins on a new line. The end of input is signified by an allocation
“problem” with 0 divisions. No input lines follow that line.
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Output

Output for each problem begins with a line identifying the problem that is solved (problem #1,
problem #2, etc.). This is followed by a blank line then 3 lines that tell the total amount of
money to be spent, the total number of new programmer to be hired, and the total anticipated
new productivity for an optimal resource allocation.

Output for each division comes next. The first line identifies the division by number. The
remaining 3 lines indicate the division’s budget, the number of new programmers for the division,
and the expected incremental lines of code to be produced. One blank line appears between output
for successive divisions. Two blank lines appear between output for successive problems. The exact
formatting of the output is not critical, but all output must be easy to read and well-identified.

Note: A sample input file which contains one complete allocation problem is shown below. In this
problem, there are 3 programming divisions. The company is willing to hire up to 10 new pro-
grammers and spend up to $90,000 on new computing resources. For division #1, the expenditure
of $50,000 on new computing resources and allocation of 6 new programmers would result in the
production of 40,000 incremental lines of code.

Sample Input

3
10
90000
4
0 2 5 6
4
0 20000 50000 70000

0 10000 20000 50000
60000 20000 10000 40000
20000 10000 30000 40000
30000 10000 40000 30000
5
0 1 3 4 8
3
0 40000 80000

0 50000 30000
50000 40000 60000
20000 30000 50000
80000 90000 50000
30000 40000 70000
3
0 4 6
5
0 50000 30000 40000 50000

0 30000 50000 60000 30000
10000 20000 30000 40000 50000
20000 30000 40000 50000 60000
0

Sample Output

Optimal resource allocation problem #1

Total budget: $80000
Total new programmers: 6
Total productivity increase: 210000

Division #1 resource allocation:
Budget: $0
Programmers: 2
Incremental lines of code: 60000

Division #2 resource allocation:
Budget: $40000
Programmers: 4
Incremental lines of code: 90000

Division #3 resource allocation:
Budget: $40000
Programmers: 0
Incremental lines of code: 60000
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H Scanner

A body scanner works by scanning a succession of horizontal slices through the body; the slices
are imaged one at a time. The image slices can be reassembled to form a three dimensional model
of the object. Write a program to construct a two dimensional image slice using data captured
during the scan.

The scanner consists of four arrays of sensors arranged around a 10 × 15 matrix. Array 1
consists of 10 sensors pointing to the right, array 2 has 24 sensors pointing diagonally to the top
right, array 3 has 15 sensors pointing to the top and array 4 has 24 sensors pointing to the top
left. Each sensor records the thickness of that portion of the object directly in front of that sensor.

Readings from the arrays of sensors are recorded in counterclockwise order. Within an array
of sensors, data are also recorded counterclockwise. A complete scan consists of 73 readings.

Input

The input file begins with a line with an integer indicating the number of image slices to follow.
For each image slice, there are separate lines with 10, 24, 15, and 24 integers representing sensor
data from sensor arrays 1 through 4 respectively. The order of the readings is indicated in the
diagram.

Output

For each slice, your program should print 10 lines of 15 cells. To indicate that the cell represents
a part of the object, print a hash character (#) for the cell; to indicate that the cell is not a part
of the object, print a period (.). Between successive output image slices, print a blank line.

It is possible for the result of a scan to be ambiguous, in that case you will have to output a
blank picture as shown in the sample output.
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Sample Input (First one describing object above)

2
10 10 6 4 6 8 13 15 11 6
0 1 2 2 2 2 4 5 5 6 7 6 5 6 6 5 5 6 6 3 2 2 1 0
2 4 5 5 7 6 7 10 10 10 7 3 3 5 5
0 0 1 3 4 4 4 4 3 4 5 7 8 8 9 9 6 4 4 2 0 0 0 0
10 10 6 4 6 8 13 15 11 6
0 1 2 2 2 2 4 5 5 6 7 6 5 6 6 5 5 6 6 3 2 2 1 0
2 4 5 5 7 6 7 10 10 10 7 3 3 5 5
0 0 1 3 4 4 4 4 3 2 5 7 8 8 9 9 6 4 4 2 0 0 0 0

Sample Output

.##########....

.##########....

....######.....

......####.....

.......####..##

.......########
#####..########
###############
..#########..##
....######.....

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............
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A Borrowers

I mean your borrowers of books – those mutilators of collections, spoilers of the sym-
metry of shelves, and creators of odd volumes.

– (Charles Lamb, Essays of Elia (1823) ‘The Two Races of Men’)

Like Mr. Lamb, librarians have their problems with borrowers too. People don’t put books back
where they should. Instead, returned books are kept at the main desk until a librarian is free to
replace them in the right places on the shelves. Even for librarians, putting the right book in the
right place can be very time-consuming. But since many libraries are now computerized, you can
write a program to help.

When a borrower takes out or returns a book, the computer keeps a record of the title. Period-
ically, the librarians will ask your program for a list of books that have been returned so the books
can be returned to their correct places on the shelves. Before they are returned to the shelves,
the returned books are sorted by author and then title using the ASCII collating sequence. Your
program should output the list of returned books in the same order as they should appear on
the shelves. For each book, your program should tell the librarian which book (including those
previously shelved) is already on the shelf before which the returned book should go.

Input

First, the stock of the library will be listed, one book per line, in no particular order. Initially,
they are all on the shelves. No two books have the same title. The format of each line will be:

“title” by author
The end of the stock listing will be marked by a line containing only the word:

END
Following the stock list will be a series of records of books borrowed and returned, and requests

from librarians for assistance in restocking the shelves. Each record will appear on a single line, in
one of the following formats:

BORROW “title”
RETURN “title”
SHELVE

The list will be terminated by a line containing only the word:
END

Output

Each time the SHELVE command appears, your program should output a series of instructions for
the librarian, one per line, in the format:

Put “title1” after “title2”
or, for the special case of the book being the first in the collection:

Put “title” first
After the set of instructions for each SHELVE, output a line containing only the word:

END

Assumptions & Limitations:
1. A title is at most 80 characters long.
2. An author is at most 80 characters long.
3. A title will not contain the double quote (") character.
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Sample Input

"The Canterbury Tales" by Chaucer, G.
"Algorithms" by Sedgewick, R.
"The C Programming Language" by Kernighan, B. and Ritchie, D.
END
BORROW "Algorithms"
BORROW "The C Programming Language"
RETURN "Algorithms"
RETURN "The C Programming Language"
SHELVE
END

Sample Output

Put "The C Programming Language" after "The Canterbury Tales"
Put "Algorithms" after "The C Programming Language"
END
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B Testing the CATCHER

A military contractor for the Department of Defense has just completed a series of preliminary
tests for a new defensive missile called the CATCHER which is capable of intercepting multiple
incoming offensive missiles. The CATCHER is supposed to be a remarkable defensive missile. It
can move forward, laterally, and downward at very fast speeds, and it can intercept an offensive
missile without being damaged. But it does have one major flaw. Although it can be fired to reach
any initial elevation, it has no power to move higher than the last missile that it has intercepted.

The tests which the contractor completed were computer simulations of battlefield and hostile
attack conditions. Since they were only preliminary, the simulations tested only the CATCHER’s
vertical movement capability. In each simulation, the CATCHER was fired at a sequence of
offensive missiles which were incoming at fixed time intervals. The only information available to
the CATCHER for each incoming missile was its height at the point it could be intercepted and
where it appeared in the sequence of missiles. Each incoming missile for a test run is represented
in the sequence only once.

The result of each test is reported as the sequence of incoming missiles and the total number
of those missiles that are intercepted by the CATCHER in that test.

The General Accounting Office wants to be sure that the simulation test results submitted by
the military contractor are attainable, given the constraints of the CATCHER. You must write a
program that takes input data representing the pattern of incoming missiles for several different
tests and outputs the maximum numbers of missiles that the CATCHER can intercept for those
tests. For any incoming missile in a test, the CATCHER is able to intercept it if and only if it
satisfies one of these two conditions:

1. The incoming missile is the first missile to be intercepted in this test.

-or-

2. The missile was fired after the last missile that was intercepted and it is not higher than the
last missile which was intercepted.

Input

The input data for any test consists of a sequence of one or more non-negative integers, all of
which are less than or equal to 32,767, representing the heights of the incoming missiles (the test
pattern). The last number in each sequence is -1, which signifies the end of data for that particular
test and is not considered to represent a missile height. The end of data for the entire input is the
number -1 as the first value in a test; it is not considered to be a separate test.

Output

Output for each test consists of a test number (Test #1, Test #2, etc.) and the maximum number
of incoming missiles that the CATCHER could possibly intercept for the test. That maximum
number appears after an identifying message. There must be at least one blank line between
output for successive data sets.

Note: The number of missiles for any given test is not limited. If your solution is based on an
inefficient algorithm, it may not execute in the allotted time.
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Sample Input

389
207
155
300
299
170
158
65
-1
23
34
21
-1
-1

Sample Output

Test #1:
maximum possible interceptions: 6

Test #2:
maximum possible interceptions: 2
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C Crossword Answers

A crossword puzzle consists of a rectangular grid of black and white squares and two lists of
definitions (or descriptions). One list of definitions is for “words” to be written left to right across
white squares in the rows and the other list is for words to be written down white squares in the
columns. (A word is a sequence of alphabetic characters.) To solve a crossword puzzle, one writes
the words corresponding to the definitions on the white squares of the grid.

The definitions correspond to the rectangular grid by means of sequential integers on “eligible”
white squares. White squares with black squares immediately to the left or above them are “eligi-
ble.” White squares with no squares either immediately to the left or above are also “eligible.” No
other squares are numbered. All of the squares on the first row are numbered.

The numbering starts with 1 and continues consecutively across white squares of the first row,
then across the eligible white squares of the second row, then across the eligible white squares of
the third row and so on across all of the rest of the rows of the puzzle. The picture below illustrates
a rectangular crossword puzzle grid with appropriate numbering.

An “across” word for a definition is written on a sequence of white squares in a row starting
on a numbered square that does not follow another white square in the same row. The sequence
of white squares for that word goes across the row of the numbered square, ending immediately
before the next black square in the row or in the rightmost square of the row.

A “down” word for a definition is written on a sequence of white squares in a column starting
on a numbered square that does not follow another white square in the same column. The sequence
of white squares for that word goes down the column of the numbered square, ending immediately
before the next black square in the column or in the bottom square of the column. Every white
square in a correctly solved puzzle contains a letter.

You must write a program that takes several solved crossword puzzles as input and outputs the
lists of across and down words which constitute the solutions.

Input

Each puzzle solution in the input starts with a line containing two integers r and c (1 ≤ r ≤ 10
and 1 ≤ c ≤ 10), where r (the first number) is the number of rows in the puzzle and c (the second
number) is the number of columns. The r rows of input which follow each contain c characters
(excluding the end-of-line) which describe the solution. Each of those c characters is an alphabetic
character which is part of a word or the character ‘*’, which indicates a black square.

The end of input is indicated by a line consisting of the single number ‘0’.
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Output

Output for each puzzle consists of an identifier for the puzzle (puzzle #1:, puzzle #2:, etc.) and
the list of across words followed by the list of down words. Words in each list must be output
one-per-line in increasing order of the number of their corresponding definitions.

The heading for the list of across words is “Across”. The heading for the list of down words is
“Down”. In the case where the lists are empty (all squares in the grid are black), the Across and
Down headings should still appear.

Separate output for successive input puzzles by a blank line.

Sample Input

2 2
AT
*O
6 7
AIM*DEN
*ME*ONE
UPON*TO
SO*ERIN
*SA*OR*
IES*DEA
0

Sample Output

puzzle #1:
Across
1.AT
3.O

Down
1.A
2.TO

puzzle #2:
Across
1.AIM
4.DEN
7.ME
8.ONE
9.UPON
11.TO
12.SO
13.ERIN
15.SA
17.OR
18.IES
19.DEA

Down
1.A
2.IMPOSE
3.MEO
4.DO
5.ENTIRE
6.NEON
9.US
10.NE
14.ROD
16.AS
18.I
20.A
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D Package Pricing

The Green Earth Trading Company sells 4 different sizes of energy-efficient fluorescent light bulbs
for use in home lighting fixtures. The light bulbs are expensive, but last much longer than ordinary
incandescent light bulbs and require much less energy. To encourage customers to buy and use the
energy- efficient light bulbs, the company catalogue lists special packages which contain a variety
of sizes and numbers of the light bulbs. The price of a package is always substantially less than
the total price of the individual bulbs in the package. Customers typically want to buy several
different sizes and numbers of bulbs. You are to write a program to determine the least expensive
collection of packages that satisfy any customer’s request.

Input

The input file is divided into two parts. The first one describes the packages which are listed in
the catalogue. The second part describes individual customer requests. The 4 sizes of light bulbs
are identified in the input file by the characters “a”, “b”, “c”, and “d”.

The first part of the input file begins with an integer n (1 ≤ n ≤ 50) indicating the number of
packages described in the catalogue. Each of the n lines that follows is a single package description.
A package description begins with a catalogue number (a positive integer) followed by a price (a
real number), and then the sizes and corresponding numbers of the light bulbs in the package.
Between 1 and 4 different sizes of light bulbs will be listed in each description. The listing format
for these size-number pairs is a blank, a character (“a”, “b”, “c”, or “d”) representing a size,
another blank, and then an integer representing the number of light bulbs of that size in the
package. These size-number pairs will not appear in any particular order, and there will be no
duplicate sizes listed in any package. The following line describes a package with catalogue number
210 and price $76.95 which contains 3 size “a” bulbs, 1 size “c” bulb, and 4 size “d” bulbs.

210 76.95 a 3 c 1 d 4

The second part of the input file begins with a line containing a single positive integer m
representing the number of customer requests. Each of the remaining m lines is a customer request.
A listing of sizes and corresponding numbers of light bulbs constitutes a request. Each list contains
only the size-number pairs, formatted the same way that the size-number pairs are formatted in
the catalogue descriptions. Unlike the catalogue descriptions, however, a customer request may
contain duplicate sizes. The following line represents a customer request for 1 size “a” bulb, 2 size
“b” bulbs, 2 size “c” bulbs, and 5 size “d” bulbs.

a 1 d 5 b 1 c 2 b 1

Output

For each request, print the customer number (1 through m, 1 for the first customer request, 2 for
the second, . . ., m for the mth customer), a colon, the total price of the packages which constitute
the least expensive way to fill the request, and then the combination of packages that the customer
should order to fill that request.

Prices should be shown with exactly two significant digits to the right of the decimal. The
combination of packages must be written in ascending order of catalogue numbers. If more than
one of the same type package is to be ordered, then the number ordered should follow the catalogue
number in parentheses. You may assume that each customer request can be filled. In some cases,
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the least expensive way to fill a customer request may contain more light bulbs of some sizes than
necessary to fill the actual request. This is acceptable. What matters is that the customers receive
at least what they request.

Sample Input

5
10 25.00 b 2
502 17.95 a 1
3 13.00 c 1
55 27.50 b 1 d 2 c 1
6 52.87 a 2 b 1 d 1 c 3
6
d 1
b 3
b 3 c 2
b 1 a 1 c 1 d 1 a 1
b 1 b 2 c 3 c 1 a 1 d 1
b 3 c 2 d 1 c 1 d 2 a 1

Sample Output

1: 27.50 55
2: 50.00 10(2)
3: 65.50 3 10 55
4: 52.87 6
5: 90.87 3 6 10
6: 100.45 55(3) 502
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E Switching Channels

CPN (The Couch Potato Network) owns several cable channels. They would like to arrange the
timing of programmes so viewers can switch channels without missing the end of one programme or
the beginning of another. To do this they have identified certain times, called “alignment points,”
where ideally one programme should end and another should begin. Some of these alignment
points are more important than others. For example, the time when the nightly news begins is
an important alignment point. Since many viewers watch the news, they would be less likely to
watch a CPN programme whose ending time causes them to miss the beginning of the news, or
which starts before the news finishes. Your task is to write a solution which determines the best
order in which programmes can be shown on one channel.

A “miss” time is the absolute value of the difference between the time of an alignment point and
the nearest time of the beginning or end of a programme. The “total miss time” at a particular level
of importance is the sum of all the miss times for alignment points at that level of importance.
One programme order is better than another if it has a lower total miss time at some level of
importance and the same total miss time at all higher levels of importance (if any).

Input

Your solution must accept multiple input data sets. Each set will begin with an integer, p (0 ≤
p ≤ 8), specifying the number of programmes to be ordered. When a data set beginning with 0
is encountered, your solution should terminate. Following p on the same line will be p integers
specifying the lengths of the programmes in minutes. There is no significance to the order in which
these are given.

The next line of input specifies the alignment points. The total number of such points, a
(0 ≤ a ≤ 8), appears first followed by a pairs of integers. The first integer in each pair, i
(1 ≤ i ≤ 5), gives the importance of the alignment point. Alignment points marked 1 are most
important; those marked 2 are of secondary importance, etc. The second integer in each pair, t,
specifies the time when the alignment point occurs. No two alignment points in the same data set
will have the same value of t.

Output

Your solution must output three lines for each data set. The first line identifies the data set being
processed and should be in the form:

Data set n

where n is the number of the data set (1 for the first data set, 2 for the second, etc.). On the
following line, your solution should output the lengths of the programmes in the order in which
they should be shown to achieve the best synchronization with the alignment points. On the third
line, output the total number of minutes by which the alignment points were missed (the sum of
all total miss times).

There may be more than one best programme order for an input data set. Any one of these
best orders is acceptable.
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Sample Input

4 30 45 45 15
3 1 60 2 90 3 15
6 10 15 13 18 25 33
4 1 30 2 15 2 45 1 60
0

Sample Output

Data set 1
Order: 15 45 30 45
Error: 0

Data set 2
Order: 15 13 33 25 18 10
Error: 19
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F Typesetting

Proportional fonts are so called because characters require varying amounts of space on the printed
line. The size in which text is “set,” usually measured in points, also affects the space required
for each character. In this problem you are given a number of paragraphs of text to set. Each
paragraph may include special “words” to select the font and point size.

Input

The input starts with the font width table. These data give the widths of 10- point characters in
six different fonts. The first line contains the number of characters in the table, N (0 ≤ N ≤ 100).
Each of the next N lines contain a character in column 1 and then 6 integers representing the width
of that character in each of the 6 different fonts. Widths are given in an arbitrary measurement
called “units.” The width of each 10-point character will be greater than zero units, and less than
256 units. Character widths scale linearly with point size. Thus if a 10-point “A” is 12 units wide,
a 20-point “A” is 24 units wide.

The remainder of the input consists of paragraphs to be typeset. Each paragraph begins with
a line containing two integers, L and W . L is the number of input lines of text for the paragraph
(these immediately follow the first line), and W is the width allowed for each typeset line, in units.
The initial font at the beginning of each paragraph is always font 1, and the initial point size in
which characters are to be set is 10. Fonts are numbered 1 through 6, corresponding to columns 1
through 6 in the font width table. An empty paragraph (one for which L is 0) will mark the end
of the input data. No output is to be produced for this empty paragraph.

The words in each paragraph are sequences of no more than 8 non-blank characters separated
by spaces (that is, blanks – no tab characters will appear in the input). Spaces at the ends of
input lines are irrelevant, and spaces between words are significant only to the extent that they
separate words. Each character in each word will appear in the width table. Case is significant for
all characters in the input data.

The special tokens “*f1”, “*f2”, “*f3”, “*f4”, “*f5”, and “*f6” are used to select a particular
font to be used in setting the text that follows it. The token “*sN”, where N is an integer in the
range 1 to 99 indicates that N point characters are to be used in setting the following text. These
tokens will always be separated from words and other tokens by at least one blank. Note that style
and size changes made in one paragraph do not carry over to the next paragraph, and that many
such changes may appear in a single paragraph.

For each paragraph, try to set as many words per line as possible, ensuring that each word is
followed by at least the width of a blank (which will always appear in the font width table) with
the same point size and style as the characters in the preceding word, except for the last word on
the line. The last word in a typeset line must not have any following space.

When scaling fonts, round the scaled character widths to the nearest integer, rounding upward
in cases where the rounded value is half way between two consecutive integers. Thus, if a particular
10 point character occupies 9 units of space, a 15 point character would occupy 14 units of space,
as would a 16 point character. A 14 point character, however, would occupy only 13 units of space.

Output

For each paragraph, first display the paragraph number (1, 2, ...). Then, for each typeset line in
the paragraph, display the line number, the first and last words on that line, and the total number
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of units of white space that follow the last character printed on the line. (This is just the number
of units of space available on the line not occupied by characters or spaces between characters.)

If a single word exceeds the width of a line, set it on a line by itself. In the output for that
line, show only that single word, and a negative amount of white space equal to the excess width
of the word.

Sample Input

4
A 10 20 30 12 22 32
B 1 2 3 4 5 6
C 9 10 8 3 5 2
2 4 6 3 5 7

2 80
*f2 AAA BBB CCC
ABC *s15 CBA AABC CACA

3 100
AAA
AAA BBB CCC
ABC CBA AABC CACA
0 0

Sample Output

Paragraph 1
Line 1: AAA ... BBB (10 whitespace)
Line 2: CCC ... ABC (14 whitespace)
Line 3: CBA ... CBA (32 whitespace)
Line 4: AABC ... AABC (2 whitespace)
Line 5: CACA (-10 whitespace)
Paragraph 2
Line 1: AAA ... CCC (4 whitespace)
Line 2: ABC ... AABC (26 whitespace)
Line 3: CACA ... CACA (62 whitespace)
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G VTAS - Vessel Traffic Advisory Service

In order to promote safety and efficient use of port facilities, the Association of Coastal Merchants
(ACM) has developed a concept for a Vessel Traffic Advisory Service (VTAS) that will provide
traffic advisories for vessels transiting participating ports.

The concept is built on a computer program that maintains information about the traffic
patterns and reported movements of vessels within the port over multiple days. For each port, the
traffic lanes are defined between waypoints. The traffic lanes have been designated as directional to
provide traffic separation and flow controls. Each port is represented by a square matrix containing
the distances (in nautical miles) along each valid traffic lane. The distances are defined from each
row waypoint to each column waypoint. A distance of 0 indicates that no valid traffic lane exists
between the two waypoints.

Vessel traffic enters the port at a waypoint and transits the traffic lanes. A vessel may begin its
transit at any of the waypoints and must follow a valid connected route via the valid traffic lanes.
A vessel may end its transit at any valid waypoint.

The service provided by the VTAS to transiting vessels includes:

• Projection of arrival times at waypoints

• Notification of invalid routes

• Projected encounters with other vessels on each leg of the transit. An “encounter” occurs
when two vessels are between common waypoints (either traffic lane) at a common time

• Warning of close passing with another vessel in the vicinity of a waypoint (within 3 minutes
of projected waypoint arrival)

Reported times will be rounded to the nearest whole minute. Time is maintained based on a
24 hour clock (i.e. 9 am is 0900, 9 PM is 2100, midnight is 0000). Speed is measured in knots
which is equal to 1 nautical mile per hour.

Input

The input file for the computer program include a Port Specification to provide the description
of the traffic patterns within the port and a Traffic List which contains the sequence of vessels
entering the port and their intended tracks. The end of the input is indicated by a Vessel Name
beginning with an “*”

Port Specification : Number of Waypoints in Port (an integer N)
Waypoint ID List (N single-character designators)
Waypoint Connection Matrix (N rows of N real values specifying

the distances between waypoints in nautical miles)
Traffic List: Vessel Name (alphabetic characters)

Time at first waypoint (on 24-hour clock)
and Planned Transit Speed (in knots)

Planned Route (ordered list of waypoints)
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Output

The output shall provide for each vessel as it enters the port a listing indicating the arrival of the
vessel and its planned speed followed by a table containing the waypoints in its route and projected
arrival at each waypoint. Following this table will be appropriate messages indicating:

• Notification of Invalid Routes

• Projected Encounters on each leg

• Warning of close passing at waypoints

All times are to be printed as four-digit integers with leading zeros when necessary.

Assumptions & Limitations:

1. Vessel names are at most 20 characters long.

2. There are at most 20 waypoints in a port and at most 20 waypoints in any route.

3. There will be at most 20 vessels in port at any time.

4. A vessel will complete its transit in at most 12 hours.

5. No more than 24 hours will elapse between vessel entries.

Sample Input

6
ABCDEF
0 3 0 0 0 0
3 0 0 2 0 0
0 3 0 0 0 0
0 0 0 0 3 0
0 0 2 0 0 4
0 0 0 0 4 0
Tug
2330 12
ABDEF
WhiteSailboat
2345 6
ECBDE
TugWBarge
2355 5
DECBA
PowerCruiser

0 15
FECBA
LiberianFreighter

7 18
ABDXF
ChineseJunk
45 8

ACEF
*****
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Sample Output

Tug entering system at 2330 with a planned speed of 12.0 knots
Waypoint: A B D E F
Arrival: 2330 2345 2355 0010 0030

WhiteSailboat entering system at 2345 with a planned speed of 6.0 knots
Waypoint: E C B D E
Arrival: 2345 0005 0035 0055 0125

TugWBarge entering system at 2355 with a planned speed of 5.0 knots
Waypoint: D E C B A
Arrival: 2355 0031 0055 0131 0207

Projected encounter with Tug on leg between Waypoints D & E
** Warning ** Close passing with Tug at Waypoint D

PowerCruiser entering system at 0000 with a planned speed of 15.0 knots
Waypoint: F E C B A
Arrival: 0000 0016 0024 0036 0048

Projected encounter with Tug on leg between Waypoints F & E
Projected encounter with WhiteSailboat on leg between Waypoints C & B
** Warning ** Close passing with WhiteSailboat at Waypoint B

LiberianFreighter entering system at 0007 with a planned speed of 18.0 knots
**> Invalid Route Plan for Vessel: LiberianFreighter

ChineseJunk entering system at 0045 with a planned speed of 8.0 knots
**> Invalid Route Plan for Vessel: ChineseJunk
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H Monitoring Wheelchair Patients

A researcher at a rehabilitation facility is studying the use that a patient makes of a motorized
wheelchair in a restricted area at the facility. The chair’s motor is connected to the axle by a chain
drive. Therefore both wheels turn at the same speed and the chair can travel only in a straight line.
The patient can stop the chair, rotate the wheels, and thereby change the direction only while the
wheelchair is stopped. To help monitor its usage, the chair is equipped with a compass, a clock,
and a speedometer. A recording device records each time interval that the chair is in motion, the
average speed during the time interval, and the compass bearing during the time interval. The
compass is a standard compass in which 0o is north, 90o is east, and so forth.

A map of the restricted area is shown. The restricted area is a 200 ft by 400 ft rectangular area
of the lawn. Patients enter the restricted area from the door of a building located on the southern
edge of the restricted area. The door is at the center of the 400 ft southern boundary, as shown in
the figure.

The recording device turns itself on when the patient enters the restricted area through the door
and monitors the patient’s movements for up to 1 hour. Time is measured in seconds from 0 to
3,600, with time 0 being the time the patient initially enters the restricted area through the door.
The device records 4 numbers to describe the motion of the wheelchair during any interval when
the motor is in operation. The first two numbers give the time the motion begins and ends; the
third number gives the speed during the time interval; and the fourth number gives the compass
bearing during the time interval. (During each time interval the wheelchair maintains constant
speed and bearing.) For example, the recorded line

10.6 15.9 2.8 274

would indicate that between times t1 = 10.6 and t2 = 15.9 seconds the wheelchair was traveling at
speed of 2.8 ft/sec with compass bearing (direction) 274o. Times are recorded to 0.1 sec, speeds
are recorded to 0.1 ft/sec, and bearings are recorded to a whole number of degrees.

Your job is to analyze the data from the wheelchair’s recording device. Specifically, you must
determine the following:
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1) Did the patient ever leave the restricted area? If so, determine the first time that the patient
left the restricted area and determine at what point on the perimeter of the restricted area
the wheelchair crossed out of the restricted area. If the patient did not leave the restricted
area, what was the distance from the door to the farthest point the patient reached within
the area?

2) What was the total distance that the patient traveled?

For the purpose of answering these questions, use coordinates with the location (0,0) corre-
sponding to the southwest corner of the restricted area and the location (400,200) corresponding
to the northeast corner. Since the recorder switches on when the patient passes through the door,
the position of the patient at time t = 0.0 is always (200,0). Patients will be traveling north when
they enter the restricted area.

Input

The input data consists of several data sets. The first line of each data set has an integer which
is the number of lines recorded by the device. Each subsequent line in the data set consists of the
four numbers recorded by the device during a particular time interval. The end of data is indicated
by a data set whose first line consists of the number 0.

In the first data set of the sample input, the patient entered through the door (at time 0.0) and
for the first 5 seconds was traveling due north at 3 ft/sec. From time t = 7 to t = 9 he traveled at
a speed of 2 ft/sec with a compass bearing of 30o. He then stopped, changed his bearing to 60o,
and then traveled at 4 ft/sec from time t = 10 to time t = 100. Ten seconds later (at time t = 110)
he headed due north at 2 ft/sec until t = 200.

Output

The output for each data set begins with an identification of that case. The output indicates
whether the patient departed from the restricted area and if so the time and point of departure
on the perimeter. If not, the maximum distance the patient reached from the door is provided.
For each case, the total distance that the patient traveled is provided. Format your output so that
the same labeling information is included as shown in the sample output, with a line of asterisks
separating the cases.

Assumptions and requirements:

1. Within each data set, time intervals will be listed in chronological order, with the first time
interval always having time 0.0 as the time of entry into the restricted area. All times will be
given with one decimal place accuracy and will be in the range 0.0 to 3600.0 inclusive. For
each time interval specified, the duration of the time interval will be positive, i.e. the second
time specified will be greater than the first.

2. Speeds will be in the range 0.1 to 9.9 ft/sec.

3. Compass bearings will be given as a whole number of degrees and will be in the range 0 to
359 inclusive. The initial compass bearing for the first line of data in each data set will be 0.

4. Within each line of data, numbers will be separated by at least one blank space.
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5. All numerical results will be displayed with one decimal place of accuracy as shown in the
sample output.

6. If the patient goes out of the restricted area, his location may include negative coordinates.
However, you don’t have to worry about the wheelchair crashing through the walls of the
building.

Sample Input

4
0.0 5.0 3.0 0
7.0 9.0 2.0 30
10.0 100.0 4.0 60
110.0 200.0 2.0 0
3
0.0 20.0 2.0 0
500.0 600.0 1.0 270
3000.0 3100.0 1.0 0
7
0.0 5.3 2.1 0
19.8 35.6 2.7 346
42.0 78.4 2.3 15
1181.4 1192.1 1.7 117
2107.0 2193.6 2.1 295
2196.3 2201.2 2.0 298
2704.3 2709.2 1.5 208
0

Sample Output

Case Number 1
Left restricted area at point (400.0,132.8) and time 67.2 sec.
Total distance traveled was 559.0 feet
***************************************
Case Number 2
No departure from restricted area
Maximum distance patient traveled from door was 172.0 feet
Total distance traveled was 240.0 feet
***************************************
Case Number 3
Left restricted area at point (67.0,200.0) and time 2191.4 sec.
Total distance traveled was 354.7 feet
***************************************
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A Jill’s Bike

Jill Bates hates climbing hills. Jill rides a bicycle everywhere she goes, but she always wants to go
the easiest and shortest way possible. The good news is that she lives in Greenhills, which has all
its roads laid out in a strictly rectangular grid – east-west roads are streets; north-south roads are
avenues and the distance between any two adjacent grid points is the same. The bad news is that
Greenhills is very hilly and has many one-way roads.

In choosing a route between where she starts and where she ends, Jill has three rules:

1. Avoid any climb of more than 10 meters between adjacent grid points.

2. Never go the wrong way on a one-way road.

3. Always travel the shortest possible route.

Your program should help Jill find an acceptable route.

Input

The input file contains data in the following form:

• The first line contains two integers, separated by one or more spaces. The first integer n
represents the number of streets, and the second integer m represents the number of avenues,
1 ≤ n ≤ 20, 1 ≤ m ≤ 20.

• The next n lines contain the altitudes of grid points. Each line represents a street and
contains a sequence of m integers separated by one or more spaces. These integers represent
the altitude in meters of the grid points along that street. Even if a particular street and
avenue have no intersection, the altitude is still given for that grid point.

• One or more lines follow that define the one-way roads. Each road is represented by two
pairs of integers, separated by one or more spaces, in the form:

street avenue street avenue

The first street and avenue define the starting point of the road and the second pair define
the ending point. Since Greenhills is a strict grid, if the two points are not adjacent in the
grid, the road passes through all the intervening grid points. For example,

5 7 5 10

represents roads 5-7 to 5-8, 5-8 to 5-9, and 5-9 to 5-10. Road definitions are terminated by
a line containing four zeroes in the above format.

• Finally, one or more lines will follow that contain pairs of grid points between which Jill
wants to find an optimal path, in the form:

street avenue street avenue

As before, the integer pairs are separated by one or more spaces. The end of the input set is
defined by a line containing four zeroes, formatted as before.

You may assume that all street and avenue numbers are within the bounds defined by the first
line of input, and that all road definitions are strictly north-south or east-west.
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Output

For each path query in the input file, output a sequence of grid points, from the starting grid
point to the ending grid point, which meets Jill’s three rules. Output grid points as ‘street-avenue’
separated by the word ‘to’. If there is more than one path that meets Jill’s criteria, any such path
will be acceptable. If no route satisfies all the criteria, or if the starting and ending grid points are
the same, output an appropriate message to that effect. Output a blank line between each output
set.

Sample Input

3 4
10 15 20 25
19 30 35 30
10 19 26 20
1 1 1 4
2 1 2 4
3 4 3 3
3 3 1 3
1 4 3 4
2 4 2 1
1 1 2 1
0 0 0 0
1 1 2 2
2 3 2 3
2 2 1 1
0 0 0 0

Diagram of the Sample Input

Sample Output

1-1 to 1-2 to 1-3 to 1-4 to 2-4 to 2-3 to 2-2

To get from 2-3 to 2-3, stay put!

There is no acceptable route from 2-2 to 1-1.
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B Tempus et mobilius. Time and motion

Tempus est mensura motus rerum mobilium.

Time is the measure of movement.

–Auctoritates Aristotelis

...and movement has long been used to measure time. For example, the ball clock is a simple device
which keeps track of the passing minutes by moving ball- bearings. Each minute, a rotating arm
removes a ball bearing from the queue at the bottom, raises it to the top of the clock and deposits
it on a track leading to indicators displaying minutes, five-minutes and hours. These indicators
display the time between 1:00 and 12:59, but without ‘a.m.’ or ‘p.m.’ indicators. Thus 2 balls in
the minute indicator, 6 balls in the five- minute indicator and 5 balls in the hour indicator displays
the time 5:32.

Unfortunately, most commercially available ball clocks do not incorporate a date indication,
although this would be simple to do with the addition of further carry and indicator tracks.
However, all is not lost! As the balls migrate through the mechanism of the clock, they change
their relative ordering in a predictable way. Careful study of these orderings will therefore yield
the time elapsed since the clock had some specific ordering. The length of time which can be
measured is limited because the orderings of the balls eventually begin to repeat. Your program
must compute the time before repetition, which varies according to the total number of balls
present.

Operation of the Ball Clock

Every minute, the least recently used ball is removed from the queue of balls at the bottom of
the clock, elevated, then deposited on the minute indicator track, which is able to hold four balls.
When a fifth ball rolls on to the minute indicator track, its weight causes the track to tilt. The
four balls already on the track run back down to join the queue of balls waiting at the bottom in
reverse order of their original addition to the minutes track. The fifth ball, which caused the tilt,
rolls on down to the five-minute indicator track. This track holds eleven balls. The twelfth ball
carried over from the minutes causes the five-minute track to tilt, returning the eleven balls to the
queue, again in reverse order of their addition. The twelfth ball rolls down to the hour indicator.
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The hour indicator also holds eleven balls, but has one extra fixed ball which is always present so
that counting the balls in the hour indicator will yield an hour in the range one to twelve. The
twelfth ball carried over from the five-minute indicator causes the hour indicator to tilt, returning
the eleven free balls to the queue, in reverse order, before the twelfth ball itself also returns to the
queue.

Input

The input defines a succession of ball clocks. Each clock operates as described above. The clocks
differ only in the number of balls present in the queue at one o’clock when all the clocks start.
This number is given for each clock, one per line and does not include the fixed ball on the hours
indicator. Valid numbers are in the range 27 to 127. A zero signifies the end of input.

Output

For each clock described in the input, your program should report the number of balls given in the
input and the number of days (24-hour periods) which elapse before the clock returns to its initial
ordering.

Sample Input

30
45
0

Sample Output

30 balls cycle after 15 days.
45 balls cycle after 378 days.
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C Variable Radix Huffman Encoding

Huffman encoding is a method of developing an optimal encoding of the symbols in a source
alphabet using symbols from a target alphabet when the frequencies of each of the symbols in the
source alphabet are known. Optimal means the average length of an encoded message will be
minimized. In this problem you are to determine an encoding of the first N uppercase letters (the
source alphabet, S1 through SN , with frequencies f1 through fN ) into the first R decimal digits
(the target alphabet, T1 through TR).

Consider determining the encoding when R = 2. Encoding proceeds in several passes. In each
pass the two source symbols with the lowest frequencies, say S1 and S2, are grouped to form a new
“combination letter” whose frequency is the sum of f1 and f2. If there is a tie for the lowest or
second lowest frequency, the letter occurring earlier in the alphabet is selected. After some number
of passes only two letters remain to be combined. The letters combined in each pass are assigned
one of the symbols from the target alphabet.

The letter with the lower frequency is assigned the code 0, and the other letter is assigned the
code 1. (If each letter in a combined group has the same frequency, then 0 is assigned to the one
earliest in the alphabet. For the purpose of comparisons, the value of a “combination letter” is
the value of the earliest letter in the combination.) The final code sequence for a source symbol
is formed by concatenating the target alphabet symbols assigned as each combination letter using
the source symbol is formed.

The target symbols are concatenated in the reverse order that they are assigned so that the
first symbol in the final code sequence is the last target symbol assigned to a combination letter.

The two illustrations below demonstrate the process for R = 2.

Symbol Frequency
A 5
B 7
C 8
D 15

Pass 1: A and B grouped
Pass 2: {A,B} and C grouped

Pass 3: {A,B,C} and D grouped
Resulting codes: A=110, B=111, C=10, D=0
Avg. length=(3*5+3*7+2*8+1*15)/35=1.91

Symbol Frequency
A 7
B 7
C 7
D 7

Pass 1: A and B grouped
Pass 2: C and D grouped

Pass 3: {A,B} and {C,D} grouped
Resulting codes: A=00, B=01, C=10, D=11
Avg. length=(2*7+2*7+2*7+2*7)/28=2.00

When R is larger than 2, R symbols are grouped in each pass. Since each pass effectively
replaces R letters or combination letters by 1 combination letter, and the last pass must combine
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R letters or combination letters, the source alphabet must contain k ∗ (R− 1) + R letters, for some
integer k.

Since N may not be this large, an appropriate number of fictitious letters with zero frequen-
cies must be included. These fictitious letters are not to be included in the output. In making
comparisons, the fictitious letters are later than any of the letters in the alphabet.

Now the basic process of determining the Huffman encoding is the same as for the R = 2 case.
In each pass, the R letters with the lowest frequencies are grouped, forming a new combination
letter with a frequency equal to the sum of the letters included in the group. The letters that were
grouped are assigned the target alphabet symbols 0 through R − 1. 0 is assigned to the letter in
the combination with the lowest frequency, 1 to the next lowest frequency, and so forth. If several
of the letters in the group have the same frequency, the one earliest in the alphabet is assigned the
smaller target symbol, and so forth.

The illustration below demonstrates the process for R = 3.

Symbol Frequency
A 5
B 7
C 8
D 15

Pass 1: ? (fictitious symbol), A and B are grouped
Pass 2: {?,A,B}, C and D are grouped

Resulting codes: A=11, B=12, C=0, D=2
Avg. length=(2*5+2*7+1*8+1*15)/35=1.34

Input

The input will contain one or more data sets, one per line. Each data set consists of an integer value
for R (between 2 and 10), an integer value for N (between 2 and 26), and the integer frequencies
f1 through fN , each of which is between 1 and 999.

The end of data for the entire input is the number 0 for R; it is not considered to be a separate
data set.

Output

For each data set, display its number (numbering is sequential starting with 1) and the average
target symbol length (rounded to two decimal places) on one line. Then display the N letters
of the source alphabet and the corresponding Huffman codes, one letter and code per line. The
examples below illustrate the required output format.

Sample Input

2 5 5 10 20 25 40
2 5 4 2 2 1 1
3 7 20 5 8 5 12 6 9
4 6 10 23 18 25 9 12
0
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Sample Output

Set 1; average length 2.10
A: 1100
B: 1101
C: 111
D: 10
E: 0

Set 2; average length 2.20
A: 11
B: 00
C: 01
D: 100
E: 101

Set 3; average length 1.69
A: 1
B: 00
C: 20
D: 01
E: 22
F: 02
G: 21

Set 4; average length 1.32
A: 32
B: 1
C: 0
D: 2
E: 31
F: 33
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D Sail Race

The Atlantic Coastal Mariners (ACM) sailing club is building a race planning tool to estimate
durations of sailboat races with various race courses, wind directions, and types of sailboats. You
must write a program to help with that task.

A race course is defined by marks with up to 10 marks per race course. A sailboat must sail to
all marks in the specified order. The marks are identified as x- and y-coordinates on a hypothetical
grid with a single unit equal to one nautical mile (nm). The positive y-axis is oriented due north and
the positive x-axis is oriented due east. The race course is in open waters without any navigational
limitations.

For purposes of this planning tool, the only driving force controlling a sailboat is the wind.
The wind determines the sailboat’s speed of advance and limits its direction of travel. The wind
is constant for the duration of each race and is specified in terms of the direction from which the
wind is blowing and its speed in nautical miles per hour (kts). Wind direction is specified as a
compass bearing in degrees measured clockwise from 000.0o as north.

Sailboats cannot steer any closer to the wind than a given “point angle” off the wind direction.
In order to make progress closer to the wind direction, the sailboat must tack back and forth across
the wind, steering no closer to the wind than its point angle. Each time the sailboat tacks or passes
a mark it incurs a tack penalty. For this simulation, each sailboat will travel each leg of a race (the
portion of a race between successive marks) with the minimum number of tacks and the minimum
possible distance. Courses and directions are specified as compass bearings in degrees measured
clockwise from 000.0o as north.

The speed of a sailboat is determined by the sailboat design, wind speed, and direction steered
relative to the wind. In the figure, the wind direction is 45o and the point angle is 40o. This means
then that this sailboat cannot steer between 5o and 85o because it cannot point that closely into
the wind.

For this problem, the ratio of sailboat speed to wind speed is one of three ratios, selected as
shown in the table below according to the angle off the wind :

Angle off wind Applicable ratio
≥ point angle and < reach angle point speed ratio
≥ reach angle and < downwind angle reach speed ratio
≥ downwind angle downwind speed ratio

For instance, if the boat is steering at an angle off the wind which is between the reach angle
and downwind angle then

boat speed = reach speed ratio × wind speed
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Point angle is 40o

Reach angle is 60o

Downwind angle is 145o

Sailboat cannot travel from P in this
direction

Sailboat traveling from P in this direc-
tion moves at point speed ratio times
wind speed

Sailboat traveling from P in this direc-
tion moves at reach speed ratio times
wind speed

Sailboat traveling from P in this di-
rection moves at downwind speed ratio
times wind

Each angle is measured as the small-
est angle between the direction of travel
of the sailboat and the direction from
which the wind is blowing.

Input

Your solution must accept multiple input data sets. Each data set represents a different race
course to be evaluated for a single sailboat. The data set begins with a line with 4 numbers: wind
direction (real), wind speed (real), tack penalty (real), and number of marks n (integer). The
next line contains six real numbers: point angle, point speed ratio, reach angle, reach speed ratio,
downwind angle, downwind speed ratio.

The subsequent n lines of the data set represent the n race marks in the order in which they
must be reached. Each line begins with a 2-character mark id followed by the x-coordinate then
y-coordinate of the mark.

The end of input is denoted by a line of four 0’s.

Output

The output for your program consists of various data calculated for each input data set. Values
should be presented with the following precisions and units.

Courses, tacks, directions 0.1 degree Distance 0.01 nm
Speed 0.1 kts Time 0.01 hours

Output for each race begins with a header containing the number of the data set (1 for the
first, 2 for the second, etc.) and the number of legs. The next line is the total length of the race
course, measured as the sum of distances between successive marks.

For each leg of the course, the leg number, beginning and ending mark id’s, course from the
beginning to end marks of the leg, and the leg distance is presented. This is followed by a listing
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of the tacks necessary to complete the leg. The tacks for each race are numbered sequentially,
with tack numbers beginning with 1 for each race. For each tack, the tack number, the projected
sailboat speed, the course steered, and the length of that tack are presented.

The summary output for each data set includes the total number of tacks, the total distance
traveled for the race, the estimated race duration, and the total tack penalty time incurred by the
sailboat after leaving the first mark.

The exact format of the output is not specified, but all output should be organized so that it
is in the specified order, appropriately labeled and follows given numeric specifications.

Sample Input

45 10 .1 6
45 0.5 90 0.75 135 0.67
M1 15 10
M2 25 20
M3 22 30
M4 5 25
M5 10 15
M6 10 10
0 0 0 0

Sample Output

========================
Race 1 has 5 legs
The race layout is 58.48 nm long
-----------------------------

Leg 1 from Mark M1 to M2 == > Direction: 45.0 Distance: 14.14 nm
Tack 1 ==> Speed: 5.0 Direction: 90.0 Distance: 10.00 nm
Tack 2 ==> Speed: 5.0 Direction: 0.0 Distance: 10.00 nm

Leg 2 from Mark M2 to M3 == > Direction: 343.3 Distance: 10.44 nm
Tack 3 ==> Speed: 5.0 Direction: 343.3 Distance: 10.44 nm

Leg 3 from Mark M3 to M4 == > Direction: 253.6 Distance: 17.72 nm
Tack 4 ==> Speed: 6.7 Direction: 253.6 Distance: 17.72 nm

Leg 4 from Mark M4 to M5 == > Direction: 153.4 Distance: 11.18 nm
Tack 5 ==> Speed: 7.5 Direction: 153.4 Distance: 11.18 nm

Leg 5 from Mark M5 to M6 == > Direction: 180.0 Distance: 5.00 nm
Tack 6 ==> Speed: 6.7 Direction: 180.0 Distance: 5.00 nm

--------------------------------
Race 1 was 64.34 nm long with 6 tack legs
Estimated Race Duration is 11.47 hours with 0.50 hours of Tack Penalty
===========================
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E Stamps and Envelope Size

Philatelists have collected stamps since long before postal workers were disgruntled. An excess of
stamps may be bad news to a country’s postal service, but good news to those that collect the
excess stamps. The postal service works to minimize the number of stamps needed to provide
seamless postage coverage. To this end you have been asked to write a program to assist the postal
service.

Envelope size restricts the number of stamps that can be used on one envelope. For example,
if 1 cent and 3 cent stamps are available and an envelope can accommodate 5 stamps, all postage
from 1 to 13 cents can be “covered”:

Postage Number of 16 c Stamps Number of 36 c Stamps
1 1 0
2 2 0
3 0 1
4 1 1
5 2 1
6 0 2
7 1 2
8 2 2
9 0 3
10 1 3
11 2 3
12 0 4
13 1 4

Although five 3 cent stamps yields an envelope with 15 cents postage, it is not possible to cover
an envelope with 14 cents of stamps using at most five 1 and 3 cent stamps. Since the postal
service wants maximal coverage without gaps, the maximal coverage is 13 cents.

Input

The first line of each data set contains the integer S, representing the maximum of stamps that
an envelope can accommodate. The second line contains the integer N , representing the number
of sets of stamp denominations in the data set. Each of the next N lines contains a set of stamp
denominations. The first integer on each line is the number of denominations in the set, followed by
a list of stamp denominations, in order from smallest to largest, with each denomination separated
from the others by one or more spaces. There will be at most S denominations on each of the N
lines. The maximum value of S is 10, the largest stamp denomination is 100, the maximum value
of N is 10.

The input is terminated by a data set beginning with zero (S is zero).

Output

Output one line for each data set giving the maximal no-gap coverage followed by the stamp
denominations that yield that coverage in the following format:

max coverage = < value > : < denominations >
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If more than one set of denominations in a set yields the same maximal no-gap coverage, the set
with the fewest number of denominations should be printed (this saves on stamp printing costs). If
two sets with the same number of denominations yield the same maximal no-gap coverage, then the
set with the lower maximum stamp denomination should be printed. For example, if five stamps
fit on an envelope, then stamp sets of 1, 4, 12, 21 and 1, 5, 12, 28 both yield maximal no-gap
coverage of 71 cents. The first set would be printed because both sets have the same number of
denominations but the first set’s largest denomination (21) is lower than that of the second set
(28). If multiple sets in a sequence yield the same maximal no-gap coverage, have the same number
of denominations, and have equal largest denominations, then any one of the sets is acceptable.

Sample Input

5
2
4 1 4 12 21
4 1 5 12 28
10
2
5 1 7 16 31 88
5 1 15 52 67 99
6
2
3 1 5 8
4 1 5 7 8
0

Sample Output

max coverage = 71 : 1 4 12 21
max coverage = 409 : 1 7 16 31 88
max coverage = 48 : 1 5 7 8
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F Theseus and the Minotaur

Those of you with a classical education may remember the legend of Theseus and the Minotaur.
This is an unlikely tale involving a bull-headed monster, lovelorn damsels, balls of silk and an
underground maze full of twisty little passages all alike. In line with the educational nature of this
contest, we will now reveal the true story.

The maze was a series of caverns connected by passages. Theseus managed to smuggle into the
labyrinth with him a supply of candles and a small tube of phosphorescent paint with which he
could mark his way, or, more specifically, the exits he used. He knew that he would be lowered
into a passage between two caverns, and that if he could find and kill the Minotaur he would be
set free. His intended strategy was to move cautiously along a passage until he came to a cavern
and then turn right (he was left-handed and wished to keep his sword away from the wall) and feel
his way around the edge of the cavern until he came to an exit. If this was unmarked, he would
mark it and enter it; if it was marked he would ignore it and continue around the cavern. If he
heard the Minotaur in a cavern with him, he would light a candle and kill the Minotaur, since the
Minotaur would be blinded by the light. If, however, he met the Minotaur in a passage he would
be in trouble, since the size of the passage would restrict his movements and he would be unable
to either light a candle or fight adequately. When he entered a cavern that had been previously
entered by the Minotaur he would light a candle and leave it there and then turn right (as usual)
but take the Minotaur’s exit.

In the meantime, the Minotaur was also searching for Theseus. He was bigger and slower-
moving but he knew the caverns well and hence, unlikely as it may seem, every time he emerged
from a passage into a cavern, so did Theseus, albeit usually in a different one. The Minotaur turned
left when he entered a cavern and traveled clockwise around it until he came to an unmarked (by
him) exit, at which point he would mark it and take it. If he sensed that the cavern he was about
to enter had a candle burning in it, he would turn and flee back up the passage he had just used,
arriving back at the previous cavern to complete his ‘turn.’

Consider the following labyrinth as an example

Assume that Theseus starts off between A and C going toward C, and that the Minotaur starts
off between F and H going toward H. After entering C, Theseus will move to D, whereas the
Minotaur, after entering H will move to G. Theseus will then move towards G while the Minotaur
will head for D and Theseus will be killed in the corridor between D and G. If, however, Theseus
starts off as before and the Minotaur starts off between D and G then, while Theseus moves from
C to D to G, the Minotaur moves from G to E to F. When Theseus enters G he detects that the
Minotaur has been there before him and heads for E, and not for H, reaching it as the Minotaur
reaches H. The Minotaur is thwarted in his attempt to get to G and turns back, arriving in H just
as Theseus, still ‘following’ the Minotaur arrives in F. The Minotaur tries E and is again thwarted
and arrives back at H just as Theseus arrives in hot pursuit. Thus the Minotaur is slain in H.
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Write a program that will simulate Theseus’ pursuit of the Minotaur.

Input

Input will consist of a series of labyrinths. Each labyrinth will contain a series of cavern descriptors,
one per line. Each line will contain a cavern identifier (a single upper case character) followed by
a colon (:) and a list of caverns reachable from it (in counterclockwise order). No cavern will be
connected to itself. The cavern descriptors will not be ordered in any way. The description of a
labyrinth will be terminated by a line starting with a @ character, followed by two pairs of cavern
identifiers. The first pair indicates the passage in which Theseus starts, and the second in which
the Minotaur starts. The travel in a starting passage is toward the cavern whose identifier is the
second character in the pair. The file will be terminated by a line consisting of a single #.

A final encounter is possible for each input data set.

Output

Output will consist of one line for each labyrinth. Each line will specify who gets killed and where.
Note that if the final encounter takes place in a passage it should be specified from Theseus’ point
of view. Follow the format shown in the example below exactly, which describes the situations
referred to above.

Sample Input

A:BCD
D:BACG
F:HE
G:HED
B:AD
E:FGH
H:FEG
C:AD
@ACFH
A:BCD
D:BACG
F:HE
G:HED
B:AD
E:FGH
H:FEG
C:AD
@ACDG
#

Sample Output

Theseus is killed between D and G
The Minotaur is slain in H
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G Train Time

City transportation planners are developing a light rail transit system to carry commuters between
the suburbs and the downtown area. Part of their task includes scheduling trains on different
routes between the outermost stations and the metro center hub.

Part of the planning process consists of a simple simulation of train travel. A simulation consists
of a series of scenarios in which two trains, one starting at the metro center and one starting at the
outermost station of the same route, travel toward each other along the route. The transportation
planners want to find out where and when the two trains meet. You are to write a program to
determine those results.

This model of train travel is necessarily simplified. All scenarios are based on the following
assumptions.

1. All trains spend a fixed amount of time at each station.

2. All trains accelerate and decelerate at the same constant rate. All trains have the same
maximum possible velocity.

3. When a train leaves a station, it accelerates (at a constant rate) until it reaches its maximum
velocity. It remains at that maximum velocity until it begins to decelerate (at the same
constant rate) as it approaches the next station. Trains leave stations with an initial velocity
of zero (0.0) and they arrive at stations with terminal velocity zero. Adjacent stations on
each route are far enough apart to allow a train to accelerate to its maximum velocity before
beginning to decelerate.

4. Both trains in each scenario make their initial departure at the same time.

5. There are at most 30 stations along any route.

Input

All input values are real numbers. Data for each scenario are in the following format.

d1 d2 . . . dn 0.0 For a single route, the list of distances (in miles – there are 5,280 feet
in a mile) from each station to the metro center hub, separated by one
or more spaces. Stations are listed in ascending order, starting with
the station closest to the metro center hub (station 1) and continuing
to the outermost station. All distances are greater than zero. The
list is terminated by the sentinel value 0.0.

v The maximum train velocity, in feet/minute.
s The constant train acceleration rate in feet/minute2.
m The number of minutes a train stays in a station.

The series of runs is terminated by a data set which begins with the number -1.0.

Output

For each scenario, output consists of the following labeled data.

1. The number of the scenario (numbered consecutively, starting with Scenario #1).
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2. The time when the two trains meet in terms of minutes from starting time. All times must
be displayed to one decimal place. Also, if the trains meet in a station, output the station
number where they meet.

3. The distance in miles between the metro center hub and the place where the two trains meet.
Distances must be displayed to three decimal places.

Sample Input

15.0 0.0
5280.0
10560.0
5.0
3.5 7.0 0.0
5280.0
10560.0
2.0
3.4 7.0 0.0
5280.0
10560.0
2.0
-1.0

Sample Output

Scenario #1:
Meeting time: 7.8 minutes
Meeting distance: 7.500 miles from metro center hub

Scenario #2:
Meeting time: 4.0 minutes
Meeting distance: 3.500 miles from metro center hub, in station 1

Scenario #3:
Meeting time: 4.1 minutes
Meeting distance: 3.400 miles from metro center hub, in station 1
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H Uncompress

A simple scheme for creating a compressed version of a text file can be used for files which contain no
digit characters. The compression scheme requires making a list of the words in the uncompressed
file. When a non-alphabetic character is encountered in the uncompressed file, it is copied directly
into the compressed file. When a word is encountered in the uncompressed file, it is copied directly
into the compressed file only if this is the first occurrence of the word. In that case, the word is put
at the front of the list. If it is not the first occurrence, the word is not copied to the compressed
file. Instead, its position in the list is copied into the compressed file and the word is moved to the
front of the list. The numbering of list positions begins at 1.

Write a program that takes a compressed file as input and generates a reproduction of the orig-
inal uncompressed file as output. You can assume that no word contains more than 50 characters
and that the original uncompressed file contains no digit characters.

For the purposes of this problem, a word is defined to be a maximal sequence of upper- and
lower-case letters. Words are case-sensitive – the word abc is not the same as the word Abc. For
example,

x-ray contains 2 words: x and ray
Mary’s contains 2 words: Mary and s
It’s a winner contains 4 words: It and s and a and winner

There is no upper limit on the number of different words in the input file. The end of the input
file is signified by the number 0 on a line by itself. The terminating 0 merely indicates the end of
the input and should not be part of the output produced by your program.

Sample Input

Dear Sally,

Please, please do it--1 would 4
Mary very, 1 much. And 4 6
8 everything in 5’s power to make
14 pay off for you.

-- Thank 2 18 18--
0

Sample Output

Dear Sally,

Please, please do it--it would please
Mary very, very much. And Mary would
do everything in Mary’s power to make
it pay off for you.

-- Thank you very much--
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A 10-20-30

A simple solitaire card game called 10-20-30 uses a standard deck of 52 playing cards in which suit
is irrelevant. The value of a face card (king, queen, jack) is 10. The value of an ace is one. The
value of each of the other cards is the face value of the card (2, 3, 4, etc.). Cards are dealt from
the top of the deck. You begin by dealing out seven cards, left to right forming seven piles. After
playing a card on the rightmost pile, the next pile upon which you play a card is the leftmost pile.

For each card placed on a pile, check that pile to see if one of the following three card combi-
nations totals 10, 20, or 30.

1. the first two and last one,
2. the first one and the last two, or
3. the last three cards.

If so, pick up the three cards and place them on the bottom of the deck. For this problem,
always check the pile in the order just described. Collect the cards in the order they appear on the
pile and put them at the bottom of the deck. Picking up three cards may expose three more cards
that can be picked up. If so, pick them up. Continue until no more sets of three can be picked up
from the pile.

For example, suppose a pile contains 5 9 7 3 where the 5 is at the first card of the pile, and
then a 6 is played. The first two cards plus the last card (5 + 9 + 6) sum to 20. The new contents
of the pile after picking up those three cards becomes 7 3. Also, the bottommost card in the deck
is now the 6, the card above it is the 9, and the one above the 9 is the 5.

If a queen were played instead of the six, 5 + 9 + 10 = 24, and 5 + 3 + 10 = 18, but 7 + 3 +
10 = 20, so the last three cards would be picked up, leaving the pile as 5 9.
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If a pile contains only three cards when the three sum to 10, 20, or 30, then the pile ”disappears”
when the cards are picked up. That is, subsequent play skips over the position that the now-empty
pile occupied. You win if all the piles disappear. You lose if you are unable to deal a card. It is
also possible to have a draw if neither of the previous two conditions ever occurs.

Write a program that will play games of 10-20-30 given initial card decks as input.

Input

Each input set consists of a sequence of 52 integers separated by spaces and/or ends of line. The
integers represent card values of the initial deck for that game. The first integer is the top card of
the deck. Input is terminated by a single zero (0) following the last deck.

Output

For each input set, print whether the result of the game is a win, loss, or a draw, and print the
number of times a card is dealt before the game results can be determined. (A draw occurs as soon
as the state of the game is repeated.) Use the format shown in the “Sample Output” section.

Sample Input

2 6 5 10 10 4 10 10 10 4 5 10 4 5 10 9 7 6 1 7 6 9 5 3 10 10 4 10 9 2 1
10 1 10 10 10 3 10 9 8 10 8 7 1 2 8 6 7 3 3 8 2
4 3 2 10 8 10 6 8 9 5 8 10 5 3 5 4 6 9 9 1 7 6 3 5 10 10 8 10 9 10 10 7
2 6 10 10 4 10 1 3 10 1 1 10 2 2 10 4 10 7 7 10
10 5 4 3 5 7 10 8 2 3 9 10 8 4 5 1 7 6 7 2 6 9 10 2 3 10 3 4 4 9 10 1 1
10 5 10 10 1 8 10 7 8 10 6 10 10 10 9 6 2 10 10
0

Sample Output

Win : 66
Loss: 82
Draw: 73
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B Calling Circles

If you’ve seen television commercials for long-distance phone companies lately, you’ve noticed that
many companies have been spending a lot of money trying to convince people that they provide
the best service at the lowest cost. One company has “calling circles.” You provide a list of people
that you call most frequently. If you call someone in your calling circle (who is also a customer of
the same company), you get bigger discounts than if you call outside your circle. Another company
points out that you only get the big discounts for people in your calling circle, and if you change
who you call most frequently, it’s up to you to add them to your calling circle.

LibertyBell Phone Co. is a new company that thinks they have the calling plan that can put
other companies out of business. LibertyBell has calling circles, but they figure out your calling
circle for you. This is how it works. LibertyBell keeps track of all phone calls. In addition to
yourself, your calling circle consists of all people whom you call and who call you, either directly
or indirectly.

For example, if Ben calls Alexander, Alexander calls Dolly, and Dolly calls Ben, they are all
within the same circle. If Dolly also calls Benedict and Benedict calls Dolly, then Benedict is in
the same calling circle as Dolly, Ben, and Alexander. Finally, if Alexander calls Aaron but Aaron
doesn’t call Alexander, Ben, Dolly, or Benedict, then Aaron is not in the circle.

You’ve been hired by LibertyBell to write the program to determine calling circles given a log
of phone calls between people.

Input

The input file will contain one or more data sets. Each data set begins with a line containing
two integers, n and m. The first integer, n, represents the number of different people who are
in the data set. The maximum value for n is 25. The remainder of the data set consists of m
lines, each representing a phone call. Each call is represented by two names, separated by a single
space. Names are first names only (unique within a data set), are case sensitive, and consist of
only alphabetic characters; no name is longer than 25 letters.

For example, if Ben called Dolly, it would be represented in the data file as

Ben Dolly

Input is terminated by values of zero (0) for n and m.

Output

For each input set, print a header line with the data set number, followed by a line for each calling
circle in that data set. Each calling circle line contains the names of all the people in any order
within the circle, separated by comma-space (a comma followed by a space). Output sets are
separated by blank lines.
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Sample Input

5 6
Ben Alexander
Alexander Dolly
Dolly Ben
Dolly Benedict
Benedict Dolly
Alexander Aaron
14 34
John Aaron
Aaron Benedict
Betsy John
Betsy Ringo
Ringo Dolly
Benedict Paul
John Betsy
John Aaron
Benedict George
Dolly Ringo
Paul Martha
George Ben
Alexander George
Betsy Ringo
Alexander Stephen
Martha Stephen
Benedict Alexander
Stephen Paul
Betsy Ringo
Quincy Martha
Ben Patrick
Betsy Ringo
Patrick Stephen
Paul Alexander
Patrick Ben
Stephen Quincy
Ringo Betsy
Betsy Benedict
Betsy Benedict
Betsy Benedict
Betsy Benedict
Betsy Benedict
Betsy Benedict
Quincy Martha
0 0

Sample Output

Calling circles for data set 1:
Ben, Alexander, Dolly, Benedict
Aaron

Calling circles for data set 2:
John, Betsy, Ringo, Dolly
Aaron
Benedict
Paul, George, Martha, Ben, Alexander, Stephen, Quincy, Patrick
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C Cutting Corners

Bicycle messengers who deliver documents and small items to businesses have long been part of
the guerrilla transportation services in several major U.S. cities. The cyclists of Boston are a rare
breed of riders. They are notorious for their speed, their disrespect for one-way streets and traffic
signals, and their brazen disregard for cars, taxis, buses, and pedestrians.

Bicycle messenger services are very competitive. Billy’s Bicycle Messenger Service is no excep-
tion. To boost its competitive edge and to determine its actual expenses, BBMS is developing a
new scheme for pricing deliveries that depends on the shortest route messengers can travel. You
are to write a program to help BBMS determine the distances for these routes.

The following assumptions help simplify your task:

• Messengers can ride their bicycles anywhere at ground level except inside buildings.

• Ground floors of irregularly shaped buildings are modeled by the union of the interiors of
rectangles. By agreement any intersecting rectangles share interior space and are part of the
same building.

• The defining rectangles for two separate buildings never touch, although they can be quite
close. (Bicycle messengers- skinny to a fault-can travel between any two buildings. They
can cut the sharpest corners and run their skinny tires right down the perimeters of the
buildings.)

• The starting and stopping points are never inside buildings.

• There is always some route from the starting point to the stopping point.

Your program must be able to process several scenarios. Each scenario defines the buildings
and the starting and stopping points for a delivery route. The picture below shows a bird’s-eye
view of a typical scenario.
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Input

The input file represents several scenarios. Input for each scenario consists of lines as follows:

First line: n
The number of rectangles describing the buildings in the scenario. 0 ≤ n ≤ 20

Second line: x1 y1 x2 y2

The x- and y-coordinates of the starting and stopping points of the route.
Remaining n lines: x1 y1 x2 y2 x3 y3

The x- and y-coordinates of three vertices of a rectangle.

The x- and y-coordinates of all input data are real numbers between 0 and 1000 inclusive.
Successive coordinates on a line are separated by one or more blanks. The integer -1 follows the
data of the last scenario.

Output

Output should number each scenario (Scenario #1, Scenario #2, etc.) and give the distance of
the shortest route from starting to stopping point as illustrated in the Sample Output below. The
distance should be written with two digits to the right of the decimal point. Output for successive
scenarios should be separated by blank lines.

Sample Input

5
6.5 9 10 3
1 5 3 3 6 6
5.25 2 8 2 8 3.5
6 10 6 12 9 12
7 6 11 6 11 8
10 7 11 7 11 11
-1

Sample Output

Scenario #1
route distance: 7.28
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D Bang the Drum Slowly

Many years ago the “primary memory” of most computer systems was a magnetic drum.
Read/write heads were placed so they could access data from the magnetic outer surface as the
drum rotated along its horizontal axis. The following illustration gives the basic idea:

As the drum rotated, the data word under the read/write head(s) could be accessed. The drum
continued to rotate after an instruction was fetched. After the execution of an instruction, the
word ready to be accessed by the read/write head(s) was typically many words away. To minimize
the delay that would occur if instructions to be executed sequentially were placed in consecutive
words on the drum, designers of these machines frequently included the next instruction’s drum
address as a field in the instruction (that is, each instruction included an explicit “next instruction”
address). Then “optimizing” assemblers could fill in the next instruction field with the address
of the first available word ready to be read by the drum as soon as the current instruction was
completed.

In this problem we want to determine the average execution times of simple programs without
loops. We will consider only a single read/write head on a single track. Assume that the words
on that track have sequential addresses numbered 1 through n. All instructions require the same
length of time to execute, specifically the same time as it takes the drum to rotate past t words. t
does not include the time to read the instruction from the drum, nor does it include the additional
rotational delay that might be required if the next instruction isn’t at the “optimum” address.
However, these factors must be included in calculating the average execution time.

There are three types of instructions: terminal, conditional and unconditional. Terminal in-
structions don’t have a “next instruction” address, since they terminate the execution of a program.
Conditional instructions have two “next instruction” addresses, and unconditional instructions have
only one “next instruction” address.

The execution time of a program run is the time taken from beginning to read the first in-
struction until the terminal instruction has executed. To calculate the average execution time of
a program, every possible run time is weighted (multiplied) by the probability of the run. We
assume equal probability of taking each path of a branch in a conditional instruction. The sum of
all weighted run times is the average execution time of the program.
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Assumptions:

• At the beginning of each test case the drum is positioned so that the instruction at location 1
is about to be read. Each program begins execution with the word in location 1.

• The time to read an instruction is one time unit.

• There will always be at least one terminal instruction, but there may be several.

Input

The input consists of a number of test cases. The input for each test case begins with a line contain-
ing integer values for n (1 < n < 50) and t (0 < t < n). This line is followed by a sequence of lines
each of which contains integers representing an instruction address and zero, one, or two branch
addresses. Specifically, for each instruction there is a location (between 1 and n), the number of
“next instruction” addresses (0 for a terminal instruction, 1 for an unconditional instruction, and
2 for a conditional instruction), and that many branch addresses. The last instruction is followed
by ‘0’ on a line by itself. The input set is terminated by values of 0 for both n and t.

Output

For each test case, print the case number (they are numbered sequentially starting with 1) and the
average execution time for the program. Execution times must be accurate to and displayed with
four fractional digits.

Sample Input

10 5
1 0
0
10 5
1 1 6
6 0
0
10 5
1 1 7
7 0
0
10 5
1 2 7 8
7 0
8 0
0
10 6
8 0
7 1 3
3 0
1 2 7 8
0
0 0

Sample Output

Case 1. Execution time = 6.0000
Case 2. Execution time = 21.0000
Case 3. Execution time = 12.0000
Case 4. Execution time = 12.5000
Case 5. Execution time = 26.5000



World Finals 1996. Philadelphia, Pennsylvania 107

E Pattern Matching Prelims

Some algorithms for optical character recognition compare a scanned image with templates of
“perfect” characters. Part of the difficulty with such comparisons is deciding where to start the
comparison. This is because the characters in the scanned image are subject to noise and distortion,
resulting in changes in size, position, and orientation.

A procedure that is sometimes used to deal with changes in position matches the “center of
gravity” of the scanned character and the templates against which it is compared. In this problem
you are to determine the “centers of gravity” of scanned images of characters.

For our purposes, a scanned image will be a rectangular array of real numbers, each of which
represents the gray-scale value of a point in a scanned image. Each gray-scale value will be between
0 (representing a totally white region) and 1 (representing a totally black region). The array will
have no more than 25 rows and 25 columns.

The center of gravity is a particular element of an array. Suppose a center of gravity is in the ith
row and jth column. Then the difference between the sum of the elements of the two array portions
above and below the ith row is minimal. Likewise, the difference of the sums of the elements in
the two array portions to the left and to the right of the jth column is minimal.

Consider the array shown below, which might have resulted from scanning a lower case “o.”
The center of gravity for this array is uniquely in row 3, column 3. The difference of the sum of
the elements in each array portion formed by ignoring the third row is 0.1 (the sums are 5.55 and
5.65). The difference of the sum of each array portion formed by ignoring the third column is 0.0
(the sums are both 5.60).

Input

The input will consist of a sequence of scanned character images. Input for each image will begin
with two integers specifying the number of rows and columns in the scanned data. This will be
immediately followed by the scanned gray-scale data given in row-major order. A pair of zeroes
will follow the data for the last input image.

Output

For each input character image, display its number (they are sequentially numbered starting with
1) and the row and column corresponding to the center of gravity. If there is more than one center
of gravity, the one with the largest row and column should be displayed. The sample that follows
illustrates a reasonable output format.
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Sample Input

5 5
0.1 0.2 0.1 0.2 0.1
0.1 0.2 0.3 0.1 0.1
0.2 0.3 0.1 0.1 0.3
0.4 0.1 0.1 0.1 0.2
0.2 0.2 0.3 0.3 0.1

5 10
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.6

0 0

Sample Output

Case 1: center at (3, 3)
Case 2: center at (4, 6)
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F Nondeterministic Trellis Automata

A nondeterministic trellis automaton (NTA) is a kind of parallel machine composed of identical
finite-state processors arranged in an infinite triangular trellis. The top, or apex, of the triangle is
a single processor. The next row has two processors and each successive row of an NTA has one
more processor than the row above it. Each processor in an NTA is connected to two children in
the row below it. Computation in an NTA occurs bottom up; the state of each processor in a row
is based on the state of the processor’s children and a transition table. The input to an NTA is the
initial configuration of one row of processors. The input is specified by a string that gives the initial
state of each processor in a row so that an n-character string specifies the initial configuration for
a row of n processors. Computation proceeds up the NTA to the apex by nondeterministically
calculating the state of each processor in a row based on the transition table and the state of the
processor’s children in the row below.

Some states are identified as accepting states. Some transitions are computed nondeterministi-
cally. An input is accepted if some computation puts the apex processor into an accepting state. An
input is rejected if no computation puts the apex processor into an accepting state. For example,
the table below shows transitions for a 3-state NTA. States are labeled by characters “a”, “b”, and
“c”; the only accepting state is “c”.

The diagram below shows two computations for the input “bba”. The computation on the left
rejects the input since the state of the apex is “a”; but the computation on the right accepts the
input since the state of the apex is “c”. Since some computation results in an accepting state for
the apex, the input “bba” is accepted by the NTA. The input “bbb” would be rejected by this
NTA since the only computation results in the state “a” for the apex.

Input

The states (and inputs) of an NTA are consecutive lowercase letters. Thus the states for a 5-state
NTA are “a”, “b”, “c”, “d”, and “e”. Accepting states are grouped at the end of the letters so
that if a 5-state NTA has two accepting states, the accepting states are “d” and “e”.

The input for your program is a sequence of NTA descriptions and initial configurations. An
NTA description is given by the number of states n followed by the number of accepting states
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on one line separated by whitespace. The n× n transition table follows in row-major order; each
transition string is given on a separate line. Each NTA description is followed by a sequence of
initial configurations, one per line. A line of “#” terminates the sequence of initial configurations
for that NTA. An NTA description in which the number of states is zero terminates the input for
your program. NTAs will have at most 15 states, initial configuration will be at most 15 characters.

Output

For each NTA description, print the number of the NTA (NTA 1, NTA 2, etc. ). For each initial
configuration of an NTA print the word ‘accept’ or ‘reject’ followed by a copy of the initial
configuration.

Sample Input

3 1
a
a
c
ca
a
b
c
b
a
bba
aaaaa
abab
babbba
a
baaab
abbbaba
baba
bcbab
#
3 2
ab
a
c
a
ab
b
c
b
ab
abc
cbc
#
0 0

Sample Output

NTA 1
accept bba
reject abab
accept babbba
reject a
reject aaaaa
accept baaab
accept abbbaba
accept baba
reject bcbab

NTA 2
reject abc
accept cbc
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G Trucking

Allied Container Movers (ACM) is a trucking company that provides overnight freight delivery.
ACM has a distribution network with several intermediate container processing centers (ICPCs).
At an ICPC, an incoming trailer is unloaded at a stripping door. Freight destined for that center
is simply acknowledged as received. Onward shipments are distributed to relay doors based on
their next destinations, where they are loaded onto waiting trailers.

Each ICPC has several stripping doors for unloading incoming trailers. When the number of
trailers to be stripped exceeds the number of stripping doors, incoming trailers are queued until a
door is available. A single trailer may have freight for several different ICPCs. Trailers with freight
destined only for the local ICPC receive a lower priority for access to a stripping door than trailers
with relay freight. In a similar fashion, trailers with relay freight having a closer final destination
have lower priority than trailers with relay freight having a distant final destination. The time
to unload a container and, if necessary, reload all its shipments onto one or more relay trailers
is always 2 hours regardless of the size and number of shipments. A relay trailer is immediately
routed to its next destination when it is full or when all shipments for the day expected for that
destination have been loaded onto the trailer. Shipments are measured as a percent of a trailer
volume and may be subdivided to the nearest percent in order to fill the trailer. There is no delay
between a trailer departing and another trailer becoming available at the relay or stripping doors.
There is never a shortage of trailers for onward distribution.

In order to help ACM assess the efficiency of their network, you must write a program to
determine the average time a trailer waits for access to a stripping door and identify those shipments
which will not arrive in their entirety at their intermediate or final destinations on time.

Input

The input describes a possibly disjoint subset of the network’s ICPCs and traffic patterns that
must be analyzed. The first line of the input contains an integer n which specifies the number of
ICPC descriptions to be processed, 1 ≤ n ≤ 100. This is followed by n descriptions, each describing
one ICPC. Each description begins with a line containing three integers, csd, where c is the center
number, 0 ≤ c ≤ 99, s is the number of stripping doors at center c, 0 ≤ s ≤ 10, and d is the number
of relay doors at center c, 0 ≤ d ≤ 10. There then follow d lines, one for each relay door. Each of
these lines contains three integers, rvl, where r is the relay center’s number, 0 ≤ r ≤ 99, v is the
total volume of shipments to that center for the day expressed as a percentage of trailer volume,
0 ≤ v ≤ 900 and l is the latest acceptable time for shipments to arrive at center r, expressed as
minutes since the start of the day, 0 ≤ l ≤ 1440. (v > 100 indicates that more than a single trailer
must be used.)

The second part of the input describes some of the day’s traffic. This part begins with one
integer m on a line by itself indicating the number of trailer arrival records that follow, 1 ≤ m ≤ 100.
Each record begins with a line containing three integers, acs, where a is the trailer’s arrival time
expressed as minutes since the start of the day, 0 ≤ a ≤ 1440, at center number c, and s is the
number of shipments in the trailer, 0 ≤ s ≤ 10. Then all s shipments are described by s lines of
5 integers, iorvt, representing the shipment identification code i, 0 ≤ i ≤ 99, the origin and next
relay center numbers o and r respectively, the volume of the shipment v as a percentage of trailer
volume and the time t taken to travel from center c to destination r measured in minutes. t is zero
if c equals r. Arrival records are in order of ascending values of a. No two records have the same
pair (a, c). All center numbers used as values for c and r will have an appropriate corresponding
definition in the first part of the input, though the center numbers used for o need not.
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Output

For each of the n ICPCs, your program must write out a line describing the average wait time for
stripping doors in the appropriate one of these two forms:

The average wait for a stripping door at ICPC c is ###.# minutes.
There is no wait for a stripping door at ICPC c.

The average wait time is affected only by trailers which wait at least one minute for a stripping
door.

Your program should then list all the shipments any part of which will not arrive at their
intermediate or final destinations by any of the latest arrival times given along the route. This
report should appear in columns headed as shown:

The late shipments are:
Id Origin Destination Volume

Sample Input

2
0 1 1

8 40 600
8 3 4

6 115 1200
2 95 1260
10 100 1440
4 55 1380

7
500 0 1

17 11 8 40 80
700 8 3

24 11 8 45 0
18 11 6 40 120
23 11 10 15 600

720 8 1
16 3 8 100 0

750 8 2
4 15 2 50 180
7 15 6 50 120

760 8 4
14 3 4 20 300
27 3 2 20 180
33 3 10 35 600
16 3 6 25 120

780 8 2
12 9 2 25 180
15 9 4 35 300

800 8 1
19 18 10 50 600
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Sample Output

There is no wait for a stripping door at ICPC 0.
The average wait for a stripping door at ICPC 8 is 63.3 minutes.

The late shipments are:
Id Origin Destination Volume
17 11 8 40
23 11 10 15
33 3 10 35
19 18 10 50
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A System Dependencies

Components of computer systems often have dependencies—other components that must be in-
stalled before they will function properly. These dependencies are frequently shared by multiple
components. For example, both the TELNET client program and the FTP client program require
that the TCP/IP networking software be installed before they can operate. If you install TCP/IP
and the TELNET client program, and later decide to add the FTP client program, you do not
need to reinstall TCP/IP.

For some components it would not be a problem if the components on which they depended
were reinstalled; it would just waste some resources. But for others, like TCP/IP, some component
configuration may be destroyed if the component was reinstalled.

It is useful to be able to remove components that are no longer needed. When this is done,
components that only support the removed component may also be removed, freeing up disk
space, memory, and other resources. But a supporting component, not explicitly installed, may
be removed only if all components which depend on it are also removed. For example, removing
the FTP client program and TCP/IP would mean the TELNET client program, which was not
removed, would no longer operate. Likewise, removing TCP/IP by itself would cause the failure
of both the TELNET and the FTP client programs. Also if we installed TCP/IP to support our
own development, then installed the TELNET client (which depends on TCP/IP) and then still
later removed the TELNET client, we would not want TCP/IP to be removed.

We want a program to automate the process of adding and removing components. To do this
we will maintain a record of installed components and component dependencies. A component
can be installed explicitly in response to a command (unless it is already installed), or implicitly
if it is needed for some other component being installed. Likewise, a component, not explicitly
installed, can be explicitly removed in response to a command (if it is not needed to support
other components) or implicitly removed if it is no longer needed to support another component.
Installing an already implicitly-installed component won’t make that component become explicity
installed.

Input

The input will contain a sequence of commands (as described below), each on a separate line
containing no more than eighty characters. Item names are case sensitive, and each is no longer
than ten characters. The command names (DEPEND, INSTALL, REMOVE and LIST) always appear in
uppercase starting in column one, and item names are separated from the command name and each
other by one or more spaces. All appropriate DEPEND commands will appear before the occurrence
of any INSTALL command that uses them. There will be no circular dependencies. The end of the
input is marked by a line containing only the word END.

Command Syntax Interpretation/Response
DEPEND item1 item2 [item3 ...] item1 depends on item2 (and item3 ...)
INSTALL item1 install item1 and those on which it de-

pends
REMOVE item1 remove item1, and those on which it de-

pends, if possible
LIST list the names of all currently-installed

components
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Output

Echo each line of input. Follow each echoed INSTALL or REMOVE line with the actions taken in
response, making certain that the actions are given in the proper order. Also identify exceptional
conditions (see Sample Output, below, for examples of all cases). For the LIST command, display
the names of the currently installed components in the installation order. No output, except the
echo, is produced for a DEPEND command or the line containing END. There will be at most one
dependency list per item.

Sample Input

DEPEND TELNET TCPIP NETCARD
DEPEND TCPIP NETCARD
DEPEND DNS TCPIP NETCARD
DEPEND BROWSER TCPIP HTML
INSTALL NETCARD
INSTALL TELNET
INSTALL foo
REMOVE NETCARD
INSTALL BROWSER
INSTALL DNS
LIST
REMOVE TELNET
REMOVE NETCARD
REMOVE DNS
REMOVE NETCARD
INSTALL NETCARD
REMOVE TCPIP
REMOVE BROWSER
REMOVE TCPIP
END
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Sample Output

DEPEND TELNET TCPIP NETCARD
DEPEND TCPIP NETCARD
DEPEND DNS TCPIP NETCARD
DEPEND BROWSER TCPIP HTML
INSTALL NETCARD

Installing NETCARD
INSTALL TELNET

Installing TCPIP
Installing TELNET

INSTALL foo
Installing foo

REMOVE NETCARD
NETCARD is still needed.

INSTALL BROWSER
Installing HTML
Installing BROWSER

INSTALL DNS
Installing DNS

LIST
NETCARD
TCPIP
TELNET
foo
HTML
BROWSER
DNS

REMOVE TELNET
Removing TELNET

REMOVE NETCARD
NETCARD is still needed.

REMOVE DNS
Removing DNS

REMOVE NETCARD
NETCARD is still needed.

INSTALL NETCARD
NETCARD is already installed.

REMOVE TCPIP
TCPIP is still needed.

REMOVE BROWSER
Removing BROWSER
Removing HTML
Removing TCPIP

REMOVE TCPIP
TCPIP is not installed.

END
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B Jill Rides Again

Jill likes to ride her bicycle, but since the pretty city of Greenhills where she lives has grown, Jill
often uses the excellent public bus system for part of her journey. She has a folding bicycle which
she carries with her when she uses the bus for the first part of her trip. When the bus reaches
some pleasant part of the city, Jill gets off and rides her bicycle. She follows the bus route until
she reaches her destination or she comes to a part of the city she does not like. In the latter event
she will board the bus to finish her trip.

Through years of experience, Jill has rated each road on an integer scale of “niceness.” Positive
niceness values indicate roads Jill likes; negative values are used for roads she does not like. There
are not zero values. Jill plans where to leave the bus and start bicycling, as well as where to stop
bicycling and re-join the bus, so that the sum of niceness values of the roads she bicycles on is
maximized. This means that she will sometimes cycle along a road she does not like, provided that
it joins up two other parts of her journey involving roads she likes enough to compensate. It may
be that no part of the route is suitable for cycling so that Jill takes the bus for its entire route.
Conversely, it may be that the whole route is so nice Jill will not use the bus at all.

Since there are many different bus routes, each with several stops at which Jill could leave or
enter the bus, she feels that a computer program could help her identify the best part to cycle for
each bus route.

Input

The input file contains information on several bus routes. The first line of the file is a single integer
b representing the number of route descriptions in the file. The identifier for each route (r) is the
sequence number within the data file, 1 ≤ r ≤ b. Each route description begins with the number
of stops on the route: an integer s, 2 ≤ s ≤ 20, 000 on a line by itself. The number of stops is
followed by s− 1 lines, each line i (1 ≤ i < s) is an integer ni representing Jill’s assessment of the
niceness of the road between the two stops i and i + 1.

Output

For each route r in the input file, your program should identify the beginning bus stop i and the
ending bus stop j that identify the segment of the route which yields the maximal sum of niceness,
m = ni + ni+1 + . . . + nj−1 . If more than one segment is maximally nice, choose the one with the
longest cycle ride (largest j − i). To break ties in longest maximal segments, choose the segment
that begins with the earliest stop (lowest i). For each route r in the input file, print a line in the
form:

The nicest part of route r is between stops i and j.

However, if the maximal sum is not positive, your program should print:

Route r has no nice parts.
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Sample Input

3
3
-1
6

10
4
-5
4
-3
4
4
-4
4
-5

4
-2
-3
-4

Sample Output

The nicest part of route 1 is between stops 2 and 3
The nicest part of route 2 is between stops 3 and 9
Route 3 has no nice parts
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C Morse Mismatches

Samuel F. B. Morse is best known for the coding scheme that carries his name. Morse code is still
used in international radio communication. The coding of text using Morse code is straightforward.
Each character (case is insignificant) is translated to a predefined sequence of dits and dahs (the
elements of Morse code). Dits are represented as periods (“.”) and dahs are represented as hyphens
or minus signs (“–”). Each element is transmitted by sending a signal for some period of time. A
dit is rather short, and a dah is, in perfectly formed code, three times as long as a dit. A short
silent space appears between elements, with a longer space between characters. A still longer space
separates words. This dependence on the spacing and timing of elements means that Morse code
operators sometimes do not send perfect code. This results in difficulties for the receiving operator,
but frequently the message can be decoded depending on context.

In this problem we consider reception of words in Morse code without spacing between letters.
Without the spacing, it is possible for multiple words to be coded the same. For example, if the
message “dit dit dit” were received, it could be interpreted as “EEE”, “EI”, “IE” or “S” based on
the coding scheme shown in the sample input. To decide between these multiple interpretations,
we assume a particular context by expecting each received word to appear in a dictionary.

For this problem your program will read a table giving the encoding of letters and digits into
Morse code, a list of expected words (context), and a sequence of words encoded in Morse code
(morse). These morse words may be flawed. For each morse word, your program is to determine
the matching word from context, if any. If multiple words from context match morse, or if no word
matches perfectly, your program will display the best matching word and a mismatch indicator.

If a single word from context matches morse perfectly, it will be displayed on a single line,
by itself. If multiple context words match morse perfectly, then select the matching word with
the fewest characters. If this still results in an ambiguous match, any of these matches may
be displayed. If multiple context words exist for a given morse, the first matching word will be
displayed followed by an exclamation point (“!”).

We assume only a simple case of errors in transmission in which elements may be either trun-
cated from the end of a morse word or added to the end of a morse word. When no perfect matches
for morse are found, display the word from context that matches the longest prefix of morse, or has
the fewest extra elements beyond those in morse. If multiple words in context match using these
rules, any of these matches may be displayed. Words that do not match perfectly are displayed
with a question mark (“?”) suffixed.

The input data will only contain cases that fall within the preceding rules.

Input

The Morse code table will appear first and consists of lines each containing an uppercase letter or
a digit C, zero or more blanks, and a sequence of no more than six periods and hyphens giving the
Morse code for C. Blanks may precede or follow the items on the line. A line containing a single
asterisk (“*”), possibly preceded or followed by blanks, terminates the Morse code table. You may
assume that there will be Morse code given for every character that appears in the context section.

The context section appears next, with one word per line, possibly preceded and followed by
blanks. Each word in context will contain no more than ten characters. No characters other
than upper case letters and digits will appear. Thered will be at most 100 context words. A line
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containing only a single asterisk (“*”), possibly preceded or followed by blanks, terminates the
context section.

The remainder of the input contains morse words separated by blanks or end-of-line characters.
A line containing only a single asterisk (“*”), possibly preceded or followed by blanks, terminates
the input. No morse word will have more than eighty (80) elements.

Output

For each input morse word, display the appropriate matching word from context followed by an
exclamation mark (“!”) or question mark (“?”) if appropriate. Each word is to appear on a
separate line starting in column one.

Sample Input

A .-
B -...
C -.-.
D -..
E .
F ..-.
G --.
H ....
I ..
J .---
K -.-
L .-..
M --
N -.
O ---
P .--.
Q --.-
R .-.
S ...
T -
U ..-
V ...-
W .--
X -..-
Y -.--
Z --..
0 ------
1 .-----
2 ..---
3 ...--
4 ....-
5 .....
6 -....
7 --...
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8 ---..
9 ----.
*
AN
EARTHQUAKE
EAT
GOD
HATH
IM
READY
TO
WHAT
WROTH
*
.--.....-- .....--....
--.----.. .--.-.----..
.--.....-- .--.
..-.-.-....--.-..-.--.-.
..-- .-...--..-.--
---- ..--
*

Sample Output

WHAT
HATH
GOD
WROTH?
WHAT
AN
EARTHQUAKE
EAT!
READY
TO
EAT!
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D RAID!

RAID (Redundant Array of Inexpensive Disks) is a technique which uses multiple disks to store
data. By storing the data on more than one disk, RAID is more fault tolerant than storing data on
a single disk. If there is a problem with one of the disks, the system can still recover the original
data provided that the remaining disks do not have corresponding problems.

One approach to RAID breaks data into blocks and stores these blocks on all but one of the
disks. The remaining disk is used to store the parity information for the data blocks. This scheme
uses vertical parity in which bits in a given position in data blocks are exclusive ORed to form the
corresponding parity bit. The parity block moves between the disks, starting at the first disk, and
moving to the next one in order. For instance, if there were five disks and 28 data blocks were
stored on them, they would be arranged as follows:

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5
Parity 1-4 Data block 1 Data block 2 Data block 3 Data block 4
Data block 5 Parity 5-8 Data block 6 Data block 7 Data block 8
Data block 9 Data block 10 Parity 9-12 Data block 11 Data block 12
Data block 13 Data block 14 Data block 15 Parity 13-16 Data block 16
Data block 17 Data block 18 Data block 19 Data block 20 Parity 17-20
Parity 21-24 Data block 21 Data block 22 Data block 23 Data block 24
Data block 25 Parity 25-28 Data block 26 Data block 27 Data block 28

With this arrangement of disks, a block size of two bits and even parity, the hexadecimal sample
data 6C7A79EDFC (01101100 01111010 01111001 11101101 11111100 in binary) would be stored
as:

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5
00 01 10 11 00
01 10 11 10 10
01 11 01 10 01
11 10 11 11 01
11 11 11 00 11

If a block becomes unavailable, its information can still be retrieved using the information on
the other disks. For example, if the first bit of the first block of disk 3 becomes unavailable, it can
be reconstructed using the corresponding parity and data bits from the other four disks. We know
that our sample system uses even parity:

0⊕ 0⊕?⊕ 1⊕ 0 = 0

So the missing bit must be 1.

An arrangement of disks is invalid if a parity error is detected, or if any data block cannot be
reconstructed because two or more disks are unavailable for that block.

Write a program to report errors and recover information from RAID disks.



126 Competitive Learning Institute

Input

The input consists of several disk sets.

Each disk set has 3 parts. The first part of the disk set contains three integers on one line:
the first integer d, 2 ≤ d ≤ 6, is the number of disks, the second integer s, 1 ≤ s ≤ 64, is the
size of each block in bits, and the third integer b, 1 ≤ b ≤ 100, is the total number of data and
parity blocks on each disk. The second part of the disk set is a single letter on a line, either “E”
signifying even parity or “O” signifying odd parity. The third part of the disk set contains d lines,
one for each disk, each holding s × b characters representing the bits on the disk, with the most
significant bits first. Each bit will be specified as “0” or “1” if it holds valid data, or “x” if that
bit is unavailable. The end of input will be a disk set with d = 0. There will be no other data for
this set which should not be processed.

Output

For each disk set in the input, display the number of the set and whether the set is valid or invalid.
If the set is valid, display the recovered data bits in hexadecimal. If necessary, add extra “0” bits
at the end of the recovered data so the number of bits is always a multiple of 4. All output shall
be appropriately labeled.

Sample Input

5 2 5
E
0001011111
0110111011
1011011111
1110101100
0010010111
3 2 5
E
0001111111
0111111011
xx11011111
3 5 1
O
11111
11xxx
x1111
0

Sample Output

Disk set 1 is valid, contents are: 6C7A79EDFC
Disk set 2 is invalid.
Disk set 3 is valid, contents are: FFC
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E Optimal Routing

Acme Courier Message, Inc. (ACM) is planning to add a service for delivery of documents and
small parcels. ACM will group parcels and documents in bags, which will be transported by car
among different stations for intermediate handling and routing prior to final delivery. ACM is in
the initial stages of determining the workload requirements for transporting bags among stations.

When a driver delivers a bag, she will (if possible) locate and pick up another bag for delivery to
another station, continuing in this manner until there are no more deliverable bags. A deliverable
bag is one that can be picked up and delivered to its destination by a driver prior to the end of her
workday. The total time for a driver’s workday begins with the time of pickup of her first bag and
includes the time she spends delivering bags, the time in transit, and the time waiting at stations
for deliverable bags. ACM would like its drivers to spend the maximum amount of time possible
delivering the bags between stations within a normal workday. In addition, ACM wants drivers’
final destinations to be the same as the stations where they started whenever possible.

You must write a program to determine optimal driver routes for several ACM scenarios. Each
scenario describes bags and stations for a single workday. In this simple version, routes for all
drivers will originate from the same station, which we call station A. Optimal routes are subject
to the following restrictions.

1. A driver’s normal workday will not exceed 10 hours.

2. Drivers will travel from one station to another with one bag, if one is available for pickup.
If there are no deliverable bags at a station, the driver will proceed to another station that
has a scheduled deliverable bag to continue her route.

3. If several different routes with a final destination of station A are possible, the one requiring
the longest cumulative delivery time is optimal. If there are more than one with the longest
cumulative delivery time, the one with the shortest total workday time is optimal.

4. Whenever possible, the final destination of a driver is station A. However, if it is impossible
to schedule a final destination of station A, then the route requiring the longest cumulative
delivery time is optimal. If there are more than one with the longest cumulative delivery
time, the one with the shortest total workday time is optimal.

5. Every bag that originates from station A will be delivered. (Some bags originating at other
stations will not necessarily be delivered.) No bag will be delivered more than once.

The optimal route for the driver who picks up the first available deliverable bag at station A
is completely determined before any consideration of subsequent drivers. The optimal route of the
second driver, who picks up the next available deliverable bag at station A that has not already
been scheduled for delivery by the first driver, is completely determined next. The optimal route
determination continues in this manner until all the bags that can be delivered have been scheduled
for delivery. Undeliverable bags will be identified and reported. Throughout the entire process,
each driver will be routed according to the bags not already scheduled earlier for delivery. In all
scenarios the time to travel from station A to any other station is 10 hours or less.

Input

Input for each scenario comes in two parts: a list of the bags and a table of times required to drive
between stations. The first line in each scenario consists of an integer n representing the number
of bags to be delivered. The next n lines describe each bag in the following format:
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id origin destination time

where id is the bag identification number (integer), origin and destination are the station labels
for the bag’s origin and destination (uppercase letters), and time is when the bag is available for
transport. The format for time is hhmm, where hh and mm are integers representing time on a
24-hour clock varying from 0001 to 2400. Data on a line are separated by single blanks. Each
station is labeled with a unique uppercase letter. Bags may appear in any time order in the list.
The end of input is signified by a scenario for which the number of bags is 0.

Input data for the table of driving times consist of lines of the form:

station1 station2 time

where station1 and station2 are uppercase letters and time is as described earlier. Transit times
between stations are listed for all stations which are included in the list of bags. Transit times are
bidirectional. Different scenarios are completely unrelated.

Output

Output for each scenario begins by identifying the scenario by number (Scenario 1, Scenario 2,
etc.). Following that is a listing of each driver’s optimal route. Each route begins with the number
of the driver (Driver 1, Driver 2, etc.) and then a summary of the driver’s route including all
transits between stations in the order in which the stations were visited. For transits which deliver
a bag, display the bag identification number and its origin and destination stations. For transits
which do not deliver a bag, display the origin and destinations stations.

Output for each driver is summarized by the total delivery time and the total workday time in
the form hhmm, following the time format specified in the input of time values. If two different
routes for a driver are optimal, then output may show either one. The final section of output for a
scenario will include a listing of all undeliverable bags or a statement indicating successful delivery
of all bags. Each section of a scenario and each scenario should be separated by a blank line.

Sample Input

7
1 A B 0800
3 A C 0850
2 B C 0700
6 B D 1250
5 B C 1400
7 C A 1600
8 D C 1130
A B 0400
A C 0135
A D 0320
B C 0345
B D 0120
C D 0200
0

Sample Output

Scenario 1

Driver 1
Bag #1 from station A to station B
Bag #2 from station B to station C
Bag #7 from station C to station A
Total delivery time: 0920
Total workday time: 0935

Driver 2
Bag #3 from station A to station C
-->Transit without delivery from station C to station B

Bag #5 from station B to station C
Total delivery time: 0520
Total workday time: 0905

Undelivered Bags:
Bag #8 remains at station D
Bag #6 remains at station B
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F Do You Know the Way to San Jose?

The Internet now offers a variety of interactive map facilities, so that users can see either an
overview map of a large geographic region or can “zoom in” to a specific street, sometimes even a
specific building, on a much more detailed map. For instance, downtown San Jose might appear
in a map of California, a map of Santa Clara county, and a detailed street map.

Suppose you have a large collection of rectangular maps and you wish to design a browsing
facility that will process a sequence of map requests for locations at various levels of map detail.
Locations are expressed using location names. Each location name has a unique pair of real
coordinates (x, y). Maps are unique, labeled with identifying map names, and defined by two pairs
of real coordinates— (x1, y1)(x2, y2)—representing opposite corners of the map. All map edges are
parallel to the standard Cartesian x and y axes. A map and a location can have the same name.
The aspect ratio of a map is the ratio of its height to its width (where width is measured in the x
direction and height is measured in the y direction).

The level of detail of a map can be approximated by using the rectangular area represented
by the map; i.e., assume that a map covering a smaller area contains more detailed information.
Maps can overlap one another. If a location (x, y) lies within two or more maps having equal areas,
the preferred map (at that level of detail) is the one in which the location is nearest the center
of the map. If the location is equidistant from the centers of two overlapping maps of the same
area, then the preferred map (at that level of detail) is the one whose aspect ratio is nearest to
the aspect ratio of the browser window, which is 0.75. If this still does not break the tie, then the
preferred map is the one in which the location is furthest from the lower right corner of the map
(this heuristic is intended to minimize the need for scrolling in the user’s browser window). Finally,
if there is still a tie, then the preferred map is the one containing the smallest x-coordinate.

The maximum detail level available for a given location is the maximal number of maps of
different areas that contain the location. Clearly, different locations can have different maximum
detail levels. The map at detail i for the location is the map with the ith largest area among a
maximal set of maps of the distinct area containing the location. Thus, the map at detail level 1
for the location will be the least detailed (largest area) map containing the location and the map
at the maximum detail level will be the most detailed (smallest area) map containing the location.

Input

The input file consists of a set of maps, locations, and requests; it is organized as follows:

• The word “MAPS”, in all uppercase letters and on a line by itself, introduces a set of one or
more maps. Following the set heading, each map is described by a single line consisting of a
map name (an alphabetic string with no leading, trailing, or embedded blanks) and two real
coordinate pairs—x1 y1 x2 y2—representing opposite corners of the map.

• The word “LOCATIONS”, in all uppercase letters and on a line by itself, introduces a set of
one or more locations. Following this heading, each location is described by a line consisting
of a location name (an alphabetic string with no leading, trailing, or embedded blanks) and
a real coordinate pair—x y—representing the center of the location.

• The word “REQUESTS”, in all uppercase letters and on a line by itself, introduces a set of zero
or more requests. Following this heading, each request is described by a line consisting of a
location name (an alphabetic string with no leading, trailing, or embedded blanks) followed
by a positive integer representing the desired detail level for that location.

• The word “END”, in all uppercase and on a line by itself, terminates the file.
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All map and location data preceding the requests are valid. There will be no duplicate maps.
The result of processing a valid request is the name of the map containing the given location at the
given detail level (using the tie-breaking rules described above). Invalid requests can result from
requesting unknown location names, locations that do not appear in any map, or detail levels that
exceed the number of maps of different areas containing the location.

Output

Each request must be echoed to the output. If the request is valid, display the name of the map
satisfying the request. If the location is not on a map, display a message to that effect. If the
location is on the map but the detail level is too large, display the name of the map of the smallest
available area (largest possible detail level). The sample below illustrates all these definitions.

Sample Input

MAPS
BayArea -6.0 12.0 -11.0 5.0
SantaClara 4.0 9.0 -3.5 2.5
SanJoseRegion -3.0 10.0 11.0 3.0
CenterCoast -5.0 11.0 1.0 -8.0
SanMateo -5.5 4.0 -12.5 9.0
NCalif -13.0 -7.0 13.0 15.0
LOCATIONS
Monterey -4.0 2.0
SanJose -1.0 7.5
Fresno 7.0 0.1
SanFrancisco -10.0 8.6
SantaCruz -4.0 2.0
SanDiego 13.8 -19.3
REQUESTS
SanJose 3
SanFrancisco 2
Fresno 2
Stockton 1
SanDiego 2
SanJose 4
SantaCruz 3
END

Sample Output

SanJose at detail level 3 using SanJoseRegion
SanFrancisco at detail level 2 using BayArea
Fresno at detail level 2 no map at that detail level; using NCalif
Stockton at detail level 1 unknown location
SanDiego at detail level 2 no map contains that location
SanJose at detail level 4 using SantaClara
SantaCruz at detail level 3 no map at that detail level; using CenterCoast
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G Spreadsheet Tracking

Data in spreadsheets are stored in cells, which are organized in rows (r) and columns (c). Some
operations on spreadsheets can be applied to single cells (r, c), while others can be applied to
entire rows or columns. Typical cell operations include inserting and deleting rows or columns and
exchanging cell contents.

Some spreadsheets allow users to mark collections of rows or columns for deletion, so the entire
collection can be deleted at once. Some (unusual) spreadsheets allow users to mark collections of
rows or columns for insertions too. Issuing an insertion command results in new rows or columns
being inserted before each of the marked rows or columns. Suppose, for example, the user marks
rows 1 and 5 of the spreadsheet on the left for deletion. The spreadsheet then shrinks to the one
on the right.

↘ 1 2 3 4 5 6 7 8 9
1 22 55 66 77 88 99 10 12 14
2 2 24 6 8 22 12 14 16 18
3 18 19 20 21 22 23 24 25 26
4 24 25 26 67 22 69 70 71 77
5 68 78 79 80 22 25 28 29 30
6 16 12 11 10 22 56 57 58 59
7 33 34 35 36 22 38 39 40 41

↘ 1 2 3 4 5 6 7 8 9
1 2 24 6 8 22 12 14 16 18
2 18 19 20 21 22 23 24 25 26
3 24 25 26 67 22 69 70 71 77
4 16 12 11 10 22 56 57 58 59
5 33 34 35 36 22 38 39 40 41

If the user subsequently marks columns 3, 6, 7, and 9 for deletion, the spreadsheet shrinks to
this.

↘ 1 2 3 4 5
1 2 24 8 22 16
2 18 19 21 22 25
3 24 25 67 22 71
4 16 12 10 22 58
5 33 34 36 22 40

If the user marks rows 2, 3 and 5 for insertion, the spreadsheet grows to the one on the left.
If the user then marks column 3 for insertion, the spreadsheet grows to the one in the middle.
Finally, if the user exchanges the contents of cell (1,2) and cell (6,5), the spreadsheet looks like the
one on the right.

↘ 1 2 3 4 5
1 2 24 8 22 16
2
3 18 19 21 22 25
4
5 24 25 67 22 71
6 16 12 10 22 58
7
8 33 34 36 22 40

↘ 1 2 3 4 5 6
1 2 24 8 22 16
2
3 18 19 21 22 25
4
5 24 25 67 22 71
6 16 12 10 22 58
7
8 33 34 36 22 40

↘ 1 2 3 4 5 6
1 2 22 8 22 16
2
3 18 19 21 22 25
4
5 24 25 67 22 71
6 16 12 10 24 58
7
8 33 34 36 22 40

You must write tracking software that determines the final location of data in spreadsheets
that result from row, column, and exchange operations similar to the ones illustrated here.
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Input

The input consists of a sequence of spreadsheets, operations on those spreadsheets, and queries
about them. Each spreadsheet definition begins with a pair of integers specifying its initial number
of rows (r) and columns (c), followed by an integer specifying the number (n) of spreadsheet
operations. Row and column labeling begins with 1. The maximum number of rows or columns of
each spreadsheet is limited to 50. The following n lines specify the desired operations.

An operation to exchange the contents of cell (r1, c1) with the contents of cell (r2, c2) is given
by:

EX r1 c1 r2 c2

The four insert and delete commands—DC (delete columns), DR (delete rows), IC (insert
columns), and IR (insert rows) are given by:

< command > A x1 x2 . . . xA

where < command > is one of the four commands; A is a positive integer less than 10, and
x1, . . . , xA are the labels of the columns or rows to be deleted or inserted before. For each insert
and delete command, the order of the rows or columns in the command has no significance. Within
a single delete or insert command, labels will be unique.

The operations are followed by an integer which is the number of queries for the spreadsheet.
Each query consists of positive integers r and c, representing the row and column number of a cell
in the original spreadsheet. For each query, your program must determine the current location of
the data that was originally in cell (r, c). The end of input is indicated by a row consisting of a
pair of zeros for the spreadsheet dimensions.

Output

For each spreadsheet, your program must output its sequence number (starting at 1). For each
query, your program must output the original cell location followed by the final location of the
data or the word GONE if the contents of the original cell location were destroyed as a result of the
operations. Separate output from different spreadsheets with a blank line.

The data file will not contain a sequence of commands that will cause the spreadsheet to exceed
the maximum size.

Sample Input

7 9
5
DR 2 1 5
DC 4 3 6 7 9
IC 1 3
IR 2 2 4
EX 1 2 6 5
4
4 8
5 5
7 8
6 5
0 0

Sample Output

Spreadsheet #1
Cell data in (4,8) moved to (4,6)
Cell data in (5,5) GONE
Cell data in (7,8) moved to (7,6)
Cell data in (6,5) moved to (1,2)
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H Window Frames

Elements of graphical user interfaces include such things as buttons, text boxes, scroll bars, drop-
down menus and scrollable list boxes. Each is considered to be a special kind of object called a
widget. Where these widgets are placed, how much space they are allocated, and how they change
size constitutes the geometry of a window.

One geometry management scheme uses special rectangular widgets called frames to contain
and thus group other widgets. A frame is a parent if some or all of its own space is allocated to
additional frames, which are its children. The frame which has no parent is called the root frame;
its size is specified by the user (in the input data). This problem requires that you determine the
allocation of space to, and the position of frames placed in root frames of various sizes.

The cavity in a frame is the space in the frame that is not occupied by its children. When a
new child frame is created, it is allocated an entire horizontal strip along the top or bottom edge
of the cavity (this is called a horizontal child) or an entire vertical strip along the right or left edge
of the cavity (this is called a vertical child). Thus, as a result of creating a new child, the cavity
becomes smaller, but it remains rectangular. The process of placing children inside the enclosing
frame is called packing. Children are positioned in the cavity according to the order in which they
are packed.

The figure below shows the child frames of a parent frame. Frame 1 along the right edge was
packed first, then frame 2 along the bottom edge, frame 3 along the left edge, and finally frame 4
along the right edge. The cavity, shown in white, contains available space for packing subsequent
child frames.

Each frame covers a rectangular grid of pixels. If the root frame covers c columns and r rows
of pixels, then the pixel in the top left corner is at coordinate (0,0) and the pixel in the lower right
corner is at coordinate (c− 1, r − 1). The position of a frame is specified by the coordinates of its
upper left corner pixel and its lower right corner pixel.

Each frame has minimum dimensions determined by an input parameter d and the minimum
dimensions of its children. A frame must be at least large enough to pack all of its children. The
minimum dimensions of each frame are determined as follows:

Packing Side Frame Type Minimum Width Minimum Height
Right or left Vertical Maximum of d and the

width necessary for the
frame’s children

Maximum of 1 and the
height necessary for the
frame’s children

Bottom or top Horizontal Maximum of 1 and the
width necessary for the
frame’s children

Maximum of d and the
height necessary for the
frame’s children
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When a frame is larger than the minimum dimensions just specified, the additional interior
space is apportioned to its children and/or its cavity. Each frame has an expansion flag (which
is an input parameter) that, when set, indicates a vertical frame can grow wider or a horizontal
frame can grow taller. For example, a frame with its expansion flag set, allocated space along the
top of the cavity, can grow taller, with the extra height extending downward.

The distribution of additional horizontal space in a frame is handled as follows. Let x be the
number of horizontal pixels by which the parent frame exceeds its minimum width. If n, the
number of the vertical children in the frame with their expansion flags set, is non-zero, then the x
pixels are distributed among the n vertical children. If q is the quotient of x divided by n and r is
the remainder, then each of the n vertical frames grows wider by q pixels and the first r of them
that were packed in the frame grow wider by 1 pixel in addition to the q. If n is zero, then none of
the vertical children grow wider, and the x pixels are added to the width of the cavity. In either
case, the horizontal children in the enlarged frame become wider, if necessary, in such a manner
as to ensure the single cavity remains rectangular.

The distribution of additional vertical space in a parent frame to its children and/or its cavity
is handled in a manner similar to that used to distribute additional horizontal space, with the
appropriate change in direction of growth. Only the horizontal children with their expansion flags
set grow taller to utilize the additional vertical pixels, and if none of the horizontal children have
their expansion flags set, the additional pixels are added to the height of the cavity. As expected,
the vertical children also become taller, if necessary, to ensure the rectangular and uniqueness
properties of the cavity.

In the next illustration, the root frame on the left has been enlarged to yield the one on the
right. Frames 6 and 7 are horizontal and vertical children, respectively, of frame 5. Only frames
4, 6 and 7 have their expansion flags set. In the frame on the right, the additional horizontal and
vertical space has been distributed to the children so as to result in the growth indicated by the
arrows. Note that frame 7 does not change size because no room is available for expansion in its
parent, frame 5. Frame 6 does not change size for the same reason.

Input

The input consists of a sequence of root frames, their descendants, and different potential root
frame sizes. Each item in the sequence corresponding to a single root has the following format:

M N M is the total number of frames excluding the root.
N is the number of different root sizes (both are positive integers).
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followed by M lines of the form:

n p s d e

where: n is the name of the frame (a positive integer);
p is the name of the parent (where 0 is the root frame);
s is one of the characters “L”, “R”, “T”, and “B” indicating packing side;
d is the minimum dimension (a positive integer); and
e is 0 or 1, where 0 means the expansion flag is cleared, 1 means it is set;

followed by N lines of the form:

c r where c is the number of columns of pixels, and
r is the number of rows of pixels in the root frame (both positive integers).

Root frames are not listed. Frame numbers for a given root are distinct. Children of a frame
will not appear in the input before their parents. Frames are packed in the order in which they
appear in the input. The end of input is signified by a line with M and N both 0.

Output

Begin the output of each root by writing its record number (1 for the first, 2 for the second, etc.).
For each size corresponding to that root, write the size (rows × columns) and then list the name of
each frame along with the coordinates of its upper left and lower right corners. List the frames in
the order in which they are packed in their parents, with the root’s first child and its descendants
first, the second child and its descendants second, and so on. If the root size is too small to pack its
frames, print the message “is too small” instead of attempting to list the frames. Separate output
for different root sizes by a line of dashes.

Sample Input

7 1
1 0 R 50 0
2 0 B 10 0
3 0 L 40 0
4 0 R 20 1
5 0 T 30 0
6 5 R 20 0
7 5 L 10 1
1000 1000
2 2
1 0 R 100 1
2 0 T 30 1
100 50
200 100
0 0

Sample Output

Root Frame #1
--------------------------------------------

Display: 1000 X 1000
Frame: 1 (950,0) (999,999)
Frame: 2 (0,990) (949,999)
Frame: 3 (0,0) (39,989)
Frame: 4 (70,0) (949,989)
Frame: 5 (40,0) (69,29)
Frame: 6 (50,0) (69,29)
Frame: 7 (40,0) (49,29)

--------------------------------------------

Root Frame #2
--------------------------------------------

Display: 100 X 50 is too small
--------------------------------------------
Display: 200 X 100
Frame: 1 (1,0) (199,99)
Frame: 2 (0,0) (0,99)

--------------------------------------------
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A Crystal Clear

A new high technology company has developed a material that it hopes to market as an insulator.
The material consists of crystals and the square lattice on which the crystals are grown. The points
on the lattice are at 1 centimeter intervals. The crystals are formed from seeds that are planted
at the lattice points. Each crystal grows into a circle of diameter 1 centimeter.

Using this material in applications will require cutting the lattice into pieces. One of the
problems in cutting the lattice is that some crystals will be sliced in the process. Slicing a crystal
other than through the center completely destroys that crystal’s insulation properties. (A cut
touching a crystal tangentially does not destroy that crystal’s insulation property.)

The insulation capacity of a piece is directly proportional to the total area of the insulating
crystals (or parts of crystals) that are on the piece. The following figure shows a polygonal piece
with its insulating crystals shaded.

Your job is to determine the insulating capacity of such polygonal pieces by computing the
total area of the insulating crystals in it.

Input

The input consists of a sequence of polygon descriptions. Each description consists of a positive
integer n (3 ≤ n ≤ 25) representing the number of vertices, followed by n pairs of integers. Each
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pair is the x and y coordinates of one vertex of the polygon. (The coordinate system is aligned
with the lattice such that the integer coordinates are precisely the lattice points.)

Vertices of each polygon are given in clockwise order. No polygon will be degenerate. No
coordinate will be larger than 250 in absolute value.

The input is terminated by zero for the value of n.

Output

For each polygon, first print its number (‘Shape 1’, ‘Shape 2’, etc.) and then the area of the
insulating crystals in cm^2, exact to three digits to the right of the decimal point.

The following sample corresponds to the previous illustration.

Sample Input

5
0 2
3 5
6 3
6 0
1 0
0

Sample Output

Shape 1
Insulating area = 15.315 cm^2
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B Flight Planning

Your job is to write a program that plans airplane flights. Each flight consists of a series of one
or more legs. Your program must choose the best altitude for each leg to minimize the amount of
fuel consumption during the trip.

The airplane has a fixed airspeed, given by the constant VCRUISE, and a most-efficient cruising
altitude, AOPT. When flying at altitude AOPT, fuel consumption in gallons per hour is given by
GPHOPT. When flying at an altitude that is different from AOPT, fuel consumption increases
by GPHEXTRA for each 1000 feet above or below AOPT. The flight starts and finishes at an
altitude of 0. Each 1000 foot climb burns an extra amount of fuel given by CLIMBCOST (there is
no reduction in fuel consumption when you descend). Make the approximation that all climbing
and descending is done in zero time at the beginning of each flight leg. Thus each leg is flown at
a constant airspeed and altitude. For this problem, the airplane characteristics are given by the
following constants:

VCRUISE 400 knots (a knot is one nautical mile per hour)
AOPT 30,000 feet
GPHOPT 2,000 gallons per hour
GPHEXTRA 10 gallons per hour for each 1,000 feet
CLIMBCOST 50 gallons per 1,000 feet of climb

Before each flight, you are given the length of each leg and the tailwind expected for each leg. A
positive tailwind increases the airplane’s speed over the ground, and a negative tailwind decreases
its speed over the ground. For example, if airspeed is 400 knots and the tailwind is -50 knots,
speed over the ground is 350 knots.

By policy, altitude for each leg must be some integer multiple of 1,000 feet, between 20,000
and 40,000 feet, inclusive. Your program must compute the best altitude for each leg to minimize
overall fuel consumption for the trip, and must compute the fuel required for the trip.

Input

The first line contains an integer N , representing the number of flights you are required to plan.
Each flight consists of the following input lines:

• The first input line in a flight contains an integer K (0 < K < 10), representing the number
of legs in the flight.

• The next K input lines each contain the following three integers:

1. The length of the leg, in nautical miles

2. The expected tailwind at 20,000 feet, in knots

3. The expected tailwind at 40,000 feet, in knots

The expected tailwind at altitudes between 20,000 and 40,000 feet is computed by linear in-
terpolation. For example, the expected tailwind at 30,000 feet is halfway between the expected
tailwind at 20,000 feet and the expected tailwind at 40,000 feet.
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Output

Your program must produce one output line for each flight. The output line must contain the
flight number (counting from the beginning of the problem), the chosen altitude for each leg (in
thousands of feet), and the fuel required for the trip (in gallons, to the nearest gallon).

Sample Input

2
2
1500 -50 50
1000 0 0
3
1000 50 0
2000 0 20
1800 50 100

Sample Output

Flight 1: 35 30 13985
Flight 2: 20 30 40 23983
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C Lead or Gold

How to make gold from lead has baffled alchemists for centuries. At the last Alchemists Club
Meeting (ACM), a sensational breakthrough was announced. By mixing the three chemicals Al-
golene, Basicine and Cobolase in the correct ratio, one can create a mixture that transforms lead
into gold. Since Algolene, Basicine and Cobolase (or A, B, C for short) are generally not sold
individually, but rather mixed into solutions, this may not be easy as it seems.

Consider the following example. Two mixtures of Algolene, Basicine and Cobolase are available,
in ratios of 1:2:3 and 3:7:1, respectively. By mixing these solutions in a ratio of 1:2 we obtain a
solution of A, B, C with ratio 7:16:5. But there is no way to combine these mixtures into a new
one with ratio 3:4:5. If we additionally had a solution of ratio 2:1:2, then a 3:4:5 mixture would be
possible by combining eight parts of 1:2:3, one part of 3:7:1 and five parts of 2:1:2.

Determining which mixing ratios we can obtain from a given set of solutions is no trivial task.
But, as the ACM has shown, it is possibly a very profitable one. You must write a program to find
mixing ratios.

Input

The input file contains several test cases. The first line of each test case contains an integer n
(0 ≤ n < 100) that represents the number of mixtures in the test case. The next n lines each
contain three non-negative integers ai, bi, ci, specifying the ratio ai : bi : ci in which A, B, C occur
in the i-th mixture. At least one of these integers is positive for each mixture.

Finally, there is one line containing three non-negative integers a, b, c, which specify the ratio
a : b : c in the desired solution. At least one of these integers is positive.

The input file is terminated with the integer ‘0’ on a line by itself following the last test case.

Output

For each test case, output the word ‘Mixture’, followed by the ordinal number of the test case. On
the next line, if it is possible to obtain the desired solution by mixing the input solutions, output
the word ‘Possible’. Otherwise, output the word ‘Impossible’.

Sample Input

2
1 2 3
3 7 1
3 4 5
3
1 2 3
3 7 1
2 1 2
3 4 5
0

Sample Output

Mixture 1
Impossible

Mixture 2
Possible
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D Page Selection by Keyword Matching

Anyone who has used the World Wide Web is familiar with search engines used to find pages
matching a user- generated query. Many of these engines are quite sophisticated, using advanced
algorithms and parallel searching techniques to provide fast, accurate responses.

This problem is somewhat simpler. A group of web pages has been classified by associating a
list of keywords, given in decreasing order of relevance, with each page (i.e., the order of keywords
is from the most specific keyword to the least specific). For example, a page on programming
in Smalltalk has the keywords Smalltalk, programming, and computers in that order; the most
relevant keyword is Smalltalk.

Queries also include a list of keywords, again from most to least relevant. For example, in a
query consisting of the keyword Smalltalk followed by the keyword computers, Smalltalk is more
important than computers.

In this problem you are to determine the top five (or fewer) pages that match each of an
arbitrary number of queries. To determine the strength of the relationship between a query and
a web page, assume the keywords for each page and each query are assigned integer weights, in
descending order, starting with N , where N is the maximum number of keywords allowed for a
web page and query. The strength of the relationship is the sum of the products of the weights
associated with each keyword that appears both in the web page list and the query list. For
example, assume the following web pages and keyword lists:

Page 1: Smalltalk, programming, computers

Page 2: computers, programming

Page 3: computers, Smalltalk

For N equal 8, a query with keywords Smalltalk and programming in that order yields a
strength rating of 113 for Page 1 (8*8 + 7*7), 49 for Page 2 (7*7), and 56 for Page 3 (8*7). A
query with keywords Smalltalk and computers yields a strength rating of 106 for Page 1 (8*8 +
7*6), 56 for Page 2 (7*8), and 112 for Page 3 (8*7 + 7*8).

Input

Input data consist of one line for each web page and query. A line consists of a code letter followed
by a list of keywords. Code letters P, Q, and E denote a page, a query, and the end of file respectively.
Code letters and keywords are separated by at least one space. P’s and Q’s may occur in any order.
Pages are added sequentially starting with one. Each page has at least one but no more than 8
keywords. Each word consists of no more than 20 alphabetic characters. The case of characters in
the keywords is not significant. There will be a maximum of 25 pages in the input.

Each query also has of a list of between one and eight keywords. Again, a keyword has no more
than 20 alphabetic characters, case being insignificant. Number the queries sequentially starting
with one.

Output

For each query, identify the 5 (or fewer) pages read so far that are most relevant to the query.
Print a single line containing the query identifier, a colon, and the page identifiers of the five most
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relevant pages in the decreasing order of relevance. Page identifiers consist of the letter ‘P’ followed
by the page number. Query identifiers consist of the letter ‘Q’ followed by the query number. If
several pages have the same relevance, list them by increasing page number. Do not list pages that
have no relationship (zero strength), even if fewer than five pages are identified.

Sample Input

P Smalltalk programming computers
P computers programming
P computers Smalltalk
P FORTRAN programming
P COBOL programming
P programming
Q Smalltalk
Q programming
Q computers
Q Smalltalk computers
Q Smalltalk programming
Q cooking French
E

Sample Output

Query Pages
Q1: P1 P3
Q2: P6 P1 P2 P4 P5
Q3: P2 P3 P1
Q4: P3 P1 P2
Q5: P1 P3 P6 P2 P4
Q6:
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E Petri Net Simulation

A Petri net is a computational model used to illustrate concurrent activity. Each Petri net contains
some number of places (represented by circles), transitions (represented by black rectangles), and
directed edges used to connect places to transitions, and transitions to places. Each place can hold
zero or more tokens (represented by black dots). Here are two examples:

In the first Petri net above, there are two places (P1 and P2) and two transitions (T1 and T2).
P1 initially has one token; P2 has none. P1 is an input place for transition T1, and P2 is an output
place for T1. In the second example there are three places and three transitions, with three tokens
in P1. T2 has two input places, both of which are P2.

Operation of a Petri Net:
Each transition in a Petri net is either enabled or disabled. A transition is enabled if there is

at least one token in each of its input places. Any transition can fire whenever it is enabled. If
multiple transitions are enabled, any one of them may fire. When a transition fires, one token is
removed from each of the input places, and one token is added to each of the output places; this
is effectively done atomically, as one action. When there are no enabled transitions, a Petri net is
said to be dead.

In the top example only T1 is enabled. When it fires one token is removed from P1, and one
token is added to P2. Then T2 is enabled. When it fires one token is removed from P2, and one
token is added to P1. Clearly this Petri net will repeat this cycle forever.

The bottom example is more interesting. T1 is enabled and fires, effectively moving a token
to P2. At this point T1 is still the only enabled transition (T2 requires that P2 have two tokens
before it is enabled). T1 fires again, leaving one token in P1 and two tokens in P2. Now both T1
and T2 are enabled. Assume T2 fires, removing two tokens from P2 and adding one token to P3.
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Now T1 and T3 are enabled. Continuing until no more transitions are enabled, you should see
that only one token will be left in P2 after 9 transition firings. (Note that if T1 had fired instead
of T2 when both were enabled, this result would have been the same after 9 firings.)

In this problem you will be presented with descriptions of one or more Petri nets. For each
you are to simulate some specified number of transition firings, NF , and then report the number
of tokens remaining in the places. If the net becomes dead before NF transition firings, you are
to report that fact as well.

Input

Each Petri net description will first contain an integer NP (0 < NP < 100) followed by NP
integers specifying the number of tokens initially in each of the places numbered 1, 2, . . . , NP .
Next there will appear an integer NT (0 < NT < 100) specifying the number of transitions. Then,
for each transition (in increasing numerical order 1, 2, . . . , NT ) there will appear a list of integers
terminated by zero.

The negative numbers in the list will represent the input places, so the number −n indicates
there is an input place at n. The positive numbers in the list will indicate the output places, so
the number p indicates an output place at p. There will be at least one input place and at least
one output place for each transition. Finally, after the description of all NT transitions, there will
appear an integer indicating the maximum number of firings you are to simulate, NF . The input
will contain one or more Petri net descriptions followed by a zero.

Output

For each Petri net description in the input display three lines of output. On the first line indicate
the number of the input case (numbered sequentially starting with 1) and whether or not NF
transitions were able to fire. If so, indicate the net is still live after NF firings. Otherwise indicate
the net is dead, and the number of firings which were completed. In either case, on the second line
give the identities of the places which contain one or more tokens after the simulation, and the
number of tokens each such place contains. This list should be in ascending order. The third line
of output for each set should be blank.

The input data will be selected to guarantee the uniqueness of the correct output displays.

Sample Input

2
1 0
2
-1 2 0
-2 1 0
100
3
3 0 0
3
-1 2 0
-2 -2 3 0
-3 1 0
100
0

Sample Output

Case 1: still live after 100 transitions
Places with tokens: 1 (1)

Case 2: dead after 9 transitions
Places with tokens: 2 (1)
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F Polygon Intersections

Most drawing or illustration programs have simple tools for creating polygon objects. The better
ones can find the regions that are the intersections of two polygons. The picture below shows two
polygons, one is a pentagon and the other is a triangle. Their intersection consists of the two dark
regions.

IBM has just hired you as a member of a programming team that will create a very sophisticated
drawing/illustration program. Your task is to write the part of the program that deals with polygon
intersections. Your boss has told you to delay work on the user interface and focus only on the
geometric representations of the intersections.

A polygon in the Cartesian plane can be represented by a sequence of points that are its vertices.
The vertices in the sequence appear in the order in which they are visited when traveling clockwise
around the polygon’s boundary; so any two adjacent vertices in the sequence are the endpoints of
a line segment that is one of the polygon’s sides. The last and the first vertices in the sequence
are also endpoints of a side. Vertices are identified by their x- and y- coordinates. Assume the
following about each polygon.

• No point will occur as a vertex (on the same polygon) more than once.

• Two sides can intersect only at a common endpoint (vertex).

• The angle between any two sides with a common vertex has a measure that is greater than
0 and less than 360.

• The polygon has at least 3 vertices.

The intersection of two polygons consists of 0 or more connected regions. Your problem is to
take two polygons and determine the regions of their intersection that are polygons satisfying the
criteria above.

Input

The input contains several data sets, each consisting of two polygons. Each polygon appears as a
sequence of numbers:

n x1 y1 x2 y2 . . . xn yn
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where the integer n is the number of vertices of the polygon, and the real coordinates (x1, y1)
through (xn, yn) are the boundary vertices. The end of input is indicated by two 0’s for the values
of n. These two 0’s merely mark the end of data and should not be treated as an additional data
set.

Output

For each data set, your program should output its number (‘Data set 1’, ‘Data set 2’, etc.),
and the number of regions in the intersection of its two polygons. Label each region in the data
set (‘Region 1’, ‘Region 2’, etc.) and list its vertices in the order they appear when they are
visited going either clockwise or counterclockwise around the boundary of the region. The first
vertex printed should be the vertex with the smallest x-coordinate (to break ties, use the smallest
y-coordinate). No region may include degenerate parts (consisting of adjacent sides whose angle
of intersection is 0). If the three endpoints of two adjacent sides are collinear, the two sides should
be merged into a single side. Print each vertex in the standard form (x, y), where x and y have
two digits to the right of the decimal.

The following sample input contains exactly one data set. (The data set corresponds to the
illustration at the beginning of this problem description.)

Sample Input

3 2 1 0.5 3.5 8 5
5 1.5 3 2 7 6.5 6.5 6.5 3.25 4 4.5
0
0

Sample Output

Data Set 1
Number of intersection regions: 2
Region 1:(1.50,3.00)(1.59,3.72)(3.25,4.05)
Region 2:(4.43,4.29)(6.50,4.70)(6.50,4.00)(5.86,3.57)
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G Spatial Structures

Computer graphics, image processing, and GIS (geographic information systems) all make use of a
data structure called a quadtree. Quadtrees represent regional or block data efficiently and support
efficient algorithms for operations like the union and intersection of images.

A quadtree for a black and white image is constructed by successively dividing the image into
four equal quadrants. If all the pixels in a quadrant are the same color (all black or all white) the
division process for that quadrant stops. Quadrants that contain both black and white pixels are
subdivided into four equal quadrants and this process continues until each subquadrant consists
of either all black or all white pixels. It is entirely possible that some subquadrants consist of a
single pixel.

For example, using 0 for white and 1 for black, the region on the left below is represented by
the matrix of zeros and ones in the middle. The matrix is divided into subquadrants as shown on
the right where gray squares represent subquadrants that consist entirely of black pixels.

A quadtree is constructed from the block structure of an image. The root of the tree represents
the entire array of pixels. Each non-leaf node of a quadtree has four children, corresponding to
the four subquadrants of the region represented by the node. Leaf nodes represent regions that
consist of pixels of the same color and thus are not subdivided. For example, the image shown
above, with the block structure on the right, is represented by the quadtree below.

Leaf nodes are white if they correspond to a block of all white pixels, and black if they corre-
spond to a block of all black pixels. In the tree, each leaf node is numbered corresponding to the
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block it represents in the diagram above. The branches of a non-leaf node are ordered from left-
to-right as shown for the northwest, northeast, southwest, and southeast quadrants (or upper-left,
upper-right, lower-left, lower-right).

A tree can be represented by a sequence of numbers representing the root-to-leaf paths of black
nodes. Each path is a base five number constructed by labeling branches with 1, 2, 3, or 4 with
NW = 1, NE = 2, SW = 3, SE = 4, and with the least significant digit of the base five number
corresponding to the branch from the root. For example, the node labeled 4 has path NE, SW
which is 325 (base 5) or 1710 (base 10); the node labeled 12 has path SW, SE or 435 = 2310 ; and
the node labeled 15 has path SE, SW, NW or 1345 = 4410 . The entire tree is represented by the
sequence of numbers (in base 10)

9 14 17 22 23 44 63 69 88 94 113

Write a program that converts images into root-to-leaf paths and converts root-to-leaf paths
into images.

Input

The input contains one or more images. Each image is square, and the data for an image starts
with an integer n, where |n| is the length of a side of the square (always a power of two, with
|n| < 64) followed by a representation of the image. A representation is either a sequence of n2

zeros and ones comprised of |n| lines of |n| digits per line, or the sequence of numbers that represent
the root-to-leaf paths of each black node in the quadtree that represents the image.

If n is positive, the zero/one representation follows; if n is negative, the sequence of black node
path numbers (in base 10) follows. The sequence is terminated by the number ‘-1’. A one-node
tree that represents an all-black image is represented by the number ‘0’. A one-node tree that
represents an all-white image is represented by an empty sequence (no numbers).

The end of data is signaled by a value of ‘0’ for n.

Output

For each image in the input, first output the number of the image, as shown in the sample output.
Then output the alternate form of the image.

If the image is represented by zeros and ones, the output consists of root-to-leaf paths of all
black nodes in the quadtree that represents the image. The values should be base 10 representations
of the base 5 path numbers, and the values should be printed in sorted order. If there are more
than 12 black nodes, print a newline after every 12 nodes. The total number of black nodes should
be printed after the path numbers.

If the image is represented by the root-to-leaf paths of black nodes, the output consists of an
ASCII representation of the image with the character ‘.’ used for white/zero and the character
‘*’ used for black/one. There should be n characters per line for an n× n image.
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Sample Input

8
00000000
00000000
00001111
00001111
00011111
00111111
00111100
00111000
-8
9 14 17 22 23 44 63 69 88 94 113 -1
2
00
00
-4
0 -1
0

Sample Output

Image 1
9 14 17 22 23 44 63 69 88 94 113
Total number of black nodes = 11

Image 2
........
........
....****
....****
...*****
..******
..****..
..***...

Image 3
Total number of black nodes = 0

Image 4
****
****
****
****
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H Towers of Powers

One of the many problems in computer-generated graphics is realistically modeling the “orderly
randomness” of things like mountain ranges and city skylines. A new student intern at a graphics
company had an idea—use fluctuations in number representations to model height. In this problem
you will compute several such number representations and show the “skylines” they produce.

Let n be any positive integer, and let b be an integer greater than or equal to 2. The
completebase − bexpansionofn is obtained as follows. First write the usual base-b expansion
of n, which is just a sum of powers of b, each multiplied by a coefficient between 1 and b − 1,
omitting terms with zero coefficients. For example, if n = 20000 and b = 3, the base-3 expansion
of 20000 is given by

20000 = 39 + 35 + 2× 33 + 2× 32 + 2

To obtain the complete base-b expansion, we apply the same procedure to the exponents until
all numbers are represented in base b. For n = 20000 and b = 3 we would have

20000 = 332

+ 33+2 + 2× 33 + 2× 32 + 2

As another example, consider n = 16647 and b = 2. The resulting expansion is

16647 = 222+1+22+2 + 222+1

+ 22 + 2 + 1

The rising and falling heights of the numbers form the number’s “skyline.”

For each pair of integers n and b in the input, display the complete base-b representation of
n. Your display should use multiple output lines for different exponent heights. The display must
begin with n = , followed by the expansion. Answers should use an asterisk (*) as the multiplication
symbol between coefficients and powers of b. Zero terms must not be printed, and unnecessary
coefficients and exponents must not be shown (for example, display 1 instead of b0, b2 instead of
1 ∗ b2 and b instead of b1). To assist in accurately viewing the skyline of the number, the display
must show one character (either a digit, +, or *) per column of the multi-line display; there must
be no unnecessary spaces. The correct format is illustrated in the sample output shown below.

Answers must be displayed using no more than 80 columns. Expansions requiring more than 80
columns must be split between terms, and a second set of display lines used to show the remaining
portion of the expansion. The second part of the answer must begin in the same column as the
previous part of the answer. See the sample output for an example.

Input

Input is a sequence of pairs of integers, n and b, followed by a pair of zeroes. Each value for n
will be positive, and each value for b will be greater than or equal to 2. No value will exceed the
maximum signed integer size for the machine.
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Output

For each input pair, n and b, print the complete base-b expansion of n as described above. Print
a line containing

n in complete base b:

preceding each expansion. Separate the output for consecutive pairs by a line of hyphens. All
coefficients, bases, and exponents are to be displayed as standard base 10 integers. The expansion
for each input pair will require at most two standard screen widths, allowing for indentation and
splitting between terms of the expansion.

Sample Input

20000 3
16647 2
1000 12
85026244 3
0 0

Sample Output

20000 in complete base 3:

2
3 3+2 3 2

20000 = 3 +3 +2*3 +2*3 +2
-------------------------------------------------------
16447 in complete base 2:

2+1 2 2+1
2 +2 +2 2 2

16647 = 2 +2 +2 +2+1
-------------------------------------------------------
1000 in complete base 12:

2
1000 = 6*12 +11*12+4
-------------------------------------------------------
85026244 in complete base 3:

2 2 2 2 2 2 2
3 +2*3+1 3 +2*3 3 +3+2 3 +3+1 3 +2 3 +1 3

85026244 = 3 +2*3 +2*3 +2*3 +2*3 +2*3 +2*3

2*3+2 2*3+1 3
+2*3 +3 +2*3 +3+1
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A Bee Breeding

Professor B. Heif is conducting experiments with a species of South American bees that he found
during an expedition to the Brazilian rain forest. The honey produced by these bees is of superior
quality compared to the honey from European and North American honey bees. Unfortunately,
the bees do not breed well in captivity. Professor Heif thinks the reason is that the placement of
the different maggots (for workers, queens, etc.) within the honeycomb depends on environmental
conditions, which are different in his laboratory and the rain forest.

As a first step to validate his theory, Professor Heif wants to quantify the difference in maggot
placement. For this he measures the distance between the cells of the comb into which the maggots
are placed. To this end, the professor has labeled the cells by marking an arbitrary cell as number
1, and then labeling the remaining cells in a clockwise fashion, as shown in the following figure.

For example, two maggots in cells 19 and 30 are 5 cells apart. One of the shortest paths
connecting the two cells is via the cells 19 - 7 - 6 - 5 - 15 - 30, so you must move five times to
adjacent cells to get from 19 to 30.

Professor Heif needs your help to write a program that computes the distance, defined as the
number of cells in a shortest path, between any pair of cells.
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Input

The input consists of several lines, each containing two integers a and b (a, b ≤ 10000), denoting
numbers of cells. The integers are always positive, except in the last line where a = b = 0 holds.
This last line terminates the input and should not be processed.

Output

For each pair of numbers (a, b) in the input file, output the distance between the cells labeled a
and b. The distance is the minimum number of moves to get from a to b.

Sample Input

19 30
0 0

Sample Output

The distance between cells 19 and 30 is 5.
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B Bullet Hole

A cube is suspended in space. A Cartesian coordinate system is defined with its origin at one
of the bottom corners of the cube, as shown in the figure. The cube has side dimension d, so its
opposite corners are at coordinates (0, 0, 0) and (d, d, d). The positive z-direction of the coordinate
system is “up” with respect to gravity.

The interior of the cube contains partitions with uniform spacing in each dimension, so that
the cube is partitioned into n3 mini-cubes of equal size. The partitions are thin and watertight,
and each mini-cube is filled with water. The total volume of water in all the minicubes is d3 .

A gun fires a bullet which may hit the cube. The muzzle of the gun is at the point (x1, y1, z1).
The point (x2, y2, z2) is a point on the bullet’s path that defines the direction of the bullet. The
bullet does not shatter the cube, but wherever the bullet touches a side or interior partition of the
cube, it makes a small hole. Bullet holes may be made in the sides, edges, or corners of the interior
mini-cubes. Water, influenced by gravity, may leak through these small holes. All the water that
leaks out of the large cube is collected and measured.

Input

The input data set consists of several trials. Each trial is described by eight integers. The first
integer is n (n ≤ 50), as described above. The second integer is d (d ≤ 100). The remaining six
integers—x1, y1, z1, x2, y2, z2—represent the origin and a point on the path of the bullet (−100 ≤
x1, y1, z1, x2, y2, z2 ≤ 100). The origin and the point on the path of the bullet are not the same.
The origin may be inside the cube. After the last trial, the integer ‘0’ terminates the data set.

Output

Your program must compute the total volume of water that leaks out of the large cube. For each
trial, print the trial number, the notation ‘Volume =’, and the total volume of water accurate to
two digits to the right of the decimal point.

Print a blank line between trials.

Note: In this problem, two real numbers are considered equal if they are less than 10−6 apart.
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Sample Input

5 25 5 15 0 5 15 100
3 30 0 -35 0 3 -25 3
10 16 8 17 11 12 19 6
0

Sample Output

Trial 1, Volume = 2500.00

Trial 2, Volume = 1950.00

Trial 3, Volume = 0.00
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C A Dicey Problem

The three-by-three array in Figure 1 is a maze. A standard six-sided die is needed to traverse
the maze (the layout of a standard six–sided die is shown in Figure 2). Each maze has an initial
position and an initial die configuration. In Figure 1, the starting position is row 1, column 2—the
“2” in the top row of the maze—and the initial die configuration has the “5” on top of the die
and the “1” facing the player (assume the player is viewing the maze from the bottom edge of the
figure).

To move through the maze you must tip the die over on an edge to land on an adjacent square,
effecting horizontal or vertical movement from one square to another. However, you can only move
onto a square that contains the same number as the number displayed on the top of the die before
the move, or onto a “wild” square which contains a star. Movement onto a wild square is always
allowed regardless of the number currently displayed on the top of the die. The goal of the maze
is to move the die off the starting square and to then find a way back to that same square.

For example, at the beginning of the maze there are two possible moves. Since the 5 is on top
of the die, it is possible to move down one square, and since the square to the left of the starting
position is wild it is also possible to move left. If the first move chosen is to move down, this brings
the 6 to the top of the die and moves are now possible both to the right and down. If the first
move chosen is instead to the left, this brings the 3 to the top of the die and no further moves are
possible.

If we consider maze locations as ordered pairs of row and column numbers (row, column) with
row indexes starting at 1 for the top row and increasing toward the bottom, and column indexes
starting at 1 for the left column and increasing to the right, the solution to this simple example
maze can be specified as: (1,2), (2,2), (2,3), (3,3), (3,2), (3,1), (2,1), (1,1), (1,2). A bit more
challenging example maze is shown in Figure 3.

The goal of this problem is to write a program to solve dice mazes. The input file will contain
several mazes for which the program should search for solutions. Each maze will have either a
unique solution or no solution at all. That is, each maze in the input may or may not have a
solution, but those with a solution are guaranteed to have only one unique solution. For each
input maze, either a solution or a message indicating no solution is possible will be sent to the
output.
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Input

The input file begins with a line containing a string of no more than 20 non-blank characters that
names the first maze. The next line contains six integers delimited by single spaces. These integers
are, in order, the number of rows in the maze (an integer from 1 to 10, call this value R), the
number of columns in the maze (an integer from 1 to 10, call this value C), the starting row, the
starting column, the number that should be on top of the die at the starting position, and finally
the number that should be facing you on the die at the starting position. The next R lines contain
C integers each, again delimited by single spaces. This R × C array of integers defines the maze.
A value of zero indicates an empty location in the maze (such as the two empty squares in the
center column of the maze in Figure 3), and a value of ‘-1’ indicates a wild square.

This input sequence is repeated for each maze in the input. An input line containing only the
word ‘END’ (without the quotes) as the name of the maze marks the end of the input.

Output

The output should contain the name of each maze followed by its solution or the string ‘No
Solution Possible’ (without the quotes). All lines in the output file except for the maze names
should be indented exactly two spaces. Maze names should start in the leftmost column.

Solutions should be output as a comma-delimited sequence of the consecutive positions tra-
versed in the solution, starting and ending with the same square (the starting square as specified
in the input). Positions should be specified as ordered pairs enclosed in parentheses. The solution
should list 9 positions per line (with the exception of the last line of the solution for which there
may not be a full 9 positions to list), and no spaces should be present within or between positions.
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Sample Input

DICEMAZE1
3 3 1 2 5 1
-1 2 4
5 5 6
6 -1 -1
DICEMAZE2
4 7 2 6 3 6
6 4 6 0 2 6 4
1 2 -1 5 3 6 1
5 3 4 5 6 4 2
4 1 2 0 3 -1 6
DICEMAZE3
3 3 1 1 2 4
2 2 3
4 5 6
-1 -1 -1
END

Sample Output

DICEMAZE1
(1,2),(2,2),(2,3),(3,3),(3,2),(3,1),(2,1),(1,1),(1,2)

DICEMAZE2
(2,6),(2,5),(2,4),(2,3),(2,2),(3,2),(4,2),(4,1),(3,1),
(2,1),(2,2),(2,3),(2,4),(2,5),(1,5),(1,6),(1,7),(2,7),
(3,7),(4,7),(4,6),(3,6),(2,6)

DICEMAZE3
No Solution Possible



164 Competitive Learning Institute

D The Fortified Forest

Once upon a time, in a faraway land, there lived a king. This king owned a small collection of
rare and valuable trees, which had been gathered by his ancestors on their travels. To protect his
trees from thieves, the king ordered that a high fence be built around them. His wizard was put
in charge of the operation.

Alas, the wizard quickly noticed that the only suitable material available to build the fence
was the wood from the trees themselves. In other words, it was necessary to cut down some trees
in order to build a fence around the remaining trees. Of course, to prevent his head from being
chopped off, the wizard wanted to minimize the value of the trees that had to be cut. The wizard
went to his tower and stayed there until he had found the best possible solution to the problem.
The fence was then built and everyone lived happily ever after.

You are to write a program that solves the problem the wizard faced.

Input

The input contains several test cases, each of which describes a hypothetical forest. Each test case
begins with a line containing a single integer n, 2 ≤ n ≤ 15, the number of trees in the forest. The
trees are identified by consecutive integers 1 to n. Each of the subsequent lines contains 4 integers
xi, yi, vi, li that describe a single tree. (xi, yi) is the position of the tree in the plane, vi is its value,
and li is the length of fence that can be built using the wood of the tree. vi and li are between 0
and 10,000.

The input ends with an empty test case (n = 0).

Output

For each test case, compute a subset of the trees such that, using the wood from that subset, the
remaining trees can be enclosed in a single fence. Find the subset with a minimum value. If more
than one such minimum-value subset exists, choose one with the smallest number of trees. For
simplicity, regard the trees as having zero diameter.

Display, as shown below, the test case numbers (1, 2, . . . ), the identity of each tree to be cut,
and the length of the excess fencing (accurate to two fractional digits).

Display a blank line between test cases.

Sample Input

6
0 0 8 3
1 4 3 2
2 1 7 1
4 1 2 3
3 5 4 6
2 3 9 8
3
3 0 10 2
5 5 20 25
7 -3 30 32
0

Sample Output

Forest 1
Cut these trees: 2 4 5
Extra wood: 3.16

Forest 2
Cut these trees: 2
Extra wood: 15.00
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E Trade on Verweggistan

Since the days of Peter Stuyvesant and Abel Tasman, Dutch merchants have been traveling all
over the world to buy and sell goods. Once there was some trade on Verweggistan, but it ended
after a short time. After reading this story you will understand why.

At that time Verweggistan was quite popular, because it was the only place in the world where
people knew how to make a ‘prul’. The end of the trade on Verweggistan meant the end of the
trade in pruls (or ‘prullen’, as the Dutch plural said), and very few people nowadays know what a
prul actually is.

Pruls were manufactured in workyards. Whenever a prul was finished it was packed in a box,
which was then placed on top of the pile of previously produced pruls. On the side of each box the
price was written. The price depended on the time it took to manufacture the prul. If all went
well, a prul would cost one or two florins, but on a bad day the price could easily rise to 15 florins
or more. This had nothing to do with quality; all pruls had the same value.

In those days pruls sold for 10 florins each in Holland. Transportation costs were negligible
since the pruls were taken as extra on ships that would sail anyway. When a Dutch merchant went
to Verweggistan, he had a clear purpose: buy pruls, sell them in Holland, and maximize his profits.
Unfortunately, the Verweggistan way of trading pruls made this more complicated than one would
think.

One would expect that merchants would simply buy the cheapest pruls, and the pruls that cost
more than 10 florins would remain unsold. Unfortunately, all workyards on Verweggistan sold their
pruls in a particular order. The box on top of the pile was sold first, then the second one from the
top, and so on. So even if the fifth box from the top was the cheapest one, a merchant would have
to buy the other four boxes above to obtain it.

As you can imagine, this made it quite difficult for the merchants to maximize their profits by
buying the right set of pruls. Not having computers to help with optimization, they quickly lost
interest in trading pruls at all.

In this problem, you are given the description of several workyard piles. You have to calcu-
late the maximum profit a merchant can obtain by buying pruls from the piles according to the
restrictions given above. In addition, you have to determine the number of pruls he has to buy to
achieve this profit.

Input

The input describes several test cases. The first line of input for each test case contains a single
integer w, the number of workyards in the test case (1 ≤ w ≤ 50).

This is followed by w lines, each describing a pile of pruls. The first number in each line is
the number b of boxes in the pile (0 ≤ b ≤ 20). Following it are b positive integers, indicating the
prices (in florins) of the pruls in the stack, given from top to bottom.

The input is terminated by a description starting with w = 0. This description should not be
processed.

Output

For each test case, print the case number (1, 2, . . . ). Then print two lines, the first containing the
maximum profit the merchant can achieve. The second line should specify the number of pruls the



166 Competitive Learning Institute

merchant has to buy to obtain this profit. If this number is not uniquely determined, print the
possible values in increasing order. If there are more than ten possible values, print only the 10
smallest. Display a blank line between test cases.

Sample Input

1
6 12 3 10 7 16 5
2
5 7 3 11 9 10
9 1 2 3 4 10 16 10 4 16
0

Sample Output

Workyards 1
Maximum profit is 8.
Number of pruls to buy: 4

Workyards 2
Maximum profit is 40.
Number of pruls to buy: 6 7 8 9 10 12 13
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F Robot

A robot arm used in an automated factory consists of N connected links: link1 which is connected
to link2, . . . , and linkN−1 which is connected to linkN . Each link is a straight rod of a specified
length, len1, len2, . . . , lenN . Between each pair of connected links is a servo, servo2 (between link1

and link2 ), . . . , and servoN (between linkN−1 and linkN ) that can be activated to adjust the
angle between the connected links. Link1 is also connected by a servo, servo1, to the factory floor
(at the point x = 0, y = 0, z = 0 in a Cartesian coordinate system). At the free (unconnected) end
of the last link (linkN ) is a “hand” that can be used to grasp objects.

In the initial setting of the robot arm, each servo is set to no rotation (0 degrees), and the links
in the robot arm coincide with the z-axis. The xy plane is horizontal (the factory floor), and the
entire robot arm is initially pointing up, vertically. From this initial setting, each servo can effect
a rotation of up to 90 degrees in either of two directions. Servo1 moves the entire robot arm in
the xz plane by rotation about the y-axis. Servo2 moves the arm (except link1) in the (perhaps
rotated) yz plane by rotation about the x-axis. In a similar manner, each odd-numbered servo can
rotate the remaining part of the arm in the (perhaps rotated) xz plane, and each even-numbered
servo can rotate the remaining part of the arm in the (perhaps rotated) yz plane. In effect, the
servos rotate the links about the y and x-axes of coordinate systems fixed to the end of each link.
Counterclockwise rotations about a coordinate axis are produced with positive rotation angles, if
we are looking along the positive half of the axis toward the coordinate origin. The sample data
has been carefully chosen to illustrate the effects of these rotations.

There are two restrictions on the final positioning of the robot’s arm. No part of the arm can be
below the factory floor, and the links in the robot’s arm cannot intersect with each other (except
where they are connected by the servos).

You should check only the final position of the arm.

Given the number of links in a robot’s arm, their lengths, and the proposed settings of the
servos, first determine if the proposed positioning of the arm is allowable. If the arm can be
positioned as proposed, then determine the coordinates of the robot’s hand, accurate to three
fractional digits. Otherwise identify the first (smallest numbered) servo that has an inappropriate
setting, and why that setting is inappropriate. Links are assumed to intersect if they come within
0.001 length units of each other.

Input

The input data will contain multiple test cases. Each test case includes, in order, the number of
links, N , their lengths, len1, len2, . . . , lenN , and the proposed angles to which the servos (starting
with servo1) are to be set. The lengths and servo angles are real numbers, and the number of links
is an integer. There will be no more than 10 links in any robot arm. The last test case is followed
by a negative integer.

Output

For each test case, display the test case number (starting with 1). Then, if the proposed setting is
allowable, display the position of the robot’s hand in the original (factory floor) coordinate system
(with three fractional digits). Otherwise display the identity of the first servo with an inappropriate
setting and why that setting is inappropriate. An output format similar to that shown below is
acceptable.
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Sample Input

2 25 15 0 90.0
1 1.0 45.0
2 1 1 0 45
4 1 2 3 4 90 0 0 0
3 1 1 1 0 90 90
2 1 1 45.0 45
4 1 1 1 2 0 90 0 90
8 10 1 1 1 1 1 1 2

0 0 90 0 90 0 90 0
-1

Sample Output

Case 1: robot’s hand is at (0.000,-15.000,25.000)
Case 2: robot’s hand is at (0.707,0.000,0.707)
Case 3: robot’s hand is at (0.000,-0.707,1.707)
Case 4: robot’s hand is at (10.000,0.000,0.000)
Case 5: robot’s hand is at (1.000,-1.000,1.000)
Case 6: robot’s hand is at (1.207,-0.707,1.207)
Case 7: servo 4 attempts to move arm below floor
Case 8: servo 8 causes link collision
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G The Letter Carrier’s Rounds

For an electronic mail application you are to describe the SMTP-based communication that takes
place between pairs of MTAs. The sender’s User Agent gives a formatted message to the sending
Message Transfer Agent (MTA). The sending MTA communicates with the receiving MTA using
the Simple Mail Transfer Protocol (SMTP). The receiving MTA delivers mail to the receiver’s User
Agent. After a communication link is initialized, the sending MTA transmits command lines, one
at a time, to the receiving MTA, which returns a three-digit coded response after each command
is processed. The sender commands are shown below in the order sent for each message. There is
more than one RCPT TO line when the same message is sent to several users at the same MTA.
A message to users at different MTAs requires separate SMTP sessions.

HELO myname Identifies the sender to the receiver (yes, there is only one L)
MAIL FROM:< sender > Identifies the message sender
RCPT TO:< user > Identifies one recipient of the message
DATA Followed by an arbitrary number of lines of text

comprising the message body, ending with a line
containing a period in column one.

QUIT Terminates the communication.

The following response codes are sent by the receiving MTA:

221 Closing connection (after QUIT)

250 Action was okay (after MAIL FROM and RCPT TO specifying an acceptable user, or com-
pletion of a message)

354 Start sending mail (after DATA)

550 Action not taken; no such user here (after RCPT TO with unknown user)

Input

The input contains descriptions of MTAs followed by an arbitrary number of messages. Each MTA
description begins with the MTA designation and its name (1 to 15 alphanumeric characters).
Following the MTA name is the number of users that receive mail at that MTA and a list of the
users (1 to 15 alphanumeric characters each). The MTA description is terminated by an asterisk in
column 1. Each message begins with the sending user’s name and is followed by a list of recipient
identifiers. Each identifier has the form user@mtaname. The message (each line containing no
more than 72 characters) begins and terminates with an asterisk in column 1. A line with an
asterisk in column 1 instead of a sender and recipient list indicates the end of the entire input.

Output

For each message, show the communication between the sending and receiving MTAs. Every
MTA mentioned in a message is a valid MTA; however, message recipients may not exist at the
destination MTA. The receiving MTA rejects mail for those users by responding to the RCPT TO
command with the 550 code. A rejection will not affect delivery to authorized users at the same
MTA. If there is not at least one authorized recipient at a particular MTA, the DATA is not sent.
Only one SMTP session is used to send a message to users at a particular MTA. For example, a
message to 5 users at the same MTA will have only one SMTP session. Also a message is addressed
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to the same user only once. The order in which receiving MTAs are contacted by the sender is
the same as in the input file. As shown in the sample output, prefix the communication with the
communicating MTA names, and indent each communication line. No innecessary spaces should
be printed.

Sample Input

MTA London 4 Fiona Paul Heather Nevil
MTA SanFrancisco 3 Mario Luigi Shariff
MTA Paris 3 Jacque Suzanne Maurice
MTA HongKong 3 Chen Jeng Hee
MTA MexicoCity 4 Conrado Estella Eva Raul
MTA Cairo 3 Hamdy Tarik Misa
*
Hamdy@Cairo Conrado@MexicoCity Shariff@SanFrancisco Lisa@MexicoCity
*
Congratulations on your efforts !!
--Hamdy
*
Fiona@London Chen@HongKong Natasha@Paris
*
Thanks for the report! --Fiona
*
*

Sample Output

Connection between Cairo and MexicoCity
HELO Cairo
250
MAIL FROM:<Hamdy@Cairo>
250
RCPT TO:<Conrado@MexicoCity>
250
RCPT TO:<Lisa@MexicoCity>
550
DATA
354
Congratulations on your efforts !!
--Hamdy
.
250
QUIT
221

Connection between Cairo and SanFrancisco
HELO Cairo
250
MAIL FROM:<Hamdy@Cairo>
250
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RCPT TO:<Shariff@SanFrancisco>
250
DATA
354
Congratulations on your efforts !!
--Hamdy
.
250
QUIT
221

Connection between London and HongKong
HELO London
250
MAIL FROM:<Fiona@London>
250
RCPT TO:<Chen@HongKong>
250
DATA
354
Thanks for the report! --Fiona
.
250
QUIT
221

Connection between London and Paris
HELO London
250
MAIL FROM:<Fiona@London>
250
RCPT TO:<Natasha@Paris>
550
QUIT
221
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H Flooded!

To enable homebuyers to estimate the cost of flood insurance, a real-estate firm provides clients
with the elevation of each 10-meter by 10-meter square of land in regions where homes may be
purchased. Water from rain, melting snow, and burst water mains will collect first in those squares
with the lowest elevations, since water from squares of higher elevation will run downhill. For
simplicity, we also assume that storm sewers enable water from high-elevation squares in valleys
(completely enclosed by still higher elevation squares) to drain to lower elevation squares, and that
water will not be absorbed by the land.

From weather data archives, we know the typical volume of water that collects in a region.
As prospective homebuyers, we wish to know the elevation of the water after it has collected in
low-lying squares, and also the percentage of the region’s area that is completely submerged (that
is, the percentage of 10-meter squares whose elevation is strictly less than the water level). You
are to write the program that provides these results.

Input

The input consists of a sequence of region descriptions. Each begins with a pair of integers,
m and n, each less than 30, giving the dimensions of the rectangular region in 10-meter units.
Immediately following are m lines of n integers giving the elevations of the squares in row-major
order. Elevations are given in meters, with positive and negative numbers representing elevations
above and below sea level, respectively. The final value in each region description is an integer
that indicates the number of cubic meters of water that will collect in the region. A pair of zeroes
follows the description of the last region.

Output

For each region, display the region number (1, 2, . . . ), the water level (in meters above or below
sea level) and the percentage of the region’s area under water, each on a separate line. The water
level and percentage of the region’s area under water are to be displayed accurate to two fractional
digits. Follow the output for each region with a blank line.

Sample Input

3 3
25 37 45
51 12 34
94 83 27
10000
0 0

Sample Output

Region 1
Water level is 46.67 meters.
66.67 percent of the region is under water.
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A Abbott’s Revenge

The 1999 World Finals Contest included a problem based on a “dice maze.” At the time the
problem was written, the judges were unable to discover the original source of the dice maze
concept. Shortly after the contest, however, Mr. Robert Abbott, the creator of numerous mazes
and an author on the subject, contacted the contest judges and identified himself as the originator
of dice mazes. We regret that we did not credit Mr. Abbott for his original concept in last yeaŕıs
problem statement. But we are happy to report that Mr. Abbott has offered his expertise to this
yeaŕıs contest with his original and unpublished “walk-through arrow mazes.”

As are most mazes, a walk-through arrow maze is traversed by moving from intersection to
intersection until the goal intersection is reached. As each intersection is approached from a given
direction, a sign near the entry to the intersection indicates in which directions the intersection
can be exited. These directions are always left, forward or right, or any combination of these.

Figure 1 illustrates a walk-through arrow maze. The intersections are identified as “(row,
column)” pairs, with the upper left being (1,1). The “Entrance” intersection for Figure 1 is (3,1),
and the “Goal” intersection is (3,3). You begin the maze by moving north from (3,1). As you walk
from (3,1) to (2,1), the sign at (2,1) indicates that as you approach (2,1) from the south (traveling
north) you may continue to go only forward. Continuing forward takes you toward (1,1). The
sign at (1,1) as you approach from the south indicates that you may exit (1,1) only by making a
right. This turns you to the east now walking from (1,1) toward (1,2). So far there have been no
choices to be made. This is also the case as you continue to move from (1,2) to (2,2) to (2,3) to
(1,3). Now, however, as you move west from (1,3) toward (1,2), you have the option of continuing
straight or turning left. Continuing straight would take you on toward (1,1), while turning left
would take you south to (2,2). The actual (unique) solution to this maze is the following sequence
of intersections: (3,1) (2,1) (1,1) (1,2) (2,2) (2,3) (1,3) (1,2) (1,1) (2,1) (2,2) (1,2) (1,3) (2,3) (3,3).

You must write a program to solve valid walk-through arrow mazes. Solving a maze means (if
possible) finding a route through the maze that leaves the Entrance in the prescribed direction,
and ends in the Goal. This route should not be longer than necessary, of course.

Input

The input file will consist of one or more arrow mazes. The first line of each maze description
contains the name of the maze, which is an alphanumeric string of no more than 20 characters.
The next line contains, in the following order, the starting row, the starting column, the starting
direction, the goal row, and finally the goal column. All are delimited by a single space. The
maximum dimensions of a maze for this problem are 9 by 9, so all row and column numbers are
single digits from 1 to 9. The starting direction is one of the characters N, S, E or W, indicating
north, south, east and west, respectively.

All remaining input lines for a maze have this format: two integers, one or more groups of
characters, and a sentinel asterisk, again all delimited by a single space. The integers represent
the row and column, respectively, of a maze intersection. Each character group represents a sign
at that intersection. The first character in the group is N, S, E or W to indicate in what direction
of travel the sign would be seen. For example, S indicates that this is the sign that is seen when
travelling south. (This is the sign posted at the north entrance to the intersection.) Following this
first direction character are one to three arrow characters. These can be L, F or R indicating left,
forward, and right, respectively.

The list of intersections is concluded by a line containing a single zero in the first column. The
next line of the input starts the next maze, and so on. The end of input is the word END on a
single line by itself.
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Output

For each maze, the output file should contain a line with the name of the maze, followed by one
or more lines with either a solution to the maze or the phrase “No Solution Possible”. Maze
names should start in column 1, and all other lines should start in column 3, i.e., indented two
spaces. Solutions should be output as a list of intersections in the format “(R,C)” in the order
they are visited from the start to the goal, should be delimited by a single space, and all but the
last line of the solution should contain exactly 10 intersections.

The first maze in the following sample input is the maze in figure below.

Sample Input

SAMPLE
3 1 N 3 3
1 1 WL NR *
1 2 WLF NR ER *
1 3 NL ER *
2 1 SL WR NF *
2 2 SL WF ELF *
2 3 SFR EL *
0
NOSOLUTION
3 1 N 3 2
1 1 WL NR *
1 2 NL ER *
2 1 SL WR NFR *
2 2 SR EL *
0
END

Sample Output

SAMPLE
(3,1) (2,1) (1,1) (1,2) (2,2) (2,3) (1,3) (1,2) (1,1) (2,1)
(2,2) (1,2) (1,3) (2,3) (3,3)

NOSOLUTION
No Solution Possible
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B According to Bartjens

The wide dissemination of calculators and computers has its disadvantages. Even students in
technical disciplines tend to exhibit a surprising lack of calculating ability. Accustomed to the use
of calculators and computers, many of them are unable to make calculations like 7 ∗ 8 mentally or
like 13 ∗ 17 using pencil and paper. We all know, but who cares?

Professor Bartjens1 cares. Professor Bartjens is a bit old fashioned. He decided to give his
students some training in calculating without electronic equipment by creating a collection of
calculation problems, (like 2100 − 100 = . . .). To simplify grading the problems, he constructed
them so that almost all of them had 2000 as an answer. Not all of them, of course. His students
would be smart enough to recognize the pattern, and fill in 2000 everywhere without further
thinking. Unfortunately Professor Bartjens’ printer driver turned out to be even more old-fashioned
than the professor himself, and it could not interface with his new printer. Inspecting the printed
problems, he soon recognized the pattern: none of the operations was transmitted to the printer.
A problem like:

2100-100=

was printed as:

2100100=

Fortunately, all the digits and the equal sign were still printed. To make this bad situation
much worse, Professor Bartjens’ source file had disappeared. So Professor Bartjens has another
problem: what were his original problems? Given the fact that the answer (most likely) should be
2000, the line 2100100= could have been any one of the lines:

2100-100=
2*100*10+0=
2*100*10-0=
2*10*0100=
2*-100*-10+0=

Professor Bartjens does remember a few things about how he wrote the problems:

• He is sure that whenever he wrote down a number (other than 0), it would not start with a
zero. So 2*10*0100= could not have been one of his problems.

• He also knows he never wrote the number zero as anything but 0. So he would not have a
problem like 2*1000+000=.

• He used only binary operators, not the unary minus or plus, so 2*-100*-10+0= was not an
option either.

• He used the operators +, - and * only, avoiding the operator / (after all, they were first year
students).

• He knew all problems followed the usual precedence and associativity rules.

You are to help Professor Bartjens recover his problem set by writing a program that when
given a row of digits, insert one or more of the operators +, - and * in such a way that the value
of the resulting expression equals 2000.

1Willem Bartjens (1569-1638) was the author of Cijferinge, a much used Dutch textbook on arithmetic. The
phrase “...according to Bartjens” (uttered following a calculation) made his name immortal.
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Input

The input consists of one or more test cases. Each test case is a single line containing n digits
(‘0’. . . ‘9’), 1 ≤ n ≤ 9, followed by an equal sign. There will not be any blanks embedded in the
input, but there may be some after the equal sign.

The last test case is followed by a line containing only the equal sign. This line should not be
processed.

Output

For each test case, print the word ‘Problem’, then the number of the case, then all possible ways
of inserting operators in the row of digits such that the resulting expression has the value 2000,
subject to Professor Bartjens’ memory of how he wrote the problems. Use the format shown below.
If there is more than one possible problem, they may be written in any order, but no problem may
appear more than once in the list. Each possible problem should be on a new line, indented 2
spaces. If there is no solution the answer ‘IMPOSSIBLE’ should be printed, indented 2 spaces.

Sample Input

2100100=
77=
=

Sample Output

Problem 1
2100-100=
2*100*10+0=
2*100*10-0=

Problem 2
IMPOSSIBLE
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C Cutting Chains

What a find! Anna Locke has just bought several links of chain some of which may be connected.
They are made from zorkium, a material that was frequently used to manufacture jewelry in the
last century, but is not used for that purpose anymore. It has its very own shine, incomparable to
gold or silver, and impossible to describe to anyone who has not seen it first hand.

Anna wants the pieces joined into a single end-to-end strand of chain. She takes the links to
a jeweler who tells her that the cost of joining them depends on the number of chain links that
must be opened and closed. In order to minimize the cost, she carefully calculates the minimum
number of links that have to be opened to rejoin all the links into a single sequence. This turns
out to be more difficult than she at first thought. You must solve this problem for her.

Input

The input consists of descriptions of sets of chain links, one set per line. Each set is a list of
integers delimited by one or more spaces. Every description starts with an integer n, which is the
number of chain links in the set, where 1 ≤ n ≤ 15. We will label the links 1, 2, . . . , n. The integers
following n describe which links are connected to each other. Every connection is specified by a
pair of integers i, j where 1 ≤ i, j ≤ n and i 6= j, indicating that chain links i and j are connected,
i.e., one passes through the other. The description for each set is terminated by the pair ‘-1 -1’,
which should not be processed.

The input is terminated by a description starting with n = 0. This description should not be
processed and will not contain data for connected links.

Output

For each set of chain links in the input, output a single line which reads

Set N: Minimum links to open is M

where N is the set number and M is the minimal number of links that have to be opened and
closed such that all links can be joined into one single chain.

Sample Input

5 1 2 2 3 4 5 -1 -1
7 1 2 2 3 3 1 4 5 5 6 6 7 7 4 -1 -1
4 1 2 1 3 1 4 -1 -1
3 1 2 2 3 3 1 -1 -1
3 1 2 2 1 -1 -1
0

Sample Output

Set 1: Minimum links to open is 1
Set 2: Minimum links to open is 2
Set 3: Minimum links to open is 1
Set 4: Minimum links to open is 1
Set 5: Minimum links to open is 1
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D Gifts Large and Small

WrapIt.com specializes in wrapping gifts. Started several years ago as a service offered to local
department stores and malls, today WrapIt serves customers world-wide and boasts that it can
package anything from half-carat diamonds to whole apartment blocks.

WrapIt has found that some customers prefer their gifts to be wrapped in the smallest possible
packages, whereas others prefer large packages that make their gifts seem larger than they really
are.

The company needs a program that computes the smallest and largest rectangular package into
which a gift can be “tightly” wrapped. Since this is a difficult problem, the company will initially
settle for a two-dimensional version of the program.

Each gift is approximated as a simple polygon, and all packages are represented by rectangles.
A gift is said to “fit tightly” in a package if the gift touches all four sides of the package. The
figure below shows how a triangular gift might fit tightly in two packages of different sizes. For
each gift, your program must compute the areas of the smallest and largest packages into which
the gift can fit tightly.

Input

The input contains several gift descriptions. Each description begins with a line containing an
integer n (3 ≤ n ≤ 100), which is the number of vertices in the polygon that represents the gift.
The following n lines contain pairs of integers that represent the coordinates of the polygon vertices,
in clockwise order. Each polygon will have a non-zero area and will not intersect itself.

The input is terminated by a line containing the integer 0.

Output

For each gift, first print the number of the gift. Then on separate lines, print the minimum and
maximum areas of the packages into which the gift fits tightly, using the format in the sample
output. Print a blank line after each test case.

The computed areas should be exact to three digits to the right of the decimal point.
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Sample Input

3
-3 5
7 9
17 5
4
10 10
10 20
20 20
20 10
0

Sample Output

Gift 1
Minimum area = 80.000
Maximum area = 200.000

Gift 2
Minimum area = 100.000
Maximum area = 200.000
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E Internet Bandwidth

On the Internet, machines (nodes) are richly interconnected, and many paths may exist between
a given pair of nodes. The total message-carrying capacity (bandwidth) between two given nodes
is the maximal amount of data per unit time that can be transmitted from one node to the other.
Using a technique called packet switching, this data can be transmitted along several paths at the
same time.

For example, the following figure shows a network with four nodes (shown as circles), with a
total of five connections among them. Every connection is labeled with a bandwidth that represents
its data-carrying capacity per unit time.

In our example, the bandwidth between node 1 and node 4 is 25, which might be thought of as
the sum of the bandwidths 10 along the path 1-2-4, 10 along the path 1-3-4, and 5 along the path
1-2-3-4. No other combination of paths between nodes 1 and 4 provides a larger bandwidth.

You must write a program that computes the bandwidth between two given nodes in a network,
given the individual bandwidths of all the connections in the network. In this problem, assume
that the bandwidth of a connection is always the same in both directions (which is not necessarily
true in the real world).

Input

The input file contains descriptions of several networks. Every description starts with a line
containing a single integer n (2 ≤ n ≤ 100), which is the number of nodes in the network. The
nodes are numbered from 1 to n. The next line contains three numbers s, t, and c. The numbers s
and t are the source and destination nodes, and the number c is the total number of connections
in the network. Following this are c lines describing the connections. Each of these lines contains
three integers: the first two are the numbers of the connected nodes, and the third number is the
bandwidth of the connection. The bandwidth is a non-negative number not greater than 1000.

There might be more than one connection between a pair of nodes, but a node cannot be con-
nected to itself. All connections are bi-directional, i.e. data can be transmitted in both directions
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along a connection, but the sum of the amount of data transmitted in both directions must be less
than the bandwidth.

A line containing the number 0 follows the last network description, and terminates the input.

Output

For each network description, first print the number of the network. Then print the total bandwidth
between the source node s and the destination node t, following the format of the sample output.
Print a blank line after each test case.

Sample Input

4
1 4 5
1 2 20
1 3 10
2 3 5
2 4 10
3 4 20
0

Sample Output

Network 1
The bandwidth is 25.
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F Page Hopping

It was recently reported that, on the average, only 19 clicks are necessary to move from any page
on the World Wide Web to any other page. That is, if the pages on the web are viewed as nodes
in a graph, then the average path length between arbitrary pairs of nodes in the graph is 19.

Given a graph in which all nodes can be reached from any starting point, your job is to find the
average shortest path length between arbitrary pairs of nodes. For example, consider the following
graph. Note that links are shown as directed edges, since a link from page a to page b does not
imply a link from page b to page a.

The length of the shortest path from node 1 to nodes 2, 3, and 4 is 1,1, and 2 respectively.
From node 2 to nodes 1, 3 and 4, the shortest paths have lengths of 3, 2, and 1. From node 3 to
nodes 1, 2, and 4, the shortest paths have lengths of 1, 2, and 3. Finally, from node 4 to nodes 1,
2, and 3 the shortest paths have lengths of 2, 3, and 1. The sum of these path lengths is 1 + 1
+ 2 + 3 + 2 + 1 + 1 + 2 + 3 + 2 + 3 + 1 = 22. Since there are 12 possible pairs of nodes to
consider, we obtain an average path length of 22/12, or 1.833 (accurate to three fractional digits).

Input

The input data will contain multiple test cases. Each test case will consist of an arbitrary number
of pairs of integers, a and b, each representing a link from a page numbered a to a page numbered b.
Page numbers will always be in the range 1 to 100. The input for each test case will be terminated
with a pair of zeroes, which are not to be treated as page numbers. An additional pair of zeroes
will follow the last test case, effectively representing a test case with no links, which is not to be
processed. The graph will not include self-referential links (that is, there will be no direct link
from a node to itself), and at least one path will exist from each node in the graph to every other
node in the graph.

Output

For each test case, determine the average shortest path length between every pair of nodes, accu-
rate to three fractional digits. Display this length and the test case identifier (they’re numbered
sequentially starting with 1) in a form similar to that shown in the sample output below.

Sample Input

1 2 2 4 1 3 3 1 4 3 0 0
1 2 1 4 4 2 2 7 7 1 0 0
0 0
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Sample Output

Case 1: average length between pages = 1.833 clicks
Case 2: average length between pages = 1.750 clicks
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G Queue and A

The customer support group of Contest.com receives and responds to requests for technical support
via e-mail. Requests may begin arriving when the office opens at 8:00 a.m. and all requests must
be serviced by the end of the day.

As requests are received, they are classified according to a predetermined list of topics. Each
member of the support staff has responsibility for one or more of these topics and each topic has one
or more support personnel assigned to it. Because staff members have different levels of expertise,
each staff member has a prioritized list of topics that he or she can handle. Staff personnel are not
permitted to handle requests outside their specified areas.

As staff members become available, they select from the pool of waiting requests according to
their priority list of topics. All requests arriving at time t are available for allocation at time t.
If two staff members are simultaneously available, scheduling preference is given to the one whose
most recent job was scheduled earliest. If there is still a tie, scheduling preference is given to the
person whose id number appears earlier in the input list of staff people. At the opening of business,
all personnel are available to handle requests.

You have been asked to perform a preliminary analysis of the technical support environment
based on a number of different scenarios. For each scenario, information will be given about the
mix of requests and the division of labor among the staff. For each topic, you will given the average
number of requests per day for that topic, the average elapsed time before the first of these requests
is received, the average time between requests for this topic, and the average time needed to service
the request. All times are given in minutes. You will also be given a list of support personnel and,
for each one, a list of the topics for which he or she has responsibility. (Since data are based on
estimates, factors such as coffee breaks, lunch, computer failures, etc., can be ignored.)

Input

Input consists of a number of scenarios.

Each scenario begins with the number of request topics, a positive integer no larger than 20.
This is followed by a description of each topic. Each description consists of five integer values:
a unique topic identifier, the number of requests for that topic, the elapsed time before the first
request for that topic is received, the time needed to service a request, and the time between
successive requests. All but the third of these values are positive integers; the elapsed time until
the first request could be zero. Following this, the number of personnel is given. This will be a
positive integer not to exceed 5. Finally, a description of each person is given in the form of three
or more positive integer values: a unique identifying number for the person, the number of topics
covered by this person, and a list of the topic identifiers arranged from highest priority to lowest
priority for that person.

A zero follows the last scenario.

Output

For each scenario, the output consists of the scenario number followed by the statement,

All requests are serviced within m minutes.

where m is the number of minutes from the start of the business day until the last request is
serviced.
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Sample Input

3
128 20 0 5 10
134 25 5 6 7
153 30 10 4 5
4
10 2 128 134
11 1 134
12 2 128 153
13 1 153
0

Sample Output

Scenario 1: All requests are serviced within 195 minutes.
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H Stopper Stumper

Stephen Stepper’s Supply Store sells stoppersrubber corks for sealing jars, bottles, and other
containers that have round openings. A stopper is shaped like two concentric cylinders, each of
height 1.5 centimeters, glued together. Figure 1 shows two stoppers of different sizes.

When Stephen packages an order to be shipped by mail, he tries to use space efficiently to
conserve packing material. Since stoppers are the smallest items in his store, he packs them last,
and finds that he must often pack several stoppers into small triangular gaps at the top of the
shipping carton. Stoppers must inserted in one of the two orientations shown in Figure 1. The
triangular spaces are only 3 cm deep, so stoppers cannot be placed on top of one another; however,
the large cylinder of one stopper is permitted to overlap the large cylinder of another inverted
stopper as shown in Figures 1 and 2. Your job is to help Stephen decide what collections of
stoppers will fit into a triangular space.

For instance, suppose a triangular space with side lengths 8, 7, and 10 were available, and
we had to fit three stoppers in it with inside/outside diameters of 2cm/3cm, 1.5cm/3cm, and
1cm/3cm. One way to pack them is as shown in Figure 2. (The dotted circle indicates that the
smaller cylinder of one of the stoppers is underneath the larger one.) The only packing Stephen
will consider has the larger cylinder of each stopper touching two sides of the triangle, with no two
larger cylinders touching the same pair of sides.

Input

The input consists of a sequence of triangle specifications and descriptions of three stoppers for each
triangle. Each triangular space is specified by three positive integers representing the lengths of the
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three sides; only valid triangles will appear in the input. A pair of positive real numbers represents
each stopper. The first number in the pair represents the diameter of the smaller cylinder, and the
second represents the diameter of the larger cylinder. The final line of the input file contains zeros
for all the data values.

Output

For each triangle, print a line identifying its sequence number in the input data and a line indicating
whether or not the stoppers can be packed into the triangular space. Separate the output for each
triangle with a blank line. Do not print anything for the final line of zeros in the input. Imitate
the sample output as closely as possible.

Sample Input

6 6 6 0.5 1.0 0.3 2.0 0.4 1.0
10 10 10 2.0 3.0 1.0 2.0 1.5 3.5
20 6 20 3.0 4.5 0.5 1.0 4.0 5.0
8 7 10 2.0 3.0 1.5 3.0 1.0 3.0
8 7 10 2.0 3.0 2.5 3.0 2.0 3.0
0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

Sample Output

Triangle number 1:
All three stoppers will fit in the triangular space

Triangle number 2:
All three stoppers will fit in the triangular space

Triangle number 3:
Stoppers will not fit in the triangular space

Triangle number 4:
All three stoppers will fit in the triangular space

Triangle number 5:
Stoppers will not fit in the triangular space
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A Airport Configuration

ACM Airlines is a regional airline with von Neumann Airport as its home port. For many pas-
sengers, von Neumann Airport is not the start of their trip, nor their final destination, so many
transfer passengers pass through the airport.

The von Neumann Airport has a corridor layout. Arrival gates are located, equally spaced,
at the north side of the corridor. Departure gates are at the south side of the corridor, equally
spaced as well. The distance between two adjacent gates equals the width of the corridor. Each
arrival gate is assigned to exactly one city, and the same holds for the departure gates. Passengers
arrive at the arrival gate assigned to their city of origin and exit the terminal or proceed to a
connecting flight at a gate assigned to their destination city. For this problem, only passengers
with connecting flights are considered.

Transferring passengers generate a lot of traffic in the corridor. The average number of people
traveling between cities is known beforehand. Using this information, it should be possible to
reduce the traffic. If transfers from city Cx to city Cy occur very frequently, it may help to locate
the gates assigned to these cities near or even directly opposite each other.

Due to the presence of shops and gardens it is not possible to cross the corridor diagonally, so
the distance between arriving gate G1 and departing gate G3 (see diagram) equals 1 + 2 = 3.

You must assess total traffic load for several different configurations. The traffic load between an
origin and destination gate is defined as the number of origin to destination passengers multiplied
by the distance between the arriving and departing gate. The total traffic load is the sum of the
traffic loads for all origin-destination pairs.

Input

The input file contains several test cases. The last test case in the input file is followed by a line
containing the number 0.

Each test case has two parts: first the traffic data, then the configuration section.
The traffic data starts with an integer N (1 < N < 25), representing the number of cities. The

following N lines each represent traffic data for one city. Each line with traffic data begins with
an integer in the range 1..N identifying the city of origin. This is followed by k pairs of integers,
one pair for every destination city. Each pair identifies the destination city and the number of
passengers (at most 500) traveling from the city of origin to this destination city.
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The configuration section consists of one or more (at most 20) configurations and ends with a
line containing the number 0.

A configuration consists of 3 lines. The first line contains a positive number identifying the
configuration. The next line contains a permutation of the cities, as they are assigned to the arrival
gates: the first number represents the city assigned to the first gate, and so on. The next line in
the same way represents the cities as they are assigned to the departure gates.

Output

For each test case, the output contains a table presenting the configuration numbers and total
traffic load, in ascending order of traffic load. If two configurations have the same traffic load, the
one with the lowest configuration number should go first. Follow the output format shown in the
sample below.

Sample Input

3
1 2 2 10 3 15
2 1 3 10
3 2 1 12 2 20
1
1 2 3
2 3 1
2
2 3 1
3 2 1
0
2
1 1 2 100
2 1 1 200
1
1 2
1 2
2
1 2
2 1
0
0

Sample Output

Configuration Load
2 119
1 122

Configuration Load
2 300
1 600
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B Say Cheese

Once upon a time, in a giant piece of cheese, there lived a cheese mite named Amelia Cheese Mite.
Amelia should have been truly happy because she was surrounded by more delicious cheese than
she could ever eat. Nevertheless, she felt that something was missing from her life.

One morning, her dreams about cheese were interrupted by a noise she had never heard before.
But she immediately realized what it was - the sound of a male cheese mite, gnawing in the same
piece of cheese! (Determining the gender of a cheese mite just by the sound of its gnawing is by
no means easy, but all cheese mites can do it. That’s because their parents could.)

Nothing could stop Amelia now. She had to meet that other mite as soon as possible. Therefore
she had to find the fastest way to get to the other mite. Amelia can gnaw through one millimeter
of cheese in ten seconds. But it turns out that the direct way to the other mite might not be the
fastest one. The cheese that Amelia lives in is full of holes. These holes, which are bubbles of
air trapped in the cheese, are spherical for the most part. But occasionally these spherical holes
overlap, creating compound holes of all kinds of shapes. Passing through a hole in the cheese takes
Amelia essentially zero time, since she can fly from one end to the other instantly. So it might be
useful to travel through holes to get to the other mite quickly.

For this problem, you have to write a program that, given the locations of both mites and the
holes in the cheese, determines the minimal time it takes Amelia to reach the other mite. For
the purposes of this problem, you can assume that the cheese is infinitely large. This is because
the cheese is so large that it never pays for Amelia to leave the cheese to reach the other mite
(especially since cheese-mite eaters might eat her). You can also assume that the other mite is
eagerly anticipating Amelia’s arrival and will not move while Amelia is underway.

Input

The input file contains descriptions of several cheese mite test cases. Each test case starts with a
line containing a single integer n (0 ≤ n ≤ 100), the number of holes in the cheese. This is followed
by n lines containing four integers xi, yi, zi, ri each. These describe the centers (xi, yi, zi) and
radii ri (ri > 0) of the holes. All values here (and in the following) are given in millimeters.

The description concludes with two lines containing three integers each. The first line contains
the values xA, yA, zA, giving Amelia’s position in the cheese, the second line containing xO, yO,
zO, gives the position of the other mite.

The input file is terminated by a line containing the number -1.

Output

For each test case, print one line of output, following the format of the sample output. First print
the number of the test case (starting with 1). Then print the minimum time in seconds it takes
Amelia to reach the other mite, rounded to the closest integer. The input will be such that the
rounding is unambiguous.
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Sample Input

1
20 20 20 1
0 0 0
0 0 10
1
5 0 0 4
0 0 0
10 0 0
-1

Sample Output

Cheese 1: Travel time = 100 sec
Cheese 2: Travel time = 20 sec
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C Crossword Puzzle

Your brilliant but absent-minded uncle believes he has solved a difficult crossword puzzle but has
misplaced the solution. He needs your help to reconstruct the solution from a list that contains
all the words in the solution, plus one extra word that is not part of the solution. Your program
must solve the puzzle and print the extra word.

The crossword puzzle is represented by a grid with ten squares on each side. Figure 1 shows the
top left corner of a puzzle. The puzzle has a certain number of “slots” where a word can be placed.
Each slot is represented by the row and column number of the square where the slot begins, and
the direction in which the slot extends from its initial square (“across” or “down”). The length of
each slot is not specified. The puzzle has a list of candidate words, all but one of which is used in
solving the puzzle.

Figure 2 shows a solution to the example puzzle in Figure 1. In a valid solution, each slot is
filled with a candidate word. Every maximal horizontal or vertical sequence of two or more letters
must be a word in the input. Any candidate word can be used in any slot as long as the word fits
in the puzzle and does not conflict with any other word. In the example, all the candidate words
are used except the word “BOY”.
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Input

The input data consist of one or more test cases each describing a puzzle trial. The first input line
in each test case contains a positive integer N that represents the number of slots in the puzzle.
This line is followed by N lines, each containing the row number and column number of a square
where a slot begins, followed by the letter ‘A’ (if the slot is “Across”) or ‘D’ (if the slot is “Down”).
The next N + 1 input lines contain candidate words that can be used in the puzzle solution.

The final test case is followed by a line containing the number zero.

Output

For each trial, print the trial number followed by the word that is not used in the puzzle solution,
using the format in the example output. Observe the following rules:

1. Print a blank line after each trial.

2. If your uncle has made a mistake and the puzzle has no solution using the given words,
print the word “Impossible”. For example, if Trial 2 has no solution, you should print
“Trial 2: Impossible”.

3. If the puzzle can be solved in more than one way, print each word that can be omitted from
a valid solution. The words can be printed in any order but each word must be printed only
once. For example, if Trial 3 has a solution that omits the word DOG and two solutions that
omit the word CAT, you should print “Trial 3: DOG CAT” or “Trial 3: CAT DOG”.

Sample Input

4
1 1 D
2 3 D
3 1 A
5 2 A
SLOW
AGAIN
BOY
TAIL
BEAR
0

Sample Output

Trial 1: BOY
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D Can’t Cut Down the Forest for the Trees

Once upon a time, in a country far away, there was a king who owned a forest of valuable trees.
One day, to deal with a cash flow problem, the king decided to cut down and sell some of his trees.
He asked his wizard to find the largest number of trees that could be safely cut down.

All the king’s trees stood within a rectangular fence, to protect them from thieves and vandals.
Cutting down the trees was difficult, since each tree needed room to fall without hitting and
damaging other trees or the fence. Each tree could be trimmed of branches before it was cut. For
simplicity, the wizard assumed that when each tree was cut down, it would occupy a rectangular
space on the ground, as shown below. One of the sides of the rectangle is a diameter of the original
base of the tree. The other dimension of the rectangle is equal to the height of the tree.

Many of the king’s trees were located near other trees (that being one of the tell-tale signs of
a forest.) The wizard needed to find the maximum number of trees that could be cut down, one
after another, in such a way that no fallen tree would touch any other tree or the fence. As soon
as each tree falls, it is cut into pieces and carried away so it does not interfere with the next tree
to be cut.

Input

The input consists of several test cases each describing a forest. The first line of each description
contains five integers, xmin, ymin, xmax, ymax, and n. The first four numbers represent the
minimal and maximal coordinates of the fence in the x- and y-directions (xmin < xmax, ymin <
ymax). The fence is rectangular and its sides are parallel to the coordinate axes. The fifth number
n represents the number of trees in the forest (1 ≤ n ≤ 100).

The next n lines describe the positions and dimensions of the n trees. Each line contains four
integers, xi, yi, di, and hi, representing the position of the tree’s center (xi, yi), its base diameter
di, and its height hi. No tree bases touch each other, and all the trees are entirely inside the fence,
not touching the fence at all.

The input is terminated by a test case with xmin = ymin = xmax = ymax = n = 0. This
test case should not be processed.
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Output

For each test case, first print its number. Then print the maximum number of trees that can be
cut down, one after another, such that no fallen tree touches any other tree or the fence. Follow
the format in the sample output given below. Print a blank line after each test case.

Sample Input

0 0 10 10 3
3 3 2 10
5 5 3 1
2 8 3 9
0 0 0 0 0

Sample Output

Forest 1
2 tree(s) can be cut
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E The Geoduck GUI

Researchers at the Association for Computational Marinelife in Vancouver have been working for
several years to harness various forms of aquatic life with the goal of constructing an underwater
computer that can be seen from outer space. The current research focus is a breed of clam known
as the geoduck (pronounced “GOOEY duck”), scientific name Panope abrupta. Geoducks can
be as heavy as ten pounds and as long as 1 meter with their siphons or “necks” fully extended.
Because of their life expectancy (up to 150 years), they seem to be good agents for manipulating
a large-scale oceanic graphical user interface-hence, the “geoduck GUI” project.

Current research examines pairs of trained geoducks each starting in a distinct corner of a
rectangular grid. They crawl across the grid spreading luminescent chemicals from containers
attached to their shells. Geoducks are trained to move one grid unit horizontally or vertically per
time unit to approximate a direction vector (each geoduck has a unique vector). If a move takes
a geoduck off the edge of the grid, a trained dolphin immediately transports it to the cell on the
opposite edge of the grid, effectively providing a “wraparound” mechanism. The entry point in the
opposite edge cell is horizontally or vertically aligned with the exit point of the cell departed and
the geoduck trajectory is maintained. Geoduck moves are synchronized; however, a geoduck halts
when it enters a cell that it has previously visited. If two geoducks move into the same cell at the
same time, they halt in that cell. If two geoducks attempt to move into each other’s cells at the
same time, then they halt. A geoduck is initially placed at a grid corner so that its direction vector
points “in” to the grid (e.g., if the x-component is positive and the y-component is negative, the
starting position is at the minimum x-value and the maximum y-value in the grid).

Both geoducks begin at time t=1 in their respective (distinct) starting corners. A geoduck
follows its vector as if the vector starting point were anchored to the center of geoduck’s initial cell
position in the grid. It always moves to the next cell that is divided into regions by the vector (or
its extension), with one exception. If the vector passes through a corner of the grid, the geoduck
moves horizontally and then vertically to reach the next cell divided by the vector. Figure 1 shows
several geoduck paths. The numbers in the cells indicate elapsed time. Grid cells are numbered
from the lower left starting at zero in both the x and y directions. If the two geoducks in Figure
1 start at the same time in the same 6 by 5 grid, they each halt after 5 time units with a total of
10 cells illuminated.
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You must write a program to select pairs of geoducks that illuminate the maximum number of
grid cells on the screen in the least amount of time. Repeat your calculations for various grid sizes
and comb inations of geoducks.

Input

Input consists of a sequence of test cases each beginning with a line containing two integers m
and n, 1 ≤ m,n ≤ 50, where m and n are not both 1. These are x and y dimensions of the grid.
The second line of each test case contains an integer k, 2 ≤ k ≤ 10, representing the number of
geoducks. At least one pair of geoducks will have distinct starting points. The next k lines each
contain a pair of non-zero integers representing the x and y components of the k geoduck direction
vectors.

The final test case is followed by two zeros.

Output

For each test case, print the test case number, the maximum number of illuminated cells, the
minimum number of time units required to illuminate that number of cells, and the sequence
numbers of each pair of geoducks that achieve these values. Print all pairs of geoducks that
achieve maximum illumination in minimum time. The order of printing does not matter; however,
do not print any pair twice for the same test case. Imitate the sample output shown below.

Sample Input

6 5
3
-4 3
1 1
1 -1
0 0

Sample Output

Case 1 Cells Illuminated: 10 Minimum Time: 5
Geoduck IDs: 1 2
Geoduck IDs: 1 3
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F A Major Problem

In western music, the 12 notes used in musical notation are identified with the capital letters A
through G, possibly followed by a sharp ‘#’ or flat ‘b’ character, and are arranged cyclically as
shown below. A slash is used to identify alternate notations of the same note.

C/B# C#/Db D D#/Eb E/Fb F/E# F#/Gb G G#/Ab A A#/Bb B/Cb C/B# ...

Any two adjacent notes in the above list are known as a semitone. Any two notes that have
exactly one note separating them in the above list are known as a tone. A major scale is composed
of eight notes; it begins on one of the above notes and follows the progression tone-tone-semitone-
tone-tone-tone-semitone. For example, the major scales starting on C and Db, respectively, are
made up of the following notes:

C D E F G A B C
Db Eb F Gb Ab Bb C Db

The following rules also apply to major scales:

1. The scale will contain each letter from A to G once and only once, with the exception of the
first letter of the scale, which is repeated as the last letter of the scale.

2. The scale may not contain a combination of both flat and sharp notes.

The note that begins a major scale is referred to as the key of the scale. For example, the scales
above are the scales for the major keys of C and Db, respectively. Transposing notes from one scale
to another is a simple matter of replacing a note in one scale with the note in the corresponding
position of another scale. For example, the note F in the major key of C would transpose to the
note Gb in the major key of Db since both notes occupy the same position in their respective
scales.

You must write a program to transpose notes from one major scale to another.

Input

The input consists of multiple test cases, with one test case per line. Each line starts with a source
key, followed by a target key, and then followed by a list of notes to be transposed from the major
scale of the source key to the major scale of the target key. Each list is terminated by a single
asterisk character. All notes on a line and the terminating asterisk are delimited by a single space.

The final line of the input contains only a single asterisk which is not to be processed as a test
case.

Output

Each test case produces one or more lines of output. If the source and target keys are valid, then
the first output line for each input line should read “Transposing from X to Y:” where X is the
source key and Y is the target key. If either the source or target key is not valid a line which
reads “Key of X/Y is not a valid major key”, where X/Y is the key that is not valid, should
be output and the remainder of the input for that line skipped. If both the source and target key
are not valid, report only the source key.

For test cases that contain valid source and target keys, the first output line will be followed
by one output line for each note to be transposed. If the note is a valid note in the major scale of
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the source key then the output line should read “M transposes to N” where M is the note in the
source key and N is the corresponding note in the target key. If the input note is not a valid note
in the major scale of the source key then the output line should read “M is not a valid note
in the X major scale” where M is the input note and X is the source key. For either valid or
non-valid notes, the output line should be indented in a consistent manner.

The output data for each input line should be delimited by a single blank line. The format of
your output should be similar to the output shown below.

Sample Input

C Db F *
Db C Gb *
C B# A B *
C D A A# B Bb C *
A# Bb C *
*

Sample Output

Transposing from C to Db:
F transposes to Gb

Transposing from Db to C:
Gb transposes to F

Key of B# is not a valid major key

Transposing from C to D:
A transposes to B
A# is not a valid note in the C major scale
B transposes to C#
Bb is not a valid note in the C major scale
C transposes to D

Key of A# is not a valid major key
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G Fixed Partition Memory Management

A technique used in early multiprogramming operating systems involved partitioning the available
primary memory into a number of regions with each region having a fixed size, different regions
potentially having different sizes. The sum of the sizes of all regions equals the size of the primary
memory.

Given a set of programs, it was the task of the operating system to assign the programs to
different memory regions, so that they could be executed concurrently. This was made difficult
due to the fact that the execution time of a program might depend on the amount of memory
available to it. Every program has a minimum space requirement, but if it is assigned to a larger
memory region its execution time might increase or decrease.

In this program, you have to determine optimal assignments of programs to memory regions.
Your program is given the sizes of the memory regions available for the execution of programs, and
for each program a description of how its running time depends on the amount of memory available
to it. Your program has to find the execution schedule of the programs that minimizes the average
turnaround time for the programs. An execution schedule is an assignment of programs to memory
regions and times, such that no two programs use the same memory region at the same time, and
no program is assigned to a memory region of size less than its minimum memory requirement.
The turnaround time of the program is the difference between the time when the program was
submitted for execution (which is time zero for all programs in this problem), and the time that
the program completes execution.

Input

The input data will contain multiple test cases. Each test case begins with a line containing
a pair of integers m and n. The number m specifies the number of regions into which primary
memory has been partitioned (1 ≤ m ≤ 10), and n specifies the number of programs to be executed
(1 ≤ n ≤ 50).

The next line contains m positive integers giving the sizes of the m memory regions. Following
this are n lines, describing the time-space tradeoffs for each of the n programs. Each line starts
with a positive integer k (k ≤ 10), followed by k pairs of positive integers s1, t1, s2, t2, . . . , sk, tk,
that satisfy si < si+1 for 1 ≤ i < k. The minimum space requirement of the program is s1, i.e. it
cannot run in a partition of size less than this number. If the program runs in a memory partition
of size s, where si ≤ s < si+1 for some i, then its execution time will be ti. Finally, if the programs
runs in a memory partition of size sk or more, then its execution time will be tk.

A pair of zeroes will follow the input for the last test case.

You may assume that each program will execute in exactly the time specified for the given
region size, regardless of the number of other programs in the system. No program will have a
memory requirement larger than that of the largest memory region.

Output

For each test case, first display the case number (starting with 1 and increasing sequentially). Then
print the minimum average turnaround time for the set of programs with two digits to the right
of the decimal point. Follow this by the description of an execution schedule that achieves this
average turnaround time. Display one line for each program, in the order they were given in the
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input, that identifies the program number, the region in which it was executed (numbered in the
order given in the input), the time when the program started execution, and the time when the
program completed execution. Follow the format shown in the sample output, and print a blank
line after each test case.

If there are multiple program orderings or assignments to memory regions that yield the same
minimum average turnaround time, give one of the schedules with the minimum average turnaround
time.

Sample Input

2 4
40 60
1 35 4
1 20 3
1 40 10
1 60 7
3 5
10 20 30
2 10 50 12 30
2 10 100 20 25
1 25 19
1 19 41
2 10 18 30 42
0 0

Sample Output

Case 1
Average turnaround time = 7.75
Program 1 runs in region 1 from 0 to 4
Program 2 runs in region 2 from 0 to 3
Program 3 runs in region 1 from 4 to 14
Program 4 runs in region 2 from 3 to 10

Case 2
Average turnaround time = 35.40
Program 1 runs in region 2 from 25 to 55
Program 2 runs in region 2 from 0 to 25
Program 3 runs in region 3 from 0 to 19
Program 4 runs in region 3 from 19 to 60
Program 5 runs in region 1 from 0 to 18
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H Professor Monotonic’s Networks

Professor Monotonic has been experimenting with comparison networks, each of which includes a
number of two-input, two-output comparators. A comparator, as illustrated below, will compare
the values on its inputs, i1 and i2, and place them on the outputs, o1 and o2, so that o1 ≤ o2

regardless of the relationship between the input values.

A comparison network has n inputs a1, a2, . . . , an and n outputs b1, b2, . . . , bn. Each of the two
inputs to a comparator is either connected to one of the network’s n inputs or connected to the
output of another comparator. Each of the two outputs from a comparator is either connected to
one of the network’s n outputs or is connected to the input of another comparator. A graph of
the interconnections of comparators must be acyclic. The illustration below shows a comparison
network with four inputs, four outputs, and five comparators.

In operation, the network’s inputs are applied and the comparators perform their functions. Of
course a comparator cannot operate until both of its inputs are available. Assuming a comparator
requires one unit of time to operate, this sample network will require three units of time to produce
its outputs. Comp-1 and Comp-2 operate in parallel, as do Comp-3 and Comp-4. Comp-5 cannot
operate until Comp-3 and Comp-4 have comp leted their work.

Professor Monotonic needs help in determining which proposed comparison networks are also
sorting networks, and how long they will take to perform their task. A sorting network is a
comparison network for which the outputs are monotonically increasing regardless of the input
values. The example above is a sorting network, since for all possible input values the output
values will have the relation b1 ≤ b2 ≤ b3 ≤ b4.

Input

The professor will provide a description of each comparison network to be examined. Each descrip-
tion will begin with a line containing values for n (the number of inputs) and k (the number of
comparators). These values satisfy 1 ≤ n ≤ 12 and 0 ≤ k ≤ 150. This is followed by zero or more
non-empty lines, each containing at most 15 pairs of comparator inputs. The source of the input
to each comparator is given by a pair of integers i and j. Each of these specifies either the subscript
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of a network input that is input to the comparator (that is, ai or aj), or the corresponding output
of a preceding comparator.

The outputs of a comparator are numbered the same as its inputs (in other words, if the
comparator’s inputs are i and j, the corresponding outputs are also labeled i and j). The order in
which these pairs appear is significant, and affects the order in which the comparators operate. If
two pairs contain an integer in common, the order of the corresponding comparators in the network
is determined by the order of the pairs in the list. For example, consider the input data for the
example shown:

4 5
1 2 3 4 1 3
2 4 2 3

This indicates there will be four input values and five comparators in the network. The first
comparator (Comp-1) will receive its input values from network inputs a1 and a2. The second
comp arator (Comp-2) will receive its input values from network inputs a3 and a4. The third
comparator (Comp-3) will receive its first input from the first output of Comp-1, and will receive
its second input from the first output of Comp-2. Similarly, the fourth comparator (Comp-4) will
receive its first input from the second output of Comp-1, and will receive its second input from the
second output of Comp-2. Finally, the fifth comparator (Comp-5) will receive its first input from
the first output of Comp-4, and will receive its second input from the second output of Comp-3.
The outputs b1, b2, . . . , bn are taken from the first output of Comp-3, the first output of Comp-5,
the second output of Comp-5, and the second output of Comp-4, respectively.

A pair of zeros will follow the input data for the last network.

Output

For each input case, display the case number (cases are numbered sequentially starting with 1),
an indication of whether the network is a sorting network or not, and the number of time units
required for the network to operate (regardless of whether it is a sorting network or not).

Sample Input

4 5
1 2 3 4 1 3
2 4 2 3
8 0
3 3
1 2 2 3 1 2
0 0

Sample Output

Case 1 is a sorting network and operates in 3 time units.
Case 2 is not a sorting network and operates in 0 time units.
Case 3 is a sorting network and operates in 3 time units.
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I A Vexing Problem

The game Vexed is a Tetris-like game created by James McCombe. The game consists of a board
and blocks that are arranged in stacks. If the space to the immediate left or right of a block
is open (that is, it contains no other block nor any part of the game board “wall”), then that
block can be moved in that direction. Only blocks that are not part of the game board wall can
be moved; “wall” blocks are stationary in all events. After a block is moved, if it or any other
block no longer has anything under it, those blocks fall until they land on another block. After
all blocks have landed, if any two or more identically-marked pieces are in contact horizontally
and/or vertically, then those blocks are removed as a group. If multiple such groups result, then
all groups are removed simultaneously. After all such groups are removed, all blocks again fall to
resting positions (again, wall blocks do not move). This might then result in more groups being
removed, more blocks falling, and so on, until a stable state is reached. The goal of the game is to
remove all the movable blocks from the board.

Consider the simple example shown here. For reference purposes, number the rows of the board
from top to bottom starting with an index value of zero, and number the columns from the left to
right, also with a starting index value of zero. Board positions can be therefore be referenced as
ordered (row, column) pairs. By additionally using an “L” or “R” to refer to a left or right push
respectively, we can also use the ordered triple (row, column, direction) to indicate moves.

In (A) we have two choices for moves as shown in (B). These moves are (0,1,R) and (1,3,L)
using the identification scheme defined above. Note that if we try (0,1,R), the resulting board state
as shown in (C) is a dead end; no further moves are possible and blocks still remain on the board.
If we choose the other move, however, the blocks at (1,2) and (2,2) are now in vertical contact, so
they form a group that should be removed as shown by (D). The resulting board state is shown in
(E), leaving the two moves shown by (F). Note that either move would eventually allow a solution,
but (0,1,R) leads to a two move solution, whereas (2,1,R) leads to a three move solution. (G) and
(H) show the final steps if we choose (0,1,R).

There are often many ways to solve a particular Vexed puzzle. For this problem, only solutions
with a minimum number of moves are of interest. The minimum number of moves can sometimes
be surprising. Consider another example.

In this example there are ten possible first moves, and there are in fact several ways to arrive
at a solution. There is only one move in (A), however, that allows us to achieve a solution with
the minimum number of moves. Observe the sequence of events shown if (3,1,R) is chosen as the
first move.
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Input

The input will consist of several puzzles. Each begins with a line containing integers giving the
number of rows (NR) and columns (NC) in the puzzle, and a string of characters (terminated by
the end of line) giving the name of the puzzle; these items are separated by one or more spaces.
This line is followed by an NR by NC array of characters defining the puzzle itself; an end of
line will follow the last character in each row. NR and NC will each be no larger than 9. The
“outer walls” (in addition to “inner wall” blocks) on the left, right, and bottom will always be
included as part of the puzzle input, and are represented as hash mark (#) characters. Moveable
blocks are represented by capital letters which indicate the marking on the block. To avoid possible
ambiguities, open spaces in the puzzle are represented in the input by a hyphen (-) rather than
by spaces. Other than the outer walls, wall blocks and moveable blocks may be arranged in any
stable pattern. Every input puzzle is guaranteed to have a solution requiring 11 or fewer moves.

A puzzle with zero dimensions marks the end of the input and should not be processed.

Output

For each input puzzle, display a minimum length solution formatted as shown in the sample output.
In the event that there are multiple solutions of minimum length, display one of them.

Sample Input

4 5 SAMPLE-01
#A--#
##-B#
#AB##
#####
6 7 SAMPLE-02
#--Y--#
#-ZX-X#
#-##-##
#-XZ--#
####YZ#
#######
0 0 END

Sample Output

SAMPLE-01: Minimum solution length = 2
(B,1,3,L) (A,0,1,R)

SAMPLE-02: Minimum solution length = 9
(Y,0,3,R) (Z,4,5,L) (X,1,3,R) (Z,1,2,R)
(Z,1,3,R) (X,3,4,R) (X,3,2,R) (X,4,5,L)
(X,1,5,L)
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A Balloons in a Box

You must write a program that simulates placing spherical balloons into a rectangular box.

The simulation scenario is as follows. Imagine that you are given a rectangular box and a set
of points. Each point represents a position where you might place a balloon. To place a balloon
at a point, center it at the point and inflate the balloon until it touches a side of the box or a
previously placed balloon. You may not use a point that is outside the box or inside a previously
placed balloon. However, you may use the points in any order you like, and you need not use every
point. Your objective is to place balloons in the box in an order that maximizes the total volume
occupied by the balloons.

You are required to calculate the volume within the box that is not enclosed by the balloons.

Input

The input consists of several test cases. The first line of each test case contains a single integer n
that indicates the number of points in the set (1 ≤ n ≤ 6). The second line contains three integers
that represent the (x, y, z) integer coordinates of a corner of the box, and the third line contains
the (x, y, z) integer coordinates of the opposite corner of the box. The next n lines of the test case
contain three integers each, representing the (x, y, z) coordinates of the points in the set. The box
has non-zero length in each dimension and its sides are parallel to the coordinate axes.

The input is terminated by the number zero on a line by itself.

Output

For each test case print one line of output consisting of the test case number followed by the volume
of the box not occupied by balloons. Round the volume to the nearest integer. Follow the format
in the sample output given below.

Place a blank line after the output of each test case.

Sample Input

2
0 0 0
10 10 10
3 3 3
7 7 7
0

Sample Output

Box 1: 774
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B Undecodable Codes

Phil Oracle has a unique ability that makes him indispensable at the National Spying Agency.
His colleagues can bring him any new binary code and he can tell them immediately whether the
code is uniquely decodable or not. A code is the assignment of a unique sequence of characters (a
codeword) to each character in an alphabet. A binary code is one in which the codewords contain
only zeroes and ones.

For example, here are two possible binary codes for the alphabet {a,c,j,l,p,s,v}.

Code 1 Code 2
a 1 010
c 01 01
j 001 001
l 0001 10
p 00001 0
s 000001 1
v 0000001 101

The encoding of a string of characters from an alphabet (the cleartext) is the concatenation of
the codewords corresponding to the characters of the cleartext, in order, from left to right. A code
is uniquely decodable if the encoding of every possible cleartext using that code is unique. In the
example above, Code 1 is uniquely decodable, but Code 2 is not. For example, the encodings of
the cleartexts “pascal” and “java” are both ‘001010101010’.

Even shorter encodings that are not uniquely decodable are ‘01’ and ‘10’.

While the agency is very proud of Phil, he unfortunately gives only “yes” or “no” answers.
Some members of the agency would prefer more tangible proof, especially in the case of codes that
are not uniquely decodable. For this problem you will deal only with codes that are not uniquely
decodable. For each of these codes you must determine the single encoding having the minimum
length (measured in bits) that is ambiguous because it can result from encoding each of two or more
different cleartexts. In the case of a tie, choose the encoding which comes first lexicographically.

Input

One or more codes are to be tested. The input for each code begins with an integer m, 1 ≤ m ≤ 20,
on a line by itself, where m is the number of binary codewords in the code. This is followed by m
lines each containing one binary codeword string, with optional leading and trailing whitespace.
No codeword will contain more than 20 bits.

The input is terminated by the number zero on a line by itself.

Output

For each code, display the sequential code number (starting with 1), the length of the shortest
encoding that is not uniquely decodable, and the shortest encoding itself, with ties broken as
previously described. The encoding must be displayed with 20 bits on each line except the last,
which may contain fewer than 20 bits. Place a blank line after the output for each code. Use the
format shown in the samples below.
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Sample Input

3
0
01
10

5
0110
00
111
001100

110
5
1
001
0001
00000000000000000001
10000000000000000000

0

Sample Output

Code 1: 3 bits
010

Code 2: 9 bits
001100110

Code 3: 21 bits
10000000000000000000
1
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C Crossing the Desert

In this problem, you will compute how much food you need to purchase for a trip across the desert
on foot. At your starting location, you can purchase food at the general store and you can collect
an unlimited amount of free water. The desert may contain oases at various locations. At each
oasis, you can collect as much water as you like and you can store food for later use, but you
cannot purchase any additional food. You can also store food for later use at the starting location.
You will be given the coordinates of the starting location, all the oases, and your destination in a
two-dimensional coordinate system where the unit distance is one mile.

For each mile that you walk, you must consume one unit of food and one unit of water. Assume
that these supplies are consumed continuously, so if you walk for a partial mile you will consume
partial units of food and water. You are not able to walk at all unless you have supplies of both
food and water. You must consume the supplies while you are walking, not while you are resting
at an oasis. Of course, there is a limit to the total amount of food and water that you can carry.
This limit is expressed as a carrying capacity in total units. At no time can the sum of the food
units and the water units that you are carrying exceed this capacity. You must decide how much
food you need to purchase at the starting location in order to make it to the destination. You need
not have any food or water left when you arrive at the destination. Since the general store sells
food only in whole units and has only one million food units available, the amount of food you
should buy will be an integer greater than zero and less than or equal to one million.

Input

The first line of input in each trial data set contains n (2 ≤ n ≤ 20), which is the total number
of significant locations in the desert, followed by an integer that is your total carrying capacity in
units of food and water. The next n lines contain pairs of integers that represent the coordinates
of the n significant locations. The first significant location is the starting point, where your food
supply must be purchased; the last significant location is the destination; and the intervening
significant locations (if any) are oases. You need not visit any oasis unless you find it helpful in
reaching your destination, and you need not visit the oases in any particular order.

The input is terminated by a pair of zeroes.

Output

For each trial, print the trial number followed by an integer that represents the number of units of
food needed for your journey. Use the format shown in the example. If you cannot make it to the
destination under the given conditions, print the trial number followed by the word ‘Impossible’.

Place a blank line after the output of each test case.

Sample Input

4 100
10 -20
-10 5
30 15
15 35
2 100
0 0
100 100
0 0

Sample Output

Trial 1: 136 units of food

Trial 2: Impossible



World Finals 2002. Honolulu, Hawaii 217

D Ferries

Millions of years ago massive fields of ice carved deep grooves in the mountains of Norway. The
sea filled these grooves with water. The Norwegian people call them fjords. This landscape of
mountains and water is beautiful, but it makes traveling difficult. The usual scheme is: drive some
kilometers, wait for a ferry, cross a fjord with the ferry, drive some more kilometers, and so on
until the destination has been reached. To reach a destination as early as possible, most people
have the following strategy: drive as fast as allowed (the maximum speed is 80 km/h) to the next
ferry, and wait until it goes. Repeat until the destination has been reached.

Since driving fast requires more fuel than driving slow, this strategy is both expensive and
harmful to the environment. The new generation of cruise control systems is designed to help.
Given the route you want to go, these systems will gather information about the ferries involved,
calculate the earliest possible time of arrival at the final destination, and calculate a driving scheme
that avoids driving faster than needed. The systems will calculate your road speed so that you
board the next ferry the moment it leaves.

Given a route (a sequence of road-pieces and crossings with ferries), you must write a program
to calculate the minimal time it takes to complete this route. Moreover, your program must find
a driving scheme such that the maximal driving speed at any point during the trip is as small as
possible.

Input

The input file contains one or more test cases. Each test case describes a route. A route consists
of several sections, each section being either a piece of road or a crossing. The first line in the
description contains a single number s (s > 0), which is the number of sections in the route. The
next s lines contain the descriptions of the sections. Every line describing a section starts with two
names: the place of departure and the place of arrival, followed by either the word ‘road’ or the
word ‘ferry’ indicating what kind of section it is. If the section is a road, its length (a positive
integer) is given in km. For example:

Dryna Solholmen road 32

Lines describing ferry sections have more information. Following the word ‘ferry’, the duration
of the ferry crossing, in minutes (a positive integer) is given. This is followed by the frequency f
(f > 0) of the ferry, that is, the number of times the ferry departs in a single hour. The next f
integers give the departure times of the ferry, in ascending order. For example:

Manhiller Fodnes ferry 20 2 15 35

The ferry travels from Manhiller to Fodnes in 20 minutes, and it leaves twice an hour (on 0h15,
0h35, 1h15, 1h35,. . .). The beginning of the entire trip always starts at a full hour. The sections
in a route are consecutive, that is, if a section goes from A to B then the next section starts at B.
Every route in the input can be traveled in no more than 10 hours.

The input is terminated by the number zero on a line by itself.

Output

Output for each test case is a single line containing three items. The first item is the test case
number. The second is the total travel time for an optimal scheme in the form hh:mm:ss. The
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third item is the maximal road speed in an optimal scheme rounded to two digits to the right of
the decimal point.

Place a blank line after the output of each test case.

Sample Input

1
Bygd Bomvei road 7
2
Ferje Overfarten ferry 20 2 5 25
Overfarten Havneby ferry 30 3 10 30 50
5
Begynnelse Brygge road 30
Brygge Bestemmelse ferry 15 4 10 25 40 55
Bestemmelse Veiskillet road 20
Veiskillet Grusvei road 25
Grusvei Slutt ferry 50 1 10
0

Sample Output

Test Case 1: 00:05:15 80.00

Test Case 2: 01:00:00 0.00

Test Case 3: 03:00:00 45.00
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E Island Hopping

The company Pacific Island Net (PIN) has identified several small island groups in the Pacific that
do not have a fast internet connection. PIN plans to tap this potential market by offering internet
service to the island inhabitants. Each groups of islands already has a deep-sea cable that connects
the main island to the closest internet hub on the mainland (be it America, Australia or Asia).
All that remains to be done is to connect the islands in a group to each other. You must write a
program to help them determine a connection procedure.

For each island, you are given the position of its router and the number of island inhabitants. In
the figure, the dark dots are the routers and the numbers are the numbers of inhabitants. PIN will
build connections between pairs of routers such that every router has a path to the main island.
PIN has decided to build the network such that the total amount of cable used is minimal. Under
this restriction, there may be several optimal networks. However, it does not matter to PIN which
of the optimal networks is built.

PIN is interested in the average time required for new customers to access the internet, based
on the assumption that construction on all cable links in the network begins at the same time.
Cable links can be constructed at a rate of one kilometer of cable per day. As a result, shorter
cable links are completed before the longer links. An island will have internet access as soon as
there is a path from the island to the main island along completed cable links. If mi is the number
of inhabitants of the ith island and ti is the time when the island is connected to the internet, then
the average connection time is: ∑

ti ∗mi∑
mi

Input

The input consists of several descriptions of groups of islands. The first line of each description
contains a single positive integer n, the number of islands in the group (n ≤ 50). Each of the
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next n lines has three integers xi, yi, mi, giving the position of the router (xi, yi) and number of
inhabitants mi (mi > 0) of the islands. Coordinates are measured in kilometers. The first island
in this sequence is the main island. The input is terminated by the number zero on a line by itself.

Output

For each group of islands in the input, output the sequence number of the group and the average
number of days until the inhabitants are connected to the internet. The number of days should
have two digits to the right of the decimal point. Use the output format in the sample given below.

Place a blank line after the output of each test case.

Sample Input

7
11 12 2500
14 17 1500
9 9 750
7 15 600
19 16 500
8 18 400
15 21 250
0

Sample Output

Island Group: 1 Average 3.20
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F Toil for Oil

Prospecting for new sources of oil has become a high-technology industry. With improved drilling
technology it has become economically viable to seek out ever smaller and harder to reach deposits
of oil. However, using exploratory drilling to locate these deposits is not cost-efficient, so researchers
have developed methods to detect oil indirectly.

One such method to detect oil is sonar, which uses reflected sound waves to locate caves in
underground rock formations. Determining how much oil can be contained in such a cave is a
difficult problem.

In this problem, you will be given some cross-sections of underground caves, represented by
polygons such as the ones shown in the figure. Some of the points bounding the polygon may be
holes through which oil can seep out into the surrounding rock (represented by black circles in the
figure). Given the polygonal shape of the cave and the positions of the holes, you must compute
the maximum amount of oil that could be in the cave (shown as gray shaded areas in the figure).
This amount is limited by the fact that, in any connected body of oil, the oil level can never be
above a hole, since it would drain into the surrounding rock instead.

Input

The input contains several cave descriptions, each in the form of a polygon that specifies a cross-
section of a cave. The first line of each description contains a single integer n, representing the
number of points on the polygon (3 ≤ n ≤ 100).

Each of the following n lines contains three integers xi, yi, hi. The values (xi, yi) give the
positions of the points on the boundary of the polygon in counterclockwise order. The polygon
is simple-that is, it does not cross or touch itself. The value of hi is equal to 1 if the point is a
hole through which oil can seep out, and 0 otherwise. The “upward” direction in each case is the
positive y-axis.

The input is terminated by a zero on a line by itself.

Output

For each cave description, print its sequence number (starting with 1) followed by its oil capacity.
Approximate the oil capacity by the area within the given cross-section that may contain oil,
rounded to the nearest integer. Use the format in the example output given below. Place a blank
line after each test case.
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Sample Input

4
10 0 0
5 10 1
0 20 0
-10 0 0
11
0 6 0
1 5 1
6 0 0
10 4 0
8 6 0
6 4 0
4 6 0
8 10 0
10 8 0
12 10 0
8 14 1
0

Sample Output

Cave 1: Oil capacity = 150

Cave 2: Oil capacity = 27
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G Partitions

A partition of a rectangle is a subdivision of the rectangle into a set of smaller, non-overlapping
sub-rectangles. Figure 1 shows several examples of partitions.

Figure 2 shows three equal sized rectangles, partitioned into sub-rectangles. Partition B is
obtained from partition A by partitioning two of the sub-rectangles of A. Generally, if a partition
B is obtained from A by partitioning one or more of its sub-rectangles, we say that B is finer than
A, or that A is coarser than B. This relation is partial: partition C is neither coarser nor finer
than A or B.

Given two partitions D and E of the same rectangle, infinitely many partitions exist that are
finer than both D and E. In Figure 3 both F and G are finer than D and E. Among the partitions
that are finer than both D and E, a unique one exists that is coarsest. This partition is called the
infimum of D and E. In Figure 3, partition F is the infimum of D and E.

In Figure 4, both H and J are coarser than D and E. Here J is the finest partition that is coarser
than D and E. Then J is the supremum of D and E.

Write a program that, given two partitions of the same rectangle, finds the infimum and the
supremum of these partitions.
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Input

The input file contains one or more test cases. The first line of each test case gives the width w
and height h of the rectangle

(0 < w, h ≤ 20)

In the next h + 1 lines the two partitions are given, as in the sample. Each of these lines contains
4 ∗ w + 3 characters. The first 2 ∗ w + 1 of these belong to the first partition; the last 2 ∗ w + 1
of these belong to the second partition. A space separates the two partitions. Horizontal lines are
created using underscores ‘ ’, vertical lines using ‘|’.

The input is terminated by a pair of zeroes.

Output

For every case in the input file the output contains a single line containing the case number (in the
format shown in the sample), followed by the infimum and the supremum of the two partitions,
using the same format as the input.

Place a blank line after the output of each test case.

Sample Input

4 3
_ _ _ _ _ _ _ _
|_ _ _ _| |_|_ _ _|
| | | | |
|_ _|_ _| |_ _ _ _|
3 4
_ _ _ _ _ _
| | | | | |
| | | |_|_ _|
|_|_ _| | | |
|_ _|_| |_ _|_|
0 0

Sample Output

Case 1:
_ _ _ _ _ _ _ _
|_|_ _ _| |_ _ _ _|
| | | | |
|_ _|_ _| |_ _ _ _|

Case 2:
_ _ _ _ _ _
| | | | |
|_|_ _| | |
|_|_|_| | |
|_ _|_| |_ _ _|
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H Silly Sort

Your younger brother has an assignment and needs some help. His teacher gave him a sequence of
numbers to be sorted in ascending order. During the sorting process, the places of two numbers
can be interchanged. Each interchange has a cost, which is the sum of the two numbers involved.

You must write a program that determines the minimal cost to sort the sequence of numbers.

Input

The input file contains several test cases. Each test case consists of two lines. The first line contains
a single integer n (n > 1), representing the number of items to be sorted. The second line contains
n different integers (each positive and less than 1,000), which are the numbers to be sorted.

The input is terminated by a zero on a line by itself.

Output

For each test case, the output is a single line containing the test case number and the minimal cost
of sorting the numbers in the test case.

Place a blank line after the output of each test case.

Sample Input

3
3 2 1
4
8 1 2 4
5
1 8 9 7 6
6
8 4 5 3 2 7
0

Sample Output

Case 1: 4

Case 2: 17

Case 3: 41

Case 4: 34
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I Merrily, We Roll Along!

One method used to measure the length of a path is to roll a wheel (similar to a bicycle wheel)
along the path. If we know the radius of the wheel and the number of revolutions it makes as it
travels along the path, the length of the path can be computed.

This method works well if the path is smooth. But when there are curbs or other abrupt
elevation changes in the path, the path distance may not be accurately determined, because the
wheel may rotate around a point (like the edge of a curb), or the wheel may roll along a vertical
surface. In this problem you are to determine the distance moved by the center of such a wheel as
it travels along a path that includes only horizontal and vertical surfaces.

To measure a path, the wheel is placed with its center directly above the origin of the path.
The wheel is then moved forward over the path as far as possible, always remaining in contact
with the surface, ending with its center directly above the end of the path.

Consider the path shown in the illustration on the left below, and assume the wheel has a
radius of 2. The path begins and ends with horizontal segments of length 2 at the same elevation.
Between these there is a horizontal segment of length 2.828427 at 2 units below the elevation of
the other two horizontal segments. To measure this path, the wheel is placed at position 1. It then
moves horizontally to position 2, rotates 45 degrees to position 3, rotates another 45 degrees to
position 4, and finally rolls horizontally to position 5. The center of the wheel moved a distance
of 7.1416, not 6.8284.

In the illustration on the right below, the path begins and ends with horizontal segments of
length 3, separated by a 7-unit wide region placed 7 units below the surface. If the wheel has a
radius of 1, then it will move 26.142 units before reaching the end of the path.

Input

For this problem there are multiple input cases. Each case begins with a positive real number
specifying the radius of the wheel and an integer n, which is at least 1 but not greater than 50.
There then follow n pairs of real numbers. The first number in each pair gives the horizontal
distance along the path to the next vertical surface. The second number in each pair gives the
signed change in the elevation of the path at the vertical surface, with positive numbers representing
an increase in elevation. The vertical surfaces are always perpendicular to the horizontal surfaces.
The elevation change in the nth pair will always be 0.

The input is terminated by a pair of zeroes.
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Output

For each case, display the case number and the distance moved by the center of the wheel with 3
digits to the right of the decimal point.

Place a blank line after the output of each test case.

Sample Input

2.0 3
2.0 -2.0
2.828427 2.0
2.0 0.0
1.0 3
3.0 -7.0
7.0 7.0
3.0 0.0
1.0 3
1.0 4.0
2.0 4.0
1.0 0.0
0 0

Sample Output

Case 1: Distance = 7.142

Case 2: Distance = 26.142

Case 3: Distance = 5.142
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A Building Bridges

The City Council of New Altonville plans to build a system of bridges connecting all of its downtown
buildings together so people can walk from one building to another without going outside. You
must write a program to help determine an optimal bridge configuration.

New Altonville is laid out as a grid of squares. Each building occupies a connected set of one
or more squares. Two occupied squares whose corners touch are considered to be a single building
and do not need a bridge. Bridges may be built only on the grid lines that form the edges of the
squares. Each bridge must be built in a straight line and must connect exactly two buildings.

For a given set of buildings, you must find the minimum number of bridges needed to connect
all the buildings. If this is impossible, find a solution that minimizes the number of disconnected
groups of buildings. Among possible solutions with the same number of bridges, choose the one
that minimizes the sum of the lengths of the bridges, measured in multiples of the grid size. Two
bridges may cross, but in this case they are considered to be on separate levels and do not provide
a connection from one bridge to the other.

The figure below illustrates four possible city configurations. City 1 consists of five buildings
that can be connected by four bridges with a total length of 4. In City 2, no bridges are possible,
since no buildings share a common grid line. In City 3, no bridges are needed because there is
only one building. In City 4, the best solution uses a single bridge of length 1 to connect two
buildings, leaving two disconnected groups (one containing two buildings and one containing a
single building).

Input

The input data set describes several rectangular cities. Each city description begins with a line
containing two integers r and c, representing the size of the city on the north-south and east-west
axes measured in grid lengths (1 ≤ r ≤ 100 and 1 ≤ c ≤ 100). These numbers are followed by
exactly r lines, each consisting of c hash (‘#’) and dot (‘.’) characters. Each character corresponds
to one square of the grid. A hash character corresponds to a square that is occupied by a building,
and a dot character corresponds to a square that is not occupied by a building.

The input data for the last city will be followed by a line containing two zeros.



232 Competitive Learning Institute

Output

For each city description, print two or three lines of output as shown below. The first line consists
of the city number. If the city has fewer than two buildings, the second line is the sentence ‘No
bridges are needed.’. If the city has two or more buildings but none of them can be connected
by bridges, the second line is the sentence ‘No bridges are possible.’. Otherwise, the second
line is ‘N bridges of total length L’ where N is the number of bridges and L is the sum of
the lengths of the bridges of the best solution. (If N is 1, use the word ‘bridge’ rather than
‘bridges.’) If the solution leaves two or more disconnected groups of buildings, print a third line
containing the number of disconnected groups.

Print a blank line between cases. Use the output format shown in the example.

Sample Input

3 5
#...#
..#..
#...#
3 5
##...
.....
....#
3 5
#.###
#.#.#
###.#
3 5
#.#..
.....
....#
0 0

Sample Output

City 1
4 bridges of total length 4

City 2
No bridges are possible.
2 disconnected groups

City 3
No bridges are needed.

City 4
1 bridge of total length 1
2 disconnected groups
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B Light Bulbs

Hollywood’s newest theater, the Atheneum of Culture and Movies, has a huge computer-operated
marquee composed of thousands of light bulbs. Each row of bulbs is operated by a set of switches
that are electronically controlled by a computer program. Unfortunately, the electrician installed
the wrong kind of switches, and tonight is the ACM’s opening night. You must write a program
to make the switches perform correctly.

A row of the marquee contains n light bulbs controlled by n switches. Bulbs and switches are
numbered from 1 to n, left to right. Each bulb can either be ON or OFF. Each input case will
contain the initial state and the desired final state for a single row of bulbs.

The original lighting plan was to have each switch control a single bulb. However the electri-
cian’s error caused each switch to control two or three consecutive bulbs, as shown in Figure 1.
The leftmost switch (i = 1) toggles the states of the two leftmost bulbs (1 and 2); the rightmost
switch (i = n) toggles the states of the two rightmost bulbs (n1 and n). Each remaining switch
(1 < i < n) toggles the states of the three bulbs with indices i1, i, and i + 1. (In the special case
where there is a single bulb and a single switch, the switch simply toggles the state of that bulb.)
Thus, if bulb 1 is ON and bulb 2 is OFF, flipping switch 1 will turn bulb 1 OFF and bulb 2 ON.
The minimum cost of changing a row of bulbs from an initial configuration to a final configuration
is the minimum number of switches that must be flipped to achieve the change.

Figure 1

You can represent the state of a row of bulbs in binary, where 0 means the bulb is OFF and 1
means the bulb is ON. For instance, 01100 represents a row of five bulbs in which the second and
third bulbs are both ON. You could transform this state into 10000 by flipping switches 1, 4, and
5, but it would be less costly to simply flip switch 2.

You must write a program that determines the switches that must be flipped to change a row
of light bulbs from its initial state to its desired final state with minimal cost. Some combinations
of initial and final states may not be feasible. For compactness of representation, decimal integers
are used instead of binary for the bulb configurations. Thus, 01100 and 10000 are represented by
the decimal integers 12 and 16.

Input

The input file contains several test cases. Each test case consists of one line. The line contains two
non-negative decimal integers, at least one of which is positive and each of which contains at most
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100 digits. The first integer represents the initial state of the row of bulbs and the second integer
represents the final state of the row. The binary equivalent of these integers represents the initial
and final states of the bulbs, where 1 means ON and 0 means OFF.

To avoid problems with leading zeros, assume that the first bulb in either the initial or the final
configuration (or both) is ON. There are no leading or trailing blanks in the input lines, no leading
zeros in the two decimal integers, and the initial and final states are separated by a single blank.

The last test case is followed by a line containing two zeros.

Output

For each test case, print a line containing the case number and a decimal integer representing
a minimum-cost set of switches that need to be flipped to convert the row of bulbs from initial
state to final state. In the binary equivalent of this integer, the rightmost (least significant) bit
represents the n-th switch, 1 indicates that a switch has been flipped, and 0 indicates that the
switch has not been flipped. If there is no solution, print ‘impossible’. If there is more than one
solution, print the one with the smallest decimal equivalent.

Print a blank line between cases. Use the output format shown in the example.

Sample Input

12 16
1 1
3 0
30 5
7038312 7427958190
4253404109 657546225
0 0

Sample Output

Case Number 1: 8

Case Number 2: 0

Case Number 3: 1

Case Number 4: 10

Case Number 5: 2805591535

Case Number 6: impossible
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C Riding the Bus

The latest research in reconfigurable multiprocessor chips focuses on the use of a single bus that
winds around the chip. Processor components, which can be anywhere on the chip, are attached
to connecting points on the bus so that they can communicate with each other.

Some research involves bus layout that uses recursively-defined “SZ” curves, also known as
“S-shaped Peano curves.” Two examples of these curves are shown below. Each curve is drawn on
the unit square. The order-1 curve, shown on the left, approximates the letter “S” and consists
of line segments connecting the points (0,0), (1,0), (1,0.5), (0,0.5), (0,1), and (1,1) in order. Each
horizontal line in an “S” or “Z” curve is twice as long as each vertical line. For the order-1 curve,
the length of a vertical line, len, is 0.5.

The order-2 curve, shown on the right, contains 9 smaller copies of the order-1 curve (4 of
which are reversed left to right to yield “Z” curves). These copies are connected by line segments
of length len, shown as dotted lines. Since the width and height of the order-2 curve is 8 × len,
and the curve is drawn on the unit square, len = 0.125 for the order-2 curve.

The order-3 curve contains 9 smaller copies of the order-2 curve (with 4 reversed left to right),
connected by line segments, as described for the order-2 curve. Higher order curves are drawn in
a similar manner. The connecting points to which processor components attach are evenly spaced
every len units along the bus. The first connecting point is at (0,0) and the last is at (1,1). There
are 9k connecting points along the order-k curve, and the total bus length is (9k − 1)× len units.

You must write a program to determine the total distance that signals must travel between two
processor components. Each component’s coordinates are given as an x, y pair, 0 ≤ x ≤ 1 and
0 ≤ y ≤ 1, where x is the distance from the left side of the chip, and y is the distance from the
lower edge of the chip. Each component is attached to the closest connecting point by a straight
line. If multiple connecting points are equidistant from a component, the one with the smallest
x coordinate and smallest y coordinate is used. The total distance a signal must travel between
two components is the sum of the length of the lines connecting the components to the bus, and
the length of the bus between the two connecting points. For example, the distance between
components located at (0.5, 0.25) and (1.0, 0.875) on a chip using the order-1 curve is 3.8750 units.

Input

The input contains several cases. For each case, the input consists of an integer that gives the
order of the SZ curve used as the bus (no larger than 8), and then four real numbers x1, y1, x2, y2
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that give the coordinates of the processor components to be connected. While each processor
component should actually be in a unique location not on the bus, your program must correctly
handle all possible locations.

The last case in the input is followed by a single zero.

Output

For each case, display the case number (starting with 1 for the first case) and the distance between
the processor components when they are connected as described. Display the distance with 4 digits
to the right of the decimal point.

Use the same format as that shown in the sample output shown below. Leave a blank line
between the output lines for consecutive cases.

Sample Input

1 0.5 .25 1 .875
1 0 0 1 1
2 .3 .3 .7 .7
2 0 0 1 1
0

Sample Output

Case 1. Distance is 3.8750

Case 2. Distance is 4.0000

Case 3. Distance is 8.1414

Case 4. Distance is 10.0000
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D Eurodiffusion

On January 1, 2002, twelve European countries abandoned their national currency for a new
currency, the euro. No more francs, marks, lires, guldens, kroner,. . . , only euros, all over the
eurozone. The same banknotes are used in all countries. And the same coins? Well, not quite.
Each country has limited freedom to create its own euro coins:

“Every euro coin carries a common European face. On the obverse, member states
decorate the coins with their own motif. No matter which motif is on the coin, it can
be used anywhere in the 12 Member States. For example, a French citizen is able to buy
a hot dog in Berlin using a euro coin with the imprint of the King of Spain.” (source:
http://europa.eu.int/euro/html/entry.html)

On January 1, 2002, the only euro coins available in Paris were French coins. Soon the first
non-French coins appeared in Paris. Eventually, one may expect all types of coins to be evenly
distributed over the twelve participating countries. (Actually this will not be true. All countries
continue minting and distributing coins with their own motifs. So even in a stable situation, there
should be an excess of German coins in Berlin.) So, how long will it be before the first Finnish or
Irish coins are in circulation in the south of Italy? How long will it be before coins of each motif
are available everywhere?

You must write a program to simulate the dissemination of euro coins throughout Europe,
using a highly simplified model. Restrict your attention to a single euro denomination. Represent
European cities as points in a rectangular grid. Each city may have up to 4 neighbors (one to the
north, east, south and west). Each city belongs to a country, and a country is a rectangular part
of the plane. The figure below shows a map with 3 countries and 28 cities. The graph of countries
is connected, but countries may border holes that represent seas, or non-euro countries such as
Switzerland or Denmark. Initially, each city has one million (1,000,000) coins in its country’s
motif. Every day a representative portion of coins, based on the city’s beginning day balance, is
transported to each neighbor of the city. A representative portion is defined as one coin for every
full 1,000 coins of a motif.
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A city is complete when at least one coin of each motif is present in that city. A country is
complete when all of its cities are complete. Your program must determine the time required for
each country to become complete.

Input

The input consists of several test cases. The first line of each test case is the number of countries
(1 ≤ c ≤ 20). The next c lines describe each country. The country description has the format:
name xl yl xh yh, where name is a single word with at most 25 characters; xl, yl are the lower left
city coordinates of that country (most southwestward city ) and xh, yh are the upper right city
coordinates of that country (most northeastward city). 1 ≤ xl ≤ xh ≤ 10 and 1 ≤ yl ≤ yh ≤ 10.

The last case in the input is followed by a single zero.

Output

For each test case, print a line indicating the case number, followed by a line for each country with
the country name and number of days for that country to become complete. Order the countries by
days to completion. If two countries have identical days to completion, order them alphabetically
by name.

Use the output format shown in the example.

Sample Input

3
France 1 4 4 6
Spain 3 1 6 3
Portugal 1 1 2 2
1
Luxembourg 1 1 1 1
2
Netherlands 1 3 2 4
Belgium 1 1 2 2
0

Sample Output

Case Number 1
Spain 382
Portugal 416
France 1325

Case Number 2
Luxembourg 0

Case Number 3
Belgium 2
Netherlands 2
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E Covering Whole Holes

Can you cover a round hole with a square cover? You can, as long as the square cover is big
enough. It obviously will not be an exact fit, but it is still possible to cover the hole completely.

The Association of Cover Manufacturers (ACM) is a group of companies that produce covers
for all kinds of holes – manholes, holes on streets, wells, ditches, cave entrances, holes in backyards
dug by dogs to bury bones, to name only a few. ACM wants a program that determines whether a
given cover can be used to completely cover a specified hole. At this time, they are interested only
in covers and holes that are rectangular polygons (that is, polygons with interior angles of only 90
or 270 degrees). Moreover, both cover and hole are aligned along the same coordinate axes, and
are not supposed to be rotated against each other – just translated relative to each other.

Input

The input consists of several descriptions of covers and holes. The first line of each description
contains two integers h and c (4 ≤ h ≤ 50 and 4 ≤ c ≤ 50), the number of points of the polygon
describing the hole and the cover respectively. Each of the following h lines contains two integers
x and y, which are the vertices of the hole’s polygon in the order they would be visited in a trip
around the polygon. The next c lines give a corresponding description of the cover. Both polygons
are rectangular, and the sides of the polygons are aligned with the coordinate axes. The polygons
have positive area and do not intersect themselves.

The last description is followed by a line containing two zeros.

Output

For each problem description, print its number in the sequence of descriptions. If the hole can
be completely covered by moving the cover (without rotating it), print ‘Yes’ otherwise print ‘No’.
Recall that the cover may extend beyond the boundaries of the hole as long as no part of the hole
is uncovered. Follow the output format in the example given below.

Sample Input

4 4
0 0
0 10
10 10
10 0
0 0
0 20
20 20
20 0
4 6
0 0
0 10
10 10
10 0
0 0
0 10
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10 10
10 1
9 1
9 0
0 0

Sample Output

Hole 1: Yes
Hole 2: No
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F Combining Images

As the exchange of images over computer networks becomes more common, the problem of image
compression takes on increasing importance. Image compression algorithms are used to represent
images using a relatively small number of bits.

One image compression algorithm is based on an encoding called a “Quad Tree.” An image has
a Quad Tree encoding if it is a square array of binary pixels (the value of each pixel is 0 or 1, called
the “color” of the pixel), and the number of pixels on the side of the square is a power of two.

If an image is homogeneous (all its pixels are of the same color), the Quad Tree encoding of the
image is 1 followed by the color of the pixels. For example, the Quad Tree encoding of an image
that contains pixels of color 1 only is 11, regardless of the size of the image.

If an image is heterogeneous (it contains pixels of both colors), the Quad Tree encoding of the
image is 0 followed by the Quad Tree encodings of its upper-left quadrant, its upper-right quadrant,
its lower-left quadrant, and its lower-right quadrant, in order.

The Quad Tree encoding of an image is a string of binary digits. For easier printing, a Quad
Tree encoding can be converted to a Hex Quad Tree encoding by the following steps:

a. Prepend a 1 digit as a delimiter on the left of the Quad Tree encoding.

b. Prepend 0 digits on the left as necessary until the number of digits is a multiple of four.

c. Convert each sequence of four binary digits into a hexadecimal digit, using the digits 0 to 9
and capital A through F to represent binary patterns from 0000 to 1111.

For example, the Hex Quad Tree encoding of an image that contains pixels of color 1 only is 7,
which corresponds to the binary string 0111.

You must write a program that reads the Hex Quad Tree encoding of two images, computes a
new image that is the intersection of those two images, and prints its Hex Quad Tree encoding.
Assume that both input images are square and contain the same number of pixels (although the
lengths of their encodings may differ). If two images A and B have the same size and shape, their
intersection (written as A & B) also has the same size and shape. By definition, a pixel of A & B
is equal to 1 if and only if the corresponding pixels of image A and image B are both equal to 1.

The following figure illustrates two input images and their intersection, together with the Hex
Quad Tree encodings of each image. In the illustration, shaded squares represent pixels of color 1.
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Input

The input data set contains a sequence of test cases, each of which is represented by two lines of
input. In each test case, the first input line contains the Hex Quad Tree encoding of the first image
and the second line contains the Hex Quad Tree encoding of the second image. For each input
image, the number of hexadecimal digits in its Hex Quad Tree encoding will not exceed 100.

The last test case is followed by two input lines, each containing a single zero.

Output

For each test case, print ‘Image’ followed by its sequence number. On the next line, print the Hex
Quad Tree encoding of the intersection of the two images for that test case. Separate the output
for consecutive test cases with a blank line.

Sample Input

2FA
2BB
2FB
2EF
7
2FA
0
0

Sample Output

Image 1:
2BA

Image 2:
2EB

Image 3:
2FA
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G A Linking Loader

An object module is produced by a compiler as a result of processing a source program. A linking
loader (or just a linker) is used to combine the multiple object modules used when a program
contains several separately compiled modules. Two of its primary tasks are to relocate the code
and data in each object module (since the compiler does not know where in memory a module will
be placed), and to resolve symbolic references from one module to another. For example, a main
program may reference a square root function called sqrt, and that function may be defined in a
separate source module. The linker will then minimally have to assign addresses to the code and
data in each module, and put the address of the sqrt function in the appropriate location(s) in
the main module’s code.

An object module contains (in order) zero or more external symbol definitions, zero or more
external symbol references, zero or more bytes of code and data (that may include references to
the values of external symbols), and an end of module marker. In this problem, an object module
is represented as a sequence of text lines, each beginning with a single uppercase character that
characterizes the remainder of the line. The format of each of these lines is as follows. Whitespace
(one or more blanks and/or tab characters) will appear between the fields in these lines. Additional
whitespace may follow the last field in each line.

• A line of the form ‘D symbol offset’ is an external symbol definition. It defines symbol as
having the address offset bytes greater than the address where the first byte of code and
data for the current object module is located by the linker. A symbol is a string of no more
than eight upper case alphabetic characters. The offset is a hexadecimal number with no
more than four digits (using only upper case alphabetic characters for the digits A through
F). For example, in a module that is loaded starting at the address 10016, the line ‘D START
5C’ indicates that the symbol START is defined as being associated with the address 15C16.
The number of “D” lines in a test case is at most 100.

• A line of the form ‘E symbol’ is an external symbol reference, and indicates that the value of
symbol (presumably defined in another object module) may be referenced as part of the code
and data for the current module. For example, the line ‘E START’ indicates that the value
of the symbol START (that is, the address defined for it) may be used as part of the code
and data for the module. Each of the “E” lines for each module is numbered sequentially,
starting with 0, so they can be referenced in the “C” lines.

• A line of the form ‘C n byte1 byte2 . . . byten’ specifies the first or next n bytes of code and
data for the current module. The value n is specified as a one or two digit hexadecimal
number, and will be no larger than 10 hexadecimal. Each byte is either a one or two digit
hexadecimal number, or a dollar sign. The first byte following a dollar sign (always on
the same line) gives the 0-origin index of an external symbol reference for this module, and
identifies the symbol which is to have its 16-bit value inserted at the current point in the linked
program (that is, in the location indicated by the dollar sign and the following byte). The
high-order byte is placed in the location indicated by the dollar sign. The values specified
for the other bytes (those not following a dollar sign) are loaded into sequential memory
locations, starting with the first (lowest) unused memory location. For example, the line
‘C 4 25 $ 0 37’ would cause the values 2516 0116 5C16 and 3716 to be placed in the next
four unused memory locations, assuming the first “E” line for the current module specified
a symbol defined as having the address 15C16. If the 0-origin index of the external symbol
reference is an undefined symbol, the 16-bit value inserted at the current point in the linked
program is 000016.
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• A line of the form ‘Z’ marks the end of an object module.

You may assume that no address requires more than four hexadecimal digits. Lines are always
given in the order shown above. There are no syntax errors in the input.

Input

This problem has multiple input cases. The input for each case is one or more object modules, in
sequence, that are to be linked, followed by a line beginning with a dollar sign. The first address
at which code is to be loaded in each case is 10016.

The last case will be followed by a line containing only a dollar sign.

Output

For each case, print the case number (starting with 1), the 16-bit checksum of the loaded bytes (as
described below), and the load map showing the address of each externally defined or referenced
symbol, in ascending order of symbol name. For undefined symbols, print the value as four question
marks, but use zero as the symbol’s value when it is referenced in “C” lines. If a symbol is defined
more than once, print ‘M’ following the address shown in the load map, and use the value from the
first definition encountered in any object module to satisfy external references. Format the output
exactly as shown in the samples.

The 16-bit checksum is computed by first setting it to zero. Then, for each byte assigned to a
memory location by the loader, in increasing address order, circularly left shift the checksum by
one bit, and add the byte from the memory location, discarding any carry out of the low-order 16
bits.

Sample Input

D MAIN 0
D END 5
C 03 01 02 03
C 03 04 05 06
Z
$
D ENTRY 4
E SUBX
E SUBY
C 10 1 2 3 4 5 $ 0 6 7 8 9 A B C D E
C 8 10 20 30 40 50 60 70 80
C 8 90 A0 B0 C0 D0 E0 $ 1
C 5 $ 0 FF EE DD
Z
D SUBX 01
C 06 A B C D E F
Z
D SUBX 05
C 06 51 52 53 54 55 56
Z
$
$

Sample Output

Case 1: checksum = 0078
SYMBOL ADDR

-------- ----
END 0105
MAIN 0100

Case 2: checksum = 548C
SYMBOL ADDR

-------- ----
ENTRY 0104
SUBX 0126 M
SUBY ????
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H A Spy in the Metro

Secret agent Maria was sent to Algorithms City to carry out an especially dangerous mission. After
several thrilling events we find her in the first station of Algorithms City Metro, examining the
time table. The Algorithms City Metro consists of a single line with trains running both ways, so
its time table is not complicated.

Maria has an appointment with a local spy at the last station of Algorithms City Metro. Maria
knows that a powerful organization is after her. She also knows that while waiting at a station,
she is at great risk of being caught. To hide in a running train is much safer, so she decides to
stay in running trains as much as possible, even if this means traveling backward and forward.
Maria needs to know a schedule with minimal waiting time at the stations that gets her to the last
station in time for her appointment. You must write a program that finds the total waiting time
in a best schedule for Maria.

The Algorithms City Metro system has N stations, consecutively numbered from 1 to N . Trains
move in both directions: from the first station to the last station and from the last station back
to the first station. The time required for a train to travel between two consecutive stations is
fixed since all trains move at the same speed. Trains make a very short stop at each station, which
you can ignore for simplicity. Since she is a very fast agent, Maria can always change trains at a
station even if the trains involved stop in that station at the same time.

Input

The input file contains several test cases. Each test case consists of seven lines with information
as follows.

Line 1. The integer N (2 ≤ N ≤ 50), which is the number of stations.

Line 2. The integer T (0 ≤ T ≤ 200), which is the time of the appointment.

Line 3. N − 1 integers: t1, t2, . . . , tN−1 (1 ≤ ti ≤ 20), representing the travel times for the trains
between two consecutive stations: t1 represents the travel time between the first two stations,
t2 the time between the second and the third station, and so on.

Line 4. The integer M1 (1 ≤ M1 ≤ 50), representing the number of trains departing from the
first station.

Line 5. M1 integers: d1, d2, . . . , dM1 (0 ≤ di ≤ 250 and di < di+1), representing the times at
which trains depart from the first station.
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Line 6. The integer M2 (1 ≤ M2 ≤ 50), representing the number of trains departing from the
N -th station.

Line 7. M2 integers: e1, e2, . . . , eM2 (0 ≤ ei ≤ 250 and ei < ei+1) representing the times at which
trains depart from the N -th station.

The last case is followed by a line containing a single zero.

Output

For each test case, print a line containing the case number (starting with 1) and an integer repre-
senting the total waiting time in the stations for a best schedule, or the word ‘impossible’ in case
Maria is unable to make the appointment. Use the format of the sample output.

Sample Input

4
55
5 10 15
4
0 5 10 20
4
0 5 10 15
4
18
1 2 3
5
0 3 6 10 12
6
0 3 5 7 12 15
2
30
20
1
20
7
1 3 5 7 11 13 17
0

Sample Output

Case Number 1: 5
Case Number 2: 0
Case Number 3: impossible
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I The Solar System

It is common knowledge that the Solar System consists of the sun at its center and nine planets
moving around the sun on elliptical orbits. Less well known is the fact that the planets’ orbits are
not at all arbitrary. In fact, the orbits obey three laws discovered by Johannes Kepler. These laws,
also called “The Laws of Planetary Motion,” are the following.

1. The orbits of the planets are ellipses, with the sun at one focus of the ellipse. (Recall that
the two foci of an ellipse are such that the sum of the distances to them is the same for all
points on the ellipse.)

2. The line joining a planet to the sun sweeps over equal areas during equal time intervals as
the planet travels around the ellipse.

3. The ratio of the squares of the revolutionary periods of two planets is equal to the ratio of
the cubes of their semi major axes.

By Kepler’s first law, the path of the planet shown in the figure on the left is an ellipse.
According to Kepler’s second law, if the planet goes from M to N in time tA and from P to Q in
time tB and if tA = tB , then area A equals area B. Kepler’s third law is illustrated next.

Consider an ellipse whose center is at the origin 0 and that is symmetric with respect to the
two coordinate axes. The x-axis intersects the ellipse at points A and B and the y-axis intersects
the ellipse at points C and D. Set a = 1

2 |AB| and b = 1
2 |CD|. Then the ellipse is defined by the

equation x2

a2 + y2

b2 = 1. If a ≥ b, AB is called the major axis, CD the minor axis, and OA (with
length a) is called the semi major axis. When two planets are revolving around the sun in times t1
and t2 respectively, and the semi major axes of their orbits have lengths a1 and a2, then according
to Kepler’s third law ( t1

t2
)2 = (a1

a2
)3.

In this problem, you are to compute the location of a planet using Kepler’s laws. You are
given the description of one planet in the Solar System (i.e., the length of its semi-major axis,
semi-minor axis, and its revolution time) and the description of a second planet (its semi-major
axis and semi-minor axis). Assume that the second planet’s orbit is aligned with the coordinate
axes (as in the above figure), that it moves in counter clockwise direction, and that the sun is
located at the focal point with non-negative x-coordinate. You are to compute the position of the
second planet a specified amount of time after it starts at the point with maximal x-coordinate on
its orbit (point B in the above figure).
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Input

The input file contains several descriptions of pairs of planets. Each line contains six integers
a1, b1, t1, a2, b2, t. The first five integers are positive, and describe two planets as follows:

a1 = semi major axis of the first planet’s orbit
b1 = semi minor axis of the first planet’s orbit
t1 = period of revolution of the first planet (in days)
a2 = semi major axis of the second planet’s orbit
b2 = semi minor axis of the second planet’s orbit

The non-negative integer t is the time (in days) at which you have to determine the position
of the second planet, assuming that the planet starts in position (a2, 0).

The last description is followed by a line containing six zeros.

Output

For each pair of planets described in the input, produce one line of output. For each line, print the
number of the test case. Then print the x- and y-coordinates of the position of the second planet
after t days. These values must be exact to three digits to the right of the decimal point. Follow
the format of the sample output provided below.

Sample Input

10 5 10 10 5 10
10 5 10 20 10 10
0 0 0 0 0 0

Sample Output

Solar System 1: 10.000 0.000
Solar System 2: -17.525 4.819
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J Toll

Sindbad the Sailor sold 66 silver spoons to the Sultan of Samarkand. The selling was quite easy;
but delivering was complicated. The items were transported over land, passing through several
towns and villages. Each town and village demanded an entry toll. There were no tolls for leaving.
The toll for entering a village was simply one item. The toll for entering a town was one piece per
20 items carried. For example, to enter a town carrying 70 items, you had to pay 4 items as toll.
The towns and villages were situated strategically between rocks, swamps and rivers, so you could
not avoid them.

Figure 1: To reach Samarkand with 66 spoons, traveling through a town followed by two villages,
you must start with 76 spoons.

Figure 2: The best route to reach X with 39 spoons, starting from A, is A→b→c→X, shown with
arrows in the figure on the left. The best route to reach X with 10 spoons is A→D→X, shown in

the figure on the right. The figures display towns as squares and villages as circles.

Predicting the tolls charged in each village or town is quite simple, but finding the best route
(the cheapest route) is a real challenge. The best route depends upon the number of items carried.
For numbers up to 20, villages and towns charge the same. For large numbers of items, it makes
sense to avoid towns and travel through more villages, as illustrated in Figure 2.

You must write a program to solve Sindbad’s problem. Given the number of items to be
delivered to a certain town or village and a road map, your program must determine the total
number of items required at the beginning of the journey that uses a cheapest route.

Input

The input consists of several test cases. Each test case consists of two parts: the roadmap followed
by the delivery details.

The first line of the roadmap contains an integer n, which is the number of roads in the map
(0 ≤ n). Each of the next n lines contains exactly two letters representing the two endpoints of
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a road. A capital letter represents a town; a lower case letter represents a village. Roads can be
traveled in either direction.

Following the roadmap is a single line for the delivery details. This line consists of three things:
an integer p (0 < p ≤ 1000) for the number of items that must be delivered, a letter for the starting
place, and a letter for the place of delivery. The roadmap is always such that the items can be
delivered.

The last test case is followed by a line containing the number -1.

Output

The output consists of a single line for each test case. Each line displays the case number and the
number of items required at the beginning of the journey. Follow the output format in the example
given below.

Sample Input

1
a Z
19 a Z
5
A D
D X
A b
b c
c X
39 A X
-1

Sample Output

Case 1: 20
Case 2: 44
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A Carl the Ant

Ants leave small chemical trails on the ground in order to mark paths for other ants to follow.
Ordinarily these trails follow rather straight lines. But in one ant colony there is an ant named
Carl, and Carl is not an ordinary ant. Carl will often zigzag for no apparent reason, sometimes
crossing his own path numerous times in the process. When other ants come to an intersection,
they always follow the path with the strongest scent, which is the most recent path t hat leads
away from the intersection point.

Ants are 1 centimeter long, move and burrow at 1 centimeter per second, and follow their paths
exactly (bending at right angles when moving around corners). Ants cannot cross or overlap each
other. If two ants meet at the exact same instant at an intersection point, the one that has been on
Carl’s path the longest has the right of way; otherwise, the ant that has been waiting the longest
at an intersection will move first.

Carl burrows up from the ground to start at the origin at time 0. He then walks his path
and burrows back down into the ground at the endpoint. The rest of the ants follow at regular
intervals. Given the description of Carl’s path and when the other ants start the path, you are to
determine how long it takes the entire set of ants to finish burrowing back into the ground. All
the ants are guaranteed to finish.

Input

Input consists of several test cases. The first line of the input file contains a single integer indicating
the number of test cases .

The input for each test case starts with a single line containing three positive integers n (1 ≤
n ≤ 50), m (1 ≤ m ≤ 100), and d (1 ≤ d ≤ 100). Here, n is the number of line segments in Carl’s
path, m is the number of ants traveling the path (including Carl), and d is the time delay before
each successive ant’s emergence. Carl (who is numbered 0) starts at time 0. The next ant (ant
number 1) will emerge at time d, the next at time 2d, and so on. If the burrow is blocked, the ants
will emerge as soon as possible in the correct order.

Each of the next n lines for the test case consists of a unique integer pair x y (−100 ≤ x, y ≤
100), which is the endpoint of a line segment of Carl’s path, in the order that Carl travels. The
first line starts at the origin (0,0) and the starting point of every subsequent line is the endpoint
of the previous line.

For simplicity, Carl always travels on line segments parallel to the axes, and no endpoints lie
on any segment other than the ones which they serve as an endpoint.

Output

The output for each case is described as follows:

Case C:
Carl finished the path at time t1
The ants finished in the following order:
a1a2a3 . . . am

The last ant finished the path at time t2
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Here, C is the case number (starting at 1), a1, a2, a3, . . . , am are the ant numbers in the order
that they go back underground, and t1 and t2 are the times (in seconds) at which Carl and the
last ant finish going underground. You should separate consecutive cases with a single blank line.

Sample Input

2
4 7 4
0 4
2 4
2 2
-2 2
4 7 2
0 4
2 4
2 2
-2 2

Sample Output

Case 1:
Carl finished the path at time 13
The ants finished in the following order:
0 2 1 3 4 5 6
The last ant finished the path at time 29

Case 2:
Carl finished the path at time 13
The ants finished in the following order:
0 4 1 5 2 6 3
The last ant finished the path at time 19
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B Heliport

In these fast-paced times, companies are investing in heliports to reduce travel time for their
busy executives. The heliports are typically circular landing pads, constructed on the roofs of the
companies’ headquarters.

You must write a program that finds the largest radius for a circular heliport that can be
constructed on the flat roof of a building that is in the form of a simple polygon. Since this is
merely the design phase of the construction effort, your program must find only the radius of the
heliport. The maximum radius for a heliport in the diagram shown is 10.

Input

The input file contains several test cases. Each test case consists of two lines. The first line consists
of an even integer n (4 ≤ n ≤ 20), which is the number of the sides of the building. The second
line consists of n pairs of the form (m, d), where m is an integer (1 ≤ m ≤ 50) and d is a letter (U,
R, D, L). Assuming the roof is drawn on the Cartesian plane, m is the length of a roof boundary
segment and d is the direction of that segment as you travel counterclockwise around the roof.
U, R, D, and L mean “Up,” “Right,” “Down,” and “Left” respectively. The boundary segments of
the roof, which are parallel to the x and y axes, are given in counterclockwise order. The starting
position is the origin (0, 0).

Input for the last test case is followed by a line consisting of the number 0.

Output

For each test case, the output consists of a separate line containing the case number (starting with
1) and a real number (rounded to two digits after the decimal point) representing the radius of the
heliport. Print a blank line between cases as shown in the sample output.
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Sample Input

4
2 R 2 U 2 L 2 D
10
10 R 10 U 10 L 10 U 10 R 5 U 30 L 20 D 20 R 5 D
0

Sample Output

Case Number 1 radius is: 1.00

Case Number 2 radius is: 10.00
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C Image Is Everything

Your new company is building a robot that can hold small lightweight objects. The robot will have
the intelligence to determine if an object is light enough to hold. It does this by taking pictures of
the object from the 6 cardinal directions, and then inferring an upper limit on the object’s weight
based on those images. You must write a program to do that for the robot.

You can assume that each object is formed from an N ×N ×N lattice of cubes, some of which
may be missing. Each 1× 1× 1 cube weighs 1 gram, and each cube is painted a single solid color.
The object is not necessarily connected.

Input

The input for this problem consists of several test cases representing different objects. Every case
begins with a line containing N , which is the size of the object (1 ≤ N ≤ 10). The next N lines
are the different N ×N views of the object, in the order front, left, back, right, top, bottom. Each
view will be separated by a single space from the view that follows it. The bottom edge of the top
view corresponds to the top edge of the front view. Similarly, the top edge of the bottom view
corresponds to the bottom edge of the front view. In each view, colors are represented by single,
unique capital letters, while a period (.) indicates that the object can be seen through at that
location.

Input for the last test case is followed by a line consisting of the number 0.

Output

For each test case, print a line containing the maximum possible weight of the object, using the
format shown below.

Sample Input

3
.R. YYR .Y. RYY .Y. .R.
GRB YGR BYG RBY GYB GRB
.R. YRR .Y. RRY .R. .Y.
2
ZZ ZZ ZZ ZZ ZZ ZZ
ZZ ZZ ZZ ZZ ZZ ZZ
0

Sample Output

Maximum weight: 11 gram(s)
Maximum weight: 8 gram(s)
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D Insecure in Prague

Prague is a dangerous city for developers of cryptographic schemes. In 2001, a pair of researchers
in Prague announced a security flaw in the famous PGP encryption protocol. In Prague in 2003 , a
flaw was discovered in the SSL/TLS (Secure Sockets Layer and Transport Layer Security) protocols.
However, Prague’s reputation for being tough on cryptographic protocols hasn’t stopped the part-
time amateur cryptographer and full-time nutcase, Immanuel Kant-DeWitt (known to his friends
as “I. Kant-DeWitt”), from bringing his latest encryption scheme to Prague. Here’s how it works:

A plain text message p of length n is to be transmitted. The sender chooses an integer m ≥ 2n,
and integers s, t, i, and j, where 0 ≤ s, t, i, j < m and i < j. The scheme works as follows: m is the
length of the transmitted ciphertext string, c. Initially, c contains m empty slots. The first letter
of p is placed in position s of c. The k-th letter, k ≥ 2, is placed by skipping over i empty slots
in c after the (k − 1)-st letter, wrapping around to the beginning of c if necessary. Slots already
containing letters are not counted as empty. For instance, if the message is PRAGUE, if s = 1,
i = 6, and m = 15, then the letters are placed in c as follows:

A P U R G E
— — — — — — — — — — — — — — —
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Starting with the first empty slot in or after position t in string c, the plain text message is
entered again, but this time skipping j empty slots between letters. For instance, if t = 0 and
j = 8, the second copy of p is entered as follows (beginning in position 2, the first empty slot
starting from t = 0):

A P P U R A U R G E G E
— — — — — — — — — — — — — — —
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Finally, any remaining unfilled slots in c are filled in with randomly chosen letters:

A P P U R A A U R G E G E W E
— — — — — — — — — — — — — — —
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Kant-DeWitt believes that the duplication of the message, combined with the use of random
letters, will confuse decryption schemes based upon letter frequencies and that, without knowledge
of s and i, no one can figure out what the original message is. Your job is to try to prove him
wrong. Given a number of ciphertext strings (and no additional information), you will determine
the longest possible message that could have been encoded using the Kant-DeWitt method.

Input

A number of ciphertext strings, one per line. Each string will consist only of upper case alphabetic
letters, with no leading or trailing blanks; each will have length between 2 and 40.

Input for the last test case is followed by a line consisting of the letter X.

Output

For each input ciphertext string, print the longest string that could be encrypted in the ciphertext.
If more than one string has the longest length, then print ‘Codeword not unique’. Follow the
format of the sample output given below.
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Sample Input

APPURAAURGEGEWE
ABABABAB
THEACMPROGRAMMINGCONTEST
X

Sample Output

Code 1: PRAGUE
Code 2: Codeword not unique
Code 3: Codeword not unique



260 Competitive Learning Institute

E Intersecting Dates

A research group is developing a computer program that will fetch historical stock market quotes
from a service that charges a fixed fee for each day’s quotes that it delivers. The group has examined
the collection of previously-requested quotes and discovered a lot of duplication, resulting in wasted
money. So the new program will maintain a list of all past quotes requested by members of the
group. When additional quotes are required, only quotes for those dates not previously obtained
will be fetched from the service, thus minimizing the cost. You are to write a program that d
etermines when new quotes are required. Input for the program consists of the date ranges for
which quotes have been requested in the past and the date ranges for which quotes are required.
The program will then determine the date ranges for which quotes must be fetched from the service.

Input

There will be multiple input cases. The input for each case begins with two non-negative integers
NX and NR, (0 ≤ NX, NR ≤ 100). NX is the number of existing date ranges for quotes requested
in the past. NR is the number of date ranges in the incoming requests for quotes. Following these
are NX + NR pairs of dates. The first date in each pair will be less than or equal to the second
date in the pair. The first NX pairs specify the date ranges of quotes which have been requested
and obtained in the past, and the next NR pairs specify the date ranges for which quotes are
required. Two zeroes will follow the input data for the last case. Each input date will be given in
the form Y Y Y Y MMDD. Y Y Y Y is the year (1700 to 2100), MM is the month (01 to 12), and
DD is the day (in the allowed range for the given month and year).

Recall that months 04, 06, 09, and 11 have 30 days, months 01, 03, 05, 07, 08, 10, and 12 have
31 days, and month 02 has 28 days except in leap years, when it has 29 days. A year is a leap year
if it is evenly divisible by 4 and is not a century year (a multiple of 100), or if it is divisible by 400.

Output

For each input case, display the case number (1, 2, . . . ) followed by a list of any date ranges for
which quotes must be fetched from the service, one date range per output line. Use the American
date format shown in the sample output below. Explicitly indicate (as shown) if no additional
quotes must be fetched. If two date ranges are contiguous or overlap, then merge them into a
single date range. If a date range consists of a single date, print it as a single date, not as a range
consisting of two identical dates. Display the date ranges in chronological order, starting with the
earliest date range.

Sample Input

1 1
19900101 19901231
19901201 20000131
0 3
19720101 19720131
19720201 19720228
19720301 19720301
1 1
20010101 20011231
20010515 20010901
0 0

Sample Output

Case 1:
1/1/1991 to 1/31/2000

Case 2:
1/1/1972 to 2/28/1972
3/1/1972

Case 3:
No additional quotes are required.
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F Merging Maps

Pictures taken from an airplane or satellite of an ar ea to be mapped are often of sufficiently high
resolution to uniquely identify major features. Since a single picture can cover only a small portion
of the earth, mapping larger areas requires taking pictures of smaller overlapping areas, and then
merging these to produce a map of a larger area.

For this problem you are given several maps of rectangular areas, each represented as an
array of single-character cells. A cell contains an uppercase alphabetic character (‘A’ to ‘Z’) if its
corresponding area contains an identifiable major feature. Different letters correspond to different
features, but the same major feature (such as a road) may be identified in multiple cells. A cell
contains a hyphen (‘-’) if no identifiable feature is located in the cell area. Merging two maps
means overlaying them so that one or more common major features are aligned. A cell containing
a major feature in one map can be overlaid with a cell not containing a major feature in the other.
However, different major features (with diff erent letters) cannot be overlaid in the same cell.

--A-C C---- C---- ----D -D--C
----D D---F ----- -E--B ----G
----B B---- B-A-C ----- ----B

Map # 1 2 3 4 5

Consider the five 3-row, 5-column maps shown above. The rightmost column of map 1 perfectly
matches the leftmost column of map 2, so those maps could be overlaid to yield a 3-row, 9-column
map. But map 1 could also overlay map 3 as well, since the C and B features in the rightmost
column of map 1 match those in the leftmost column of map 3; the D does not perfectly match the
‘-’ in the center of the column, but there is no conflict. In a similar manner, the top row of map
1 could also overlay the bottom row of map 3.

The “score” of a pair of maps indicates the extent to which the two maps match. The score
of an overlay of a pair of maps is the number of cells containing major features that coincide in
the overlay that gives the best match. The score for the map pair is the maximum score for the
possible overlays of the maps. Thus, the score for a pair of maps each having 3 rows and 5 columns
must be in the range 0 to 15.

An “offset” is a pair of integers (r, c) that specifies how two maps, a and b, are overlaid. The
value of r gives the offset of rows in b relative to rows in a; similarly, c gives the offset of columns
in b relative to columns in a. For example, the overlay of map 1 and map 2 shown above has the
offset (0,4) and a score of 3. The two overlays of map 1 and map 3 yielding scores of 2 have offsets
of (0,4) and (-2,0).

The following steps describe how to merge a sequence of maps:

1. Merge the pair of maps in the sequence that yield the highest positive score (resolving ties
by choos ing pair that has the map with the lowest sequence number).

2. Remove the maps that were merged from the sequence.

3. Add the resulting merged map to the sequence, giving it the next larger sequence number.

In the example above, maps 1 and 2 would be merged to produce map 6, and maps 1 and 2
would be removed from the sequence. Steps 1, 2 and 3 are repeated until only a single map remains
in the sequence, or until none of the maps in the sequence can be merged (that is, until the overlay
score for each possible map pair is zero).

If two maps can be merged in several ways to yield the same score, then merge them using the
smallest row offset. If the result is still ambiguous, use the smallest row offset and the smallest
column offset.
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Input

The input will contain one or more sets of data, each containing between 2 and 10 maps. Each set
of data begins with an integer specifying the number of maps in the sequence. The maps follow,
each beginning with a line containing two integers NR and NC (1 ≤ NR,NC ≤ 10) that specify
the number of rows and columns in the map that immediately follows on the next NR lines. The
first NC characters on each of these NR lines are the map data, and any trailing characters on
such lines are to be ignored.

Input for the last test case is followed by a line consisting of the number 0.

Output

For each set of data, display the input case number (1, 2, . . . ) and the merged maps, each identified
with its sequence number and enclosed by a border. The output should be formatted as shown in
the samples below. No merged map will have more than 70 columns.

Sample Input

5
3 5
--A-C
----D
----B
3 5
C----
D---F
B----
3 5
C----
-----
B-A-C
3 5
----D
-E--B
-----
3 5
-D--C
----G
----B
2
3 5
----A
----B
----C
3 5
A----
B----
D----
0
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Sample Output

Case 1
MAP 9:
+-------------+
|-D--C--------|
|----G--------|
|----B-A-C----|
|--------D---F|
|-----E--B----|
|-------------|
+-------------+

Case 2
MAP 1:
+-----+
|----A|
|----B|
|----C|
+-----+

MAP 2:
+-----+
|A----|
|B----|
|D----|
+-----+
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G Navigation

Global Positioning System (GPS) is a navigation system based on a set of satellites orbiting ap-
proximately 20,000 kilometers above the earth. Each satellite follows a known orbit and transmits
a radio signal that encodes the current time. If a GPS-equipped vehicle has a very accurate clock,
it can compare its own local time with the time encoded in the signals received from the satellites.
Since radio signals propagate at a known rate, the vehicle can compute the distance between its
current location and the location of the satellite when the signal was broadcast. By measuring its
distance from several satellites in known orbits, a vehicle can compute its position very accurately.

You must write a simple “autopilot” program based on GPS navigation. To make the problem
easier, we state it as a two-dimen sional problem. In other words, you do not need to take into
account the curvature of the earth or the altitude of the satellites. Furthermore, the problem uses
speeds that are more appropriate for airplanes and sound waves than for satellites and radio waves.

Given a set of signals from moving sources, your program must compute the receiving position
on the Cartesian plane. Then, given a destination point on the plane, your program must compute
the compass heading required to go from the receiving position to the destination. All compass
headings are stated in degrees. Compass heading 0 (North) corresponds to the positive y direction,
and compass heading 90 (East) corresponds to the positive x direction, as shown in Figure 1.

Input

The input consists of multiple data sets.

The first line of input in each data set contains an integer N (1 ≤ N ≤ 10), which is the
number of signal sources in the set. This is followed by three floating point numbers: t, x, and
y. Here, t denotes the exact local time when all the signals are received, represented in seconds
after the reference time (time 0), and x and y represent the coordinates of the destination point
on the Cartesian plane. Each of the next N lines contains four floating-point numbers that carry
information about one signal source. The first two numbers represent the known position of the
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signal source on the Cartesian plane at the reference time. The third number represents the
direction of travel of the signal source in the form of a compass heading D (0 ≤ D < 360). The
fourth number is the time that is encoded in the signal-that is, the time when the signal was
transmitted, represented in seconds after the reference time. The magnitudes of all numbers in
the input file are less than 10,000 and no floating-point number has more than 5 digits after the
decimal point.

The last data set is followed by a line containing four zeros.

The unit distance in the coordinate space is one meter. Assume that each signal source is
moving over the Cartesian plane at a speed of 100 meters per second and that the broadcast signal
propagates at a speed of 350 meters per second. Due to inaccuracies in synchronizing clocks,
assume that your distance calculations are accurate only to 0.1 meter. That is, if two points are
computed to be within 0.1 meter of each other, you should treat them as the same point. There
is also the possibility that a signal may have been corrupted in transmission, so the data received
from multiple signals may be inconsistent.

Output

For each trial, print the trial number followed by the compass heading from the receiving location to
the destination, in degrees rounded to the nearest integer. Use the labeling as shown in the example
output. If the signals do not contain enough information to compute the receiving location (that
is, more than one position is consistent with the signals), print ‘Inconclusive’. If the signals
are inconsistent (that is, no position is consistent with the signals), print ‘Inconsistent’. If
the receiving location is within 0.1 meter of the destination, print ‘Arrived’. If the situation is
Inconclusive or Inconsistent, then you do not need to consider the case Arrived.

Figure 2 above corresponds to the first sample input. The locations of the three satellites at
time t = 0 are A (-100,350), B (350,-100) and C (350,800). The signals received by the GPS unit
were transmitted at time t = 1.75, when the satellites were at locations A’, B’, and C’ (however,
in general the signals received by the GPS unit might have been transmitted at different times).
The signals from the three satellites converge at D at time t = 2.53571, which means D is the
location of the receiving GPS unit. From point D, a compass course of 45 degrees leads toward
the destination point of (1050, 1050).

Sample Input

3 2.53571 1050.0 1050.0
-100.0 350.0 90.0 1.75
350.0 -100.0 0.0 1.75
350.0 800.0 180.0 1.75
2 2.0 1050.0 1050.0
-100.0 350.0 90.0 1.0
350.0 -100.0 0.0 1.0
0 0 0 0

Sample Output

Trial 1: 45 degrees
Trial 2: Inconclusive
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H Tree-Lined Streets

The city council of Greenville recently voted to improve the appearance of inner city streets. To
provide more greenery in the scenery, the city council has decided to plant trees along all major
streets and avenues. To get an idea of how expensive this urban improvement project will be, the
city council wants to determine how many trees will be planted. The planting of trees is limited
in two ways:

• Along a street, trees have to be planted at least 50 meters apart. This is to provide adequate
grow ing space, and to keep the cost of the project within reasonable limits.

• Due to safety concerns, no tree should be planted closer than 25 meters along a street to
the nearest int ersection. This is to ensure that traffic participants can easily see each other
approaching an intersection. Traffic safety should not be compromised by reducing visibility.

All streets considered in this project are straight . They have no turns or bends.

The city council needs to know the maximum number of trees that can be planted under these
two restrictions.

Input

The input consists of descriptions of several street maps. The first line of each description contains
an integer n (1 ≤ n ≤ 100), which is the number of streets in the map. Each of the following n
lines describes a street as a line segment in the Cartesian plane. An input line describing a street
contains four integers x1, y1, x2, and y2. This means that this street goes from point (x1, y1) to
point (x2, y2). The coordinates x1, y1, x2, and y2 are given in meters, (0 ≤ x1, y1, x2, y2 ≤ 100000).
Every street has a positive length. Each end point lies on exactly one street.

For each street, the distances between neighboring intersections and/or the end points of the
street are not exact multiples of 25 meters. More precisely, the difference of such a distance to
the nearest multiple of 25 meters will be at least 0.001 meters. At each intersection, exactly two
streets meet.

Input for the last street map description is followed by a line consisting of the number 0.

Output

For each street map described in the input, first print its number in the sequence. Then print the
maximum number of trees that can be planted under the restrictions specified above. Follow the
format in the sample output given below.

Sample Input

3
0 40 200 40
40 0 40 200
0 200 200 0
4
0 30 230 30
0 200 230 200
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30 0 30 230
200 0 200 230
3
0 1 121 1
0 0 121 4
0 4 121 0
0

Sample Output

Map 1
Trees = 13
Map 2
Trees = 20
Map 3
Trees = 7
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I Suspense!

Jan and Tereza live in adjoining buildings and their apartments face one another. For their school
science project, they want to construct a miniature suspension bridge made of rope, string, and
cardboard connecting their two buildings. Two pieces of identical-length rope form the main
suspension cables, which are attached to the bottoms of their windows. The cardboard “roadbed”
of the bridge is held up by numerous strings tied to the main cables. The horizontal bridge roadbed
lies exactly one meter below the lowest point of the ropes. For aesthetic reasons, the roadbed should
be at least two meters below the lower edge of the lower of the two students’ windows. The laws
of physics dictate that each suspension rope forms a parabola.

While Jan and Tereza don’t plan to walk on this model bridge, there is a serious problem:
some of the occupants of the apartment buildings own pet cats, and others own pet birds. Jan and
Tereza want to be sure that their bridge doesn’t provide a way for a cat to reach a bird. Jan and
Tereza have observed that a cat cannot jump as high as 0.5 meters, and will not jump down as far
as 3 meters. So as long as the bridge roadbed lies at least 0.5 meters above the bottom of a cat’s
window, or at least 3 meters below the bottom of a cat’s window, the cat will not jump onto it.
Likewise, a cat that successfully jumps onto the roadbed will not be able to reach a bird’s window
if the roadbed lies at least 0.5 meters below the bottom of the bird’s window, or at least 3 meters
above the bottom of the bird’s window. Cats are concerned only with reaching birds, and they do
not worry about returning home.

The figure below shows Jan’s apartment (“J”) and Tereza’s apartment (“T”) with a rope
joining the bottoms of their windows and the cardboard roadbed one meter below the lowest point
of the rope. The cat on the second floor can reach the bird on the second floor using the bridge.

You must write a program to determine how much rope Jan and Tereza need to construct each
cable for a bridge that won’t endanger any of the birds in their two buildings.

Input for your program will be: the distance between the two buildings, in meters; the floor
numbers for Jan and Tereza (with the lowest, or ground floor in each building numbered 1), the
kinds of pets living in all the floors up through Jan’s floor, and the kinds of pets living in all the
floors up through Tereza’s floor. Your program must determine the length of the longest cable
that can be used to suspend a bridge between the two buildings that does not permit any cat to
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reach a bird by means of the bridge. The roadbed of the bridge must lie at least 1 meter above the
ground and must lie exactly one meter below the lowest point of the suspension cables. It must
also lie at least two meters below the lower of the two windows of Jan and Tereza. All rooms in
the buildings are exactly 3 meters tall; all windows are exactly 1.5 meters tall and the bottom of
each window lies exactly 1 meter above the floor of each room.

Input

The input will describe several cases, each of which has three lines. The first line will contain two
positive integers j and t (2 ≤ j, t ≤ 25) representing Jan’s floor and Tereza’s floor, and a real value
d (1 ≤ d ≤ 25) representing the distance, in meters, between the buildings. The second line will
contain j uppercase letters l1, l2, . . . , lj separated by whitespace. Letter lk is ‘B’ if a bird lives on
floor number k of Jan’s building, ‘C’ if a cat lives on floor number k, and ‘N’ if neither kind of
pet lives on floor number k. The third line similarly contains t uppercase letters representing the
same kind of information for the floor s in Tereza’s building. The last case is followed by a line
containing three zeroes.

Output

For each case, print the case number (1, 2, . . . ) and the largest value c such that two cables, each
of length c, can be used to suspend a bridge from the lower edges of Jan’s and Tereza’s windows
so that the bridge floor lies one meter below the lowest point in the cable, lies at least 1 meter
above the ground, lies at least two meters below Jan and Tereza’s windows, and does not allow a
cat to reach a bird. The lengt h should be rounded to three places following the decimal point. If
no such bridge can be constructed, print ‘impossible’. Print a blank line between the output for
consecutive cases. Your output format should imitate the sample output.

Sample Input

4 3 5.0
N C N C
N B B
4 3 5.0
C B C C
B C B
0 0 0

Sample Output

Case 1: 14.377

Case 2: impossible



270 Competitive Learning Institute

J Air Traffic Control

In order to avoid midair collisions, most commercial flights are monitored by ground-based air traffic
control centers that track their position using radar. For this problem, you will be given information
on a set of airplanes and a set of control centers, and you must compute how monitoring of the
airplanes is distributed among the control centers. The position of each airplane is represented
by a unique (x, y) coordinate pair. For the purpose of this problem, the height (altitude) of the
airplanes can be ignored.

The number of airplanes that can be monitored by a given control center varies from time to
time due to changes in staff and equipment. At any given time, each control center monitors as
many planes as it can, choosing the airplanes to be monitored according to the following priorities:

(1) it will prefer to monitor planes that are closer to the control center rather than ones that are
farther away;

(2) if two airplanes are equally distant from the center and the center can monitor only one of
them, it will choose the one that is farther to the north (positive y-axis);

(3) if two airplanes are equally distant and have the same y-coordinate, the center will give
preference to the airplane that is farther to the east (positive x-axis).

At any given moment, each control center has a circular “span of control” whose radius is the
distance to the farthest airplane being monitored by the control center. All airplanes inside the
span of control are monitored by the control center. Airplanes on the boundary of the span of
control may or may not be monitored by the control center, depending on its capacity and on the
priorities listed above.

You will not be given the positions of the control centers. Instead, for each control center, you
will be given the number of airplanes that it is currently monitoring, and two points that are on
the boundary of its current span of control. With this information, you can compute the position
of the control center and decide which airplanes it is monitoring. If the data is consistent with
more than one possible span of control, you should choose the span that includes the airplane that
is farthest to the north, breaking ties by choosing the airplane that is farthest to the north then
to the east.

The figure below, which shows four airplanes and two control centers, illustrates the problem.
Each control center is represented by a circular span of control and by two points on the boundary
of this span, labeled A and B. P1, P2, P3, and P4 label the four airplanes. In this example,
airplanes P1 and P4 are each being monitored by a single control center, airplane P3 is being
monitored by two control centers, and airplane P2 is not being monitored by either control center.
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Input

The input consists of several trial data sets. The first line of input in each trial data set contains two
integers NP (0 < NP < 100) and NC (0 < NC < 10), which represent the number of airplanes
and the number of control centers, respectively. Each of the next NP lines contains two floating-
point numbers that represent the (x, y) coordinates of one airplane. Each of the next NC lines
describes one control center. Each contains an integer between 0 and NP (inclusive) indicating
the number of airplanes monitored by the control center, followed by two pairs of floating point
numbers that represent the (x, y) coordinates of two points on the boundary of its span of control
(neither of which is the position of an airplane). If two distances differ by less than 0.00001, you
should treat them as the same distance.

The last data set is followed by a line containing two zeros.

Output

For each trial, compute the number of airplanes that are monitored by zero control centers, the
number of airplanes that are monitored by one control center, and so on up to the number of
airplanes that are monitored by NC control centers. Print the trial number followed by a sequence
of NC + 1 integers, where the i-th integer in the sequence represents the number of airplanes
that are monitored by i − 1 control centers. If data for one of the control centers is inconsistent,
print ‘Impossible’ instead of the sequence of integers for that trial. Use the format shown in the
example output, and print a blank line after each trial.

Sample Input

4 2
3.0 0.0
0.0 0.0
1.6 2.8
2.0 1.0
2 1.0 2.0 2.0 0.0
2 2.0 2.0 4.0 2.0
2 1
0.0 0.5
0.0 -0.5
0 -1.0 0.0 1.0 0.0
0 0

Sample Output

Trial 1: 1 2 1

Trial 2: Impossible
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A Eyeball Benders

“Eyeball benders” are a popular kind of puzzle in which the reader must identify a common object
based on a close-up view of a part of that object. For instance, an image that looks like a regular
array of colored cones might be a view of an open box of new crayons. Figure 1 shows an example
where the puzzle is on the left and the solution is on the right.

Figure 1. A sample eyeball-bender puzzle and solution image (a floppy disk)

You must verify solutions to a simplified version of the “eyeball bender” puzzle. You will be
given a number of pairs of images, each one a collection of line segments. All line segments will be
either horizontal or vertical, and they include their endpoints. Figure 2 shows an example.

You must determine whether the images form a valid pair in which the first image is a magnified
view of some portion of the second image. Lines are assumed to have zero thickness in both images.
At least one endpoint in the puzzle image of a valid pair must be an endpoint of a line segment in
the solution image.

Figure 2. The left image is the portion of the right image inside the dotted rectangle, magnified 3
times.

Coordinates describe relative positions and scale within a single image. The coordinates in one
image do not necessarily use the same origin or scale as those in the other image. The magnification
of the puzzle image relative to the solution image is required to be greater than or equal to 1. For
Figure 2, your program should determine that this is a valid puzzle/solution image pair.
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Input

The input consists of multiple cases. The input for each case begins with two positive integers
M and N , (1 ≤ M,N ≤ 50). M is the number of line segments in the puzzle image. N is the
number of line segments in the proposed solution image. The following lines contain M + N pairs
of points. The first M pairs of points are the endpoints of the line segments in the puzzle image;
the remaining N pairs are the endpoints of the line segments in the proposed solution image. The
x and y coordinates for each pair satisfy −100 ≤ x, y ≤ 100 and are given to at most three decimal
places of precision. All input values are separated by white space (blanks or new line characters).

No pair of distinct points in a given image will be closer than .005 to another (relative to the
scale of the image) and all segments will have length at least .005. No two horizontal segments
overlap and no two vertical segments overlap. However, horizontal segments may intersect vertical
segments either internally or at segment endpoints.

The input data for the last case is followed by a line consisting of the integers ‘0 0’.

Output

For each input case, display the case number (1, 2, . . . ) followed by the words ‘valid puzzle’ if
the proposed solution image matches a closed rectangular sub-region of the puzzle image (including
at least one endpoint), magnified by a factor of one or greater, and possibly translated by some
amount. Line segments that are not included in the puzzle image will be at least 0.005 distant
from the rectangle.

If the match condition fails to hold, print ‘impossible’. Follow the format of the sample
output.

Sample Input

3 12
9 8 7.5 8 1.5 8 1.5 3.5
0 5 9 5
4 2 8 2 5 7 2 7 10 6 8 6 8 7 8 4
1 9 8 9
9 3 7 3 4 10 4 5
4 2 4 4 5 8 5 7 3 6 6 6 0 3 3 3 5 1 5 3
4 12
-50 -5 50 -5 0 10 0 -10 50 5 -50 5 -50 0 50 0
4 2 8 2 5 7 2 7 10 6 8 6 8 7 8 4
1 9 8 9
9 3 7 3 4 10 4 5
4 2 4 4 5 8 5 7 3 6 6 6 0 3 3 3 5 1 5 3
0 0

Sample Output

Case 1: valid puzzle

Case 2: impossible
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B Simplified GSM Network

Mobile phones have changed our lifestyle dramatically in the last decade. Mobile phones have a
variety of protocols to connect with one another. One of the most popular networks for mobile
phones is the GSM (Global System for Mobile Communication) network.

In a typical GSM network, a mobile phone connects with the nearest BTS (Base Transceiver
Station). A BSC (Base Station Center) controls several BTSs. Several BSCs are controlled by one
MSC (Mobile Services Switching Center), and this MSC maintains a connection with several other
MSCs, a PSTN (Public Switched Telecom Network) and an ISDN (Integrated Services Digital
Network).

This problem uses a simplified model of the conventional GSM network. Our simplified network
is composed of up to fifty BTS towers. When in use, a mobile phone always connects to its nearest
BTS tower. The area covered by a single BTS tower is called a cell. When an active mobile phone
is in motion, as it crosses cell boundaries it must seamlessly switch from one BTS to another.
Given the description of a map consisting of cities, roads and BTS towers, you must determine the
minimum number of BTS switches required to go from one city to another.

Figure: Cities here are represented by squares and BTS towers by trapezoids. Solid lines are
roads. The dotted lines show 9 different cells. The minimum number of switches required to go

from city 1 to city 6 is (2+1+0)=3. Note that city 7 is isolated and cannot be reached.

Each tower and each city location is to be considered as a single point in a two-dimensional
Cartesian coordinate system. If there is a road between two cities, assume that the road is a
straight line segment connecting these two cities. For example, in the figure, traveling on the road
from city 1 to city 2 will cross two cell boundaries and thus requires two switches. Traveling from
city 2 to city 5 crosses one cell boundary and traveling from city 5 to city 6 requires no switch.
Traveling this route from city 1 to city 6 requires three total switches. Note than any other path
from city 1 to city 6 requires more than three switches. If there is more than one possible way to
get from one city to another, your program must find the optimal route.
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Input

The input file contains several test cases. The first line of each test case contains four integers:
B(1 ≤ B ≤ 50), the number of BTS towers; C(1 ≤ C ≤ 50), the number of cities; R(0 ≤ R ≤ 250),
the number of roads; and Q(1 ≤ Q ≤ 10), the number of queries. Each of the next B lines contains
two floating-point numbers x and y, the Cartesian coordinates of a BTS tower. Each of the next
C lines contains two floating-point numbers xi, yi that indicate the Cartesian coordinates of the
ith city (1 ≤ i ≤ C). Each of the next R lines contains two integers m and n (1 ≤ m, n ≤ C),
which indicate that there is a road between the m-th and the n-th city. Each of the next Q lines
contains two integers s and d (1 ≤ s, d ≤ C), the source and destination cities.

No coordinate will have an absolute value greater than 1000. No two towers will be at the same
location. No two cities will be at the same location, and no city will lie on a cell boundary. No
road will be coincident with a cell boundary, nor contain a point lying on the boundary of three
or more cells. The input will end with a line containing four zeros.

Output

For each input set, you should produce Q+1 lines of output, as shown below. The first line should
contain the number of the test case. Q lines should follow, one for each query, each containing an
integer indicating the minimum number of switches required to go from city s to city d. If it is not
possible to go from city s to city d, print the line ‘Impossible’ instead.

Sample Input

9 7 6 2
5 5
15 5
25 5
5 15
15 15
25 15
5 25
15 25
25 25
8 2
22 3
8 12
18 18
22 12
28 16
28 8
1 2
1 3
2 5
3 4
4 5
5 6
1 6
1 7
0 0 0 0

Sample Output

Case 1:
3
Impossible
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C The Traveling Judges Problem

A group of judges must get together to judge a contest held in a particular city, and they need to
figure out the cheapest way of renting cars in order to get everyone to the contest. They observed
that it might be cheaper if several judges share a rental car during all or part of the trip, thus
reducing the overall cost. Your task is to identify the routes the judges should take in order to
minimize the total cost of their car rentals.

We will make the following assumptions:

• The cost of a rental car is proportional to the distance it is driven. There are no charges for
more than one occupant in the car, fuel, insurance, or leaving the car in a city other than
that in which it was rented.

• All rental cars are billed at the same rate per mile.

• A rental car can accommodate any number of passengers.

• At most one road directly connects any pair of cities. Each road is two-way and has an
integer length greater than zero.

• There is at least one route from every judge’s starting city to the city in which the contest
is held.

• All judges whose routes to the contest take them from or through the same city travel from
that city to the contest together. (A judge might arrive at a city in one car and leave that
city in a different car.)

Input

The input contains several test cases. Each test case includes a route map, the destination city
where the contest is being held, and the cities where the judges are initially located.

Each case appears in the input as a list of integers separated by blanks and/or ends of lines.
The order and interpretation of the integers in each case is as follows:

• NC-the number of cities that appear in the route map; this will be no larger than 20.

• DC-the number of the destination city, assuming the cities are numbered 1 to NC.

• NR-the number of roads in the route map. Each road connects a distinct pair of cities.

• For each of the NR roads, three integers C1, C2, and DIST . C1 and C2 identify two cities
connected by a road, and DIST gives the distance between these cities along that road.

• NJ-the number of judges. This number will be no larger than 10.

• NJ-integers, one for each judge each of these is a city number identifying the initial location
of that judge.

The data for the last case will be followed by a line consisting of the integer ‘-1’.
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Output

For each test case, display the case number (1, 2, . . .) and the shortest total distance traveled by
the rental cars conveying the judges to the contest. Then display the list of routes used by the
judges, each route on a separate line, in the same order as the ordering of starting cities given in
the input. Each route consists of the cities that the corresponding judge must visit, listed in the
order in which they are visited, starting with the judge’s starting city and ending with the contest
city. Any other cities along the route are listed in the order in which they are visited during the
judge’s travels. Separate the numbers in the route with ‘-’, and precede each route by three spaces.

If multiple sets of routes have the same minimum distance, choose a set that requires the fewest
number of cities. If several sets of cities of the same cardinality may be used, choose the set that
comes lexicographically first when ordered by city number (e.g., {2, 3, 6} rather than {2, 10, 5}).
If multiple routes are still available, output any set of routes that meets the requirements.

Follow the format of the sample output.

Sample Input

5
3
5
1 2 1
2 3 2
3 4 3
4 5 1
2 4 2
2
5 1

4
4
3
1 3 1
2 3 2
3 4 2
2
1 2

3 3 3
1 2 2
1 3 3
2 3 1
2 2 1

-1

Sample Output

Case 1: distance = 6
5-4-2-3
1-2-3

Case 2: distance = 5
1-3-4
2-3-4

Case 3: distance = 3
2-3
1-2-3
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D cNteSahruPfefrlefe

Preston Digitation is a magician who specializes in card tricks. One thing Preston cannot get just
right is perfect in-shuffles. A perfect in-shuffle is one where a deck of 52 cards is divided in half
and then the two halves are perfectly interleaved so that the top card of the lower half of the deck
becomes the top card of the shuffled deck. If we number the cards 0 (top) to 51 (bottom), the
resulting deck after a perfect in-shuffle will look like the following:

26 0 27 1 28 2 29 3 30 4 31 5 32 6 . . . 51 25

Preston finds that he makes at most one mistake per shuffle. For example, cards 2 and 28
might end up interchanged, resulting in a shuffled deck that looks like this:

26 0 27 1 2 28 29 3 30 4 31 5 32 6 . . . 51 25

These exchanges of two adjacent cards are the only mistakes Preston makes. After one shuffle,
it is easy for him to see if and where he has made a mistake, but after several shuffles this becomes
increasingly difficult. He would like you to write a program that can determine his mistakes (if
any).

Input

Input will consist of multiple problem instances. The first line will be a single integer indicating
the number of problem instances. Each problem instance will consist of a single line containing
the cards of a deck which has been shuffled between 1 and 10 times. All decks will be of size 52.

Note: The sample input below shows multiple lines for a problem instance. The actual input data
for a problem instance is contained on a single line.

Output

For each problem instance, output the case number (starting at 1), followed by the number of
shuffles that were used for that instance. If there were no mistakes made during the shuffling,
output the line

No error in any shuffle

Otherwise, output a set of lines of the form

Error in shuffle n at location m

where n is a shuffle where an error occurred and m is the location of the error. Shuffles are numbered
starting with 1 and the location value should indicate the first location of the two cards that were
swapped in that shuffle (where the top of the deck is position 0). In the example described above,
the cards in positions 4 and 5 (the cards numbered 2 and 28) are incorrect, so m would be 4 in
this case. List all errors in order of increasing n. If one or more shuffles have no errors, do not
print any line for them. If there are multiple solutions, pick the solution with the fewest number
of errors (all test cases will have a unique solution of minimum size).
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Sample Input

3
26 0 27 1 2 28 29 3 30 4 31 5 32 6 33 7 34
8 35 9 36 10 37 11 38 12 39 13 40 14 41 15
42 16 43 17 44 18 45 19 46 20 47 21 48 22
49 23 50 24 51 25
26 0 27 1 28 2 29 3 30 4 31 5 32 6 33 7 34
8 35 9 36 10 37 11 38 12 39 13 40 14 41 15
42 16 43 17 44 18 45 19 46 20 47 21 48 22
49 23 50 24 51 25
49 26 43 40 37 34 31 28 25 22 19 16 13 10
7 4 1 51 48 45 42 39 36 33 24 27 30 21 18
15 12 9 6 3 0 50 47 44 41 38 35 32 29 46
23 20 17 2 11 8 5 14

Sample Output

Case 1
Number of shuffles = 1
Error in shuffle 1 at location 4

Case 2
Number of shuffles = 1
No error in any shuffle

Case 3
Number of shuffles = 9
Error in shuffle 3 at location 3
Error in shuffle 7 at location 11
Error in shuffle 8 at location 38
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E Lots of Sunlight

The Apartment Construction Management (ACM) has several new high-rise apartment buildings in
suburban Shanghai. With the booming economy, ACM expects a considerable profit on apartment
leases. Because their apartments receive more direct sunlight, the company claims that these are
nicer than others in the area. No other buildings obstruct the sunlight path to apartments in
ACM’s tall buildings.

ACM wants to verify this claim by telling potential residents exactly how much sunlight a given
apartment receives. To offer customers a representative sample of sunlight hours, the company
wants to advertise the sunlight hours for April 6, 2005. On that day in Shanghai, the sun rises at
5:37 am, and sets at 6:17 pm.

As shown above, apartments are in a series of buildings aligned east to west. The last two
digits of the apartment number identify the building, starting with 01 for the east-most building.
The other digits encode the apartment floor, with 1 as the ground floor.

The sun rises in the east and travels at a constant radial speed across the sky, until setting in
the west. The only shadows are created by buildings (i.e. each building can cast a shadow on one
or more other buildings). An apartment is considered to receive sunlight when either its eastern
or western exterior wall is fully covered in sunlight or when the sun is directly overhead.

Input

The input file contains a series of descriptions of apartment complexes. Each description starts
with a line containing a single integer n (1 ≤ n < 100) that is the number of apartment buildings
in the complex. The next line has two integers w, the width (in east-west direction), and h, each
apartment’s height in meters. Next is a list of integers m(1), d(1), m(2), d(2), . . ., d(n− 1), m(n),
where m(i) is the number of apartments in apartment building i, and d(i) is the distance, in meters,
between the apartment building i and apartment building i + 1.

The apartment complex description is followed by an integer list of apartments to query for
sunlight hours and is terminated by a zero. The input file is terminated by a line consisting of the
integer zero.

Output

For each apartment complex description, output its number in the sequence of descriptions. Then
for each query, output the corresponding sunlight hours, using the 24-hour time format. Truncate
all times down to the nearest second. If the query refers to an apartment that does not exist,
indicate that the apartment does not exist. Follow the format shown in the sample output.
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Sample Input

3
6 4
5 6 3 3 4
302 401 601 303 0
4
5 3
4 5 7 8 5 4 3
101 302 503 0
0

Sample Output

Apartment Complex: 1

Apartment 302: 10:04:50 - 13:23:47

Apartment 401: 05:37:00 - 17:13:57

Apartment 601: Does not exist

Apartment 303: 09:21:19 - 18:17:00

Apartment Complex: 2

Apartment 101: 05:37:00 - 12:53:32

Apartment 302: 09:08:55 - 14:52:47

Apartment 503: 09:01:12 - 18:17:00
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F Crossing Streets

Peter Longfoot is a student at the university of Suburbia. Every morning, Peter leaves home
to walk to the university. Many other students are driving their cars or riding their bicycles to
campus, but Peter prefers to walk, avoiding the chaotic traffic of the city as much as possible.

Unfortunately, Peter cannot avoid the traffic entirely, since he has to cross streets in order to
reach the university. Recently, Peter has wondered how to minimize the number of streets he has
to cross. For example, in the following map, streets are drawn as horizontal and vertical lines. To
reach the university starting at his home, Peter has to cross at least two streets. Peter cannot
cross a street pair at an intersection and Peter cannot walk along a street.

Figure: Streets are shown as straight lines and the arrows show possible walking paths for Peter.
The black arrows show one possible path for Peter where he only has to cross two streets. The
gray arrows show a path for Peter where he needs to cross four streets. The path shown by the

dotted arrows is not legal because it crosses two streets at an intersection. The figure above
corresponds to the first sample input.

Peter knows the locations of all streets in the city, but he has trouble figuring out the best way
to the university. So you must write a program to help him.

Input

The input consists of several descriptions of cities. Each description starts with a line containing a
single integer n (1 ≤ n ≤ 500), the number of streets in the city. This is followed by n lines, each
containing four integers x1, y1, x2, y2, indicating that there is a street from coordinates (x1, y1)
to (x2, y2). All streets are parallel to either the x- or y-axis, since the city is built on a square
grid. Streets can overlap, in which case they are counted as only one street. The city description
is concluded by a line containing four integers xh, yh, xu, yu, the coordinates (xh, yh) of Peter’s
home, and the coordinates (xu, yu) of the university, respectively. Neither Peter’s home nor the
university will be located on a street. You should consider the streets as straight-line segments, so
the streets have no width. Although the endpoints of the streets are integers, Peter doesn’t need
to walk along the grids. He can walk in any direction he likes. The magnitudes of all integers in
the input file are less than 2× 109.
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The input is terminated by a line consisting of the integer zero.

Output

For each city description, first output its number in the sequence of descriptions. Then output the
minimum number of streets that Peter has to cross to go from his home to the university.

Follow the format of the sample output.

Sample Input

8
6 0 24 0
24 0 24 4
24 4 6 4
6 4 6 0
12 1 26 1
26 1 26 6
26 6 12 6
12 6 12 1
0 1 17 3
1
10 10 20 10
1 1 30 30
0

Sample Output

City 1
Peter has to cross 2 streets
City 2
Peter has to cross 0 streets
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G Tiling the Plane

A polygon is said to “tile the plane” if a collection of identical copies of the polygon can be
assembled to fill an unbounded two-dimensional plane without any gaps or overlap. For example,
Figure 1 shows an L-shaped polygon, and Figure 2 shows how a portion of the plane can be tiled
with copies of the polygon. You must write a program to determine whether a given polygon can
tile the plane.

Each test case consists of a closed polygon in which every vertex is at a right angle and the
length of every side is an integer multiple of a unit length. You may make as many copies of the
polygon as you like, and you may move them over the plane, but you may not rotate or reflect any
polygon.

You might find the following information useful: It is known that there are only two fundamen-
tally different tilings of the plane, the regular tiling by squares (chessboard tiling) and the tiling
by regular hexagons (honeycomb tiling). A polygon can therefore tile the plane if and only if it
satisfies one of the following two conditions:

1. There are points A, B, C, D in order on the polygon boundary (the points are not necessarily
vertices of the polygon) such that the polygon boundaries from A to B and from D to C are
congruent and the boundaries from B to C and from A to D are congruent. This leads to a
tiling equivalent to the square tiling.

2. There are points A, B, C, D, E, F in order on the polygon boundary, such that the boundary
pairs AB and ED, BC and FE, CD and AF are congruent. This leads to a tiling equivalent
to the hexagon tiling.

Input

The input contains the descriptions of several polygons, each description consisting of one input
line. Each description begins with an integer n (4 ≤ n ≤ 50) that represents the number of sides
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of the polygon. This number is followed by descriptions of n line segments which (taken in order)
form a counterclockwise traversal of the perimeter of the polygon. Each line segment description
consists of a letter followed by an integer. The letter is ‘N’, ‘E’, ‘S’, or ‘W’, representing the direction
of the line segment as North, East, South, or West, respectively. The integer represents the length
of the line segment as a multiple of the unit length. The described polygon will not touch or
intersect itself.

The input is terminated by a line consisting of the integer zero.

Output

For each polygon in the input, print one output line. Print the number of the polygon in the
input, followed by the word ‘Possible’ if it is possible to tile the plane with the test polygon, or
‘Impossible’ otherwise. Follow the format of the sample output.

Sample Input

6 N 3 W 1 S 4 E 4 N 1 W 3
8 E 5 N 1 W 3 N 3 E 2 N 1 W 4 S 5
0

Sample Output

Polygon 1: Possible
Polygon 2: Impossible
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H The Great Wall Game

Hua and Shen have invented a simple solitaire board game that they call “The Great Wall Game.”
The game is played with n stones on an n × n grid. The stones are placed at random in the
squares of the grid, at most one stone per square. In a single move, any single stone can move
into an unoccupied location one unit horizontally or vertically in the grid. The goal of the puzzle
is to create a “wall,” i.e., to line up all n stones in a straight line either horizontally, vertically, or
diagonally using the fewest number of moves. An example for the case n = 5 is shown in Figure
1(a). In Figure 1(b) it is shown that with six moves we can line all the stones up diagonally. No
smaller number of moves suffices to create a line of five stones. (However, there are other solutions
using six moves, e.g., we can line up all five stones in the third column using six moves.)

Figure 1. Starting board (a) and a 6-move solution (b) for n = 5

There is just one problem – Hua and Shen have no idea what the minimum number of moves
is for any given starting board. They would like you to write a program that can take any starting
configuration and determine the fewest number of moves needed to create a wall.

Input

The input consists of multiple cases. Each case begins with a line containing an integer n, 1 ≤ n ≤
15. The next line contains the row and column numbers of the first stone, followed by the row and
column numbers of the second stone, and so on. Rows and columns are numbered as in the above
diagram. The input data for the last case will be followed by a line containing a single zero.

Output

For each input case, display the case number (1, 2, . . .) followed by the minimum number of moves
needed to line up the n stones into a straight-line wall. Follow the format shown in the sample
output.

Sample Input

5
1 2 2 4 3 4 5 1 5 3
2
1 1 1 2
3
3 1 1 2 2 2
0

Sample Output

Board 1: 6 moves required.

Board 2: 0 moves required.

Board 3: 1 moves required.
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I Workshops

The first Californian Conference on Holism took place back in 1979 in San Francisco. The term
“Californian” was a slight exaggeration, as all 23 participants actually lived in San Francisco.
Several years later, in 1987, the conference was truly Californian, with 337 participants from all over
the state. Since then, the number of participants has been growing like the size of memory chips. In
1993 the conference was renamed the American Conference on Holism (2,549 participants), and a
second renaming (World Conference on Holism) followed in 1997, when the number of participants
from all over the world had grown to 9,973. The conference obtained its present name (Galactic
Conference on Holism) in 2003 after some discussion as to whether or not the word Galactic was
intended to exclude extragalactic life forms. Still the next year, all registered participants were
terrestrial-though a few participants positively reported to have sensed extraterrestrial presence.

The number of workshops grew with the number of participants. For the upcoming conference,
the organization has to face some down to earth but very nasty scheduling problems. For the 2005
conference the board has decided to have no more than 1,000 workshops concurrently. Nevertheless
they had to rent every hall or classroom they could lay their hands on. Some of these rooms are
available for a restricted time only.

In the morning of the first day the opening meeting takes place in a football stadium, and in
the afternoon the participants attend workshops. Before lunch each participant has to indicate
which workshop he or she wants to join that afternoon. The organizing staff then has a list of
all workshops, including the duration and the number of participants for each workshop. They
also have a list of all available rooms, with the capacity of each room, and the time this specific
room must be cleared. With this information the staff must schedule each workshop in a room of
sufficient capacity and sufficient availability in time. As this problem is not necessarily solvable,
some overflow capacity is supplied by tents in the football stadium. These tents have plenty of
capacity, but they are unpleasantly warm and noisy. So the organizing staff wants the schedule
to minimize the number of tent workshops-that is, workshops that are not assigned to a room.
If there are multiple solutions that minimize the number of tent workshops, the staff wants to
minimize the number of participants attending tent workshops.

We ask you to supply such a schedule (preferably before lunch is over).

Input

The input file contains several trials. Each trial consists of two parts: the list of workshops, and
the list of rented rooms.

The list of workshops starts with a line containing the number of workshops w (0 < w ≤ 1000).
Each of the next w lines contains two numbers, describing a workshop. The first number is the
number p of participants (0 < p ≤ 100), and the second number is the duration d of the workshop
in minutes (0 < d ≤ 300). For your convenience, other details of the workshops are omitted. All
workshops start at 14:00.

The list of rented rooms starts with a line containing the number of rented rooms r (0 < r ≤
1000). Each of the following r lines contains the description of a rented room. A line describing
a rented room contains the number s of seats in the room (0 < s ≤ 100), followed by the time
when the room must be cleared, in the format hh : mm where hh represents the hour and mm
represents the minute, using a 24-hour clock. All the rooms are available starting at 14:00. All
times when rooms must be cleared are between 14:01 and 23:59, inclusive.

The input is terminated by a line consisting of the integer zero.
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Output

For each trial in the input file the output must contain a line consisting of the trial number, the
number of tent workshops, and the number of participants attending tent workshops. Follow the
format shown in the sample output.

Sample Input

1
20 60
1
30 16:00
2
20 60
50 30
1
30 14:50
0

Sample Output

Trial 1: 0 0

Trial 2: 2 70
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J Zones

Telephone poles are part of an outdated technology. Cell phones nowadays allow us to call whoever
we want, wherever we want, independent of any wire. There is one problem - without a service
tower nearby a cell phone is useless.

In the absence of hills and mountains, a service tower will provide coverage for a circular area.
Instead of planning where to place the wires, a wireless telephone company has to plan where to
build its service towers. Building the towers too far apart causes holes in the coverage and increases
complaints. Building the towers too close to each other results in large areas covered by more than
one service tower, which is redundant and inefficient.

International Cell Phone Company is developing a network strategy to determine the optimal
placement of service towers. Since most customers have replaced their old wired home phones
by cell phones, the strategy for planning service towers is therefore to cover as many homes of
customers as possible.

The figure below shows the service areas for the five towers ICPC’s strategic department planned
to build this year. Tower 5 will serve 24 customers, 6 of which are also served by tower 4. Towers
1, 2 and 3 have a common service area containing 3 customers.

Shortly after the plans for these five towers had been published, higher management issued a
stop on all tower building. Protesting customers forced them to weaken this decree, and allow
the building of three towers out of the five planned. These three towers should serve as many
customers as possible, of course. Finding the best possible choice for the towers to build is not
trivial (the best choice in this case is towers 2, 4 and 5, serving 68 customers).

You must write a program to help ICPC choose which towers to build in cases like these.
If several choices of towers serve the same number of customers, choices including tower 1 are
preferable. If this rule still leaves room for more than one solution, solutions including tower 2 are
preferable, and so on.
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Input

The input file contains several test cases. The first line of each test case contains two positive
integers: the number n (n ≤ 20) of towers planned, and the number of towers to be actually built.
The next line contains n numbers, each giving the number of customers served by a planned tower.
(The first number refers to the first tower, and so on.) No tower serves more than a million people.
The next line contains the number m (m ≤ 10) of common service areas. Each of the next m lines
contains the description of a common service area. Such a line starts with the number t (t > 1) of
towers for which this is a common service area, followed by the t numbers of the towers. The last
number on the line is the number of customers in the common service area. The last line of the
input file consists of the two integers ‘0 0’.

Output

For each test case, display the number of customers served and the best choice for the location of
the towers. Follow the format of the sample output.

Sample Input

5 3
15 20 25 30 24
5
2 1 2 7
3 1 2 3 3
2 2 3 2
2 3 4 5
2 4 5 6
5 3
25 25 25 25 25
4
2 1 2 5
2 2 3 5
2 3 4 5
2 4 5 5
5 3
25 25 25 25 25
0
0 0

Sample Output

Case Number 1
Number of Customers: 68
Locations recommended: 2 4 5

Case Number 2
Number of Customers: 75
Locations recommended: 1 3 5

Case Number 3
Number of Customers: 75
Locations recommended: 1 2 3
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A Low Cost Air Travel

Air fares are crazy! The cost of a ticket is determined by numerous factors, and is usually not
directly related to the distance traveled. Many travelers try to be creative, sometimes using only
parts of tickets with stops in various cities to achieve lower-cost travel. However, the airlines are
aware of this behavior, and usually require that the travel covered by a ticket be completed in
order and without intervening travel. For example, if you have a ticket for travel from City-1 to
City-2 then to City-3, you are not allowed to use only the portion of the ticket for travel from
City-2 to City-3. You must always start at the first city on the ticket. In addition, you are not
allowed to travel from City-1 to City-2, fly elsewhere and return, and then continue your journey
from City-2 to City-3.

Let’s consider an example. Suppose you are allowed to purchase three types of tickets:

Ticket #1: City-1 to City-3 to City-4 $225.00
Ticket #2: City-1 to City-2 $200.00
Ticket #3: City-2 to City-3 $50.00

Suppose you wanted to travel from City-1 to City-3. There are two ways to get there using
only the available ticket choices:

Purchase Ticket #1 for $225.00 and use only the first leg of the ticket.
Purchase Ticket #2 for $200.00 and Ticket #3 for $50.00.

The first choice is the cheapest.

Given a set of airline ticket offers, and one or more trip itineraries, you must determine how to
purchase tickets in order to minimize the cost of travel. Each trip will be possible.

Input

Input consists of multiple test cases, each describing a set of ticket offers and a set of trip itineraries.

Each case begins with a line containing NT , the number of ticket offers, followed by NT offer
descriptions, one to a line. Each description consists of a positive integer specifying the price of
the ticket, the number of cities in the ticket’s route, and then that many cities. Each city in a
case has an arbitrary, but unique, integer identification number. Note that several tickets may be
purchased from the same offer.

The next line contains NI, the number of trips that are to have their cost minimized. NI lines
follow, giving the itineraries for each trip. Each line consists of the number of cities in the itinerary
(including the starting city), followed by that many city identification numbers, given in the order
they are to be visited.

There will be no more than 20 ticket offers or 20 itineraries in a test case. Each offer and
itinerary lists from 2 to 10 cities. No ticket price exceeds $10,000. Adjacent cities in a route or
itinerary will be distinct. Tickets and trips are numbered sequentially in each set, starting with 1.

The last case is followed by a line containing a zero.

Output

For each trip, output two lines containing the case number, the trip number, the minimum cost of
the trip, and the numbers of the tickets used for the trip, in the order they will be used. Follow
the output format shown below. The output will always be unique.
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Sample Input

3
225 3 1 3 4
200 2 1 2
50 2 2 3
1
2 1 3
3
100 2 2 4
100 3 1 4 3
200 3 1 2 3
2
3 1 4 3
3 1 2 4
0

Sample Output

Case 1, Trip 1: Cost = 225
Tickets used: 1

Case 2, Trip 1: Cost = 100
Tickets used: 2

Case 2, Trip 2: Cost = 300
Tickets used: 3 1
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B Remember the A La Mode!

Hugh Samston owns the “You Want It, Hugh Got It” catering service, which has been asked to
supply desserts for the participants in this year’s ICPC World Finals. Hugh will provide pie slices
topped with ice cream at the various social functions scheduled throughout the week. As with any
other dedicated entrepreneur, Hugh would like to offer the best service possible, so he has ordered
a wide variety of pies and ice creams to satisfy even the most eclectic tastes.

Hugh plans to serve each pie slice with a single scoop of ice cream, leaving the exact combination
up to the whim of the customer. But of course, as with any other dedicated entrepreneur, Hugh
would also like to make as much profit as possible from this enterprise. He knows ahead of time
how much profit he can make on each combination of pie slice and ice cream scoop, as well as which
combinations of pie and ice cream should never be put together (example: Peppermint Banana
Chunk ice cream on Key Lime pie).

Given this information, along with the number of slices and scoops he has of each variety of
pie and ice cream, Hugh figures he can determine both the minimum and maximum profits he
can expect. Since he hopes to be the caterer at subsequent World Finals, he would like a general
program to solve this and future problems.

Input

Input will consist of multiple problem instances. Each problem instance will start with a line
containing two integers P (P ≤ 50) and I (I ≤ 50), indicating the number of types of pie and ice
cream, respectively. The next line will contain P integers indicating the number of slices available
for each of the pie types. The line after that will contain I integers indicating the number of scoops
available for each of the ice cream types. The total number of pie slices will always equal the total
number of ice cream scoops available, and it is assumed that all pie slices and ice cream scoops
will be used.

Each problem instance will end with P lines each containing I floating point numbers indicating
the profit for each pie/ice cream combination: the first value indicates the profit if a slice of pie
type 0 is topped with a scoop of ice cream type 0; the next value indicates the profit if a slice of
pie type 0 is topped with a scoop of ice cream type 1, and so on. A profit value of ‘-1’ indicates
that no combinations of that pie type and ice cream type should ever be sold. All other integers
(number of slices for each type of pie and number of scoops for each type of ice cream) will be less
than or equal to 100 and the profit on each one of the pie/ice cream combinations (other than ‘-1’)
will be larger than 0 and less than or equal to 10, with at most two digits after the decimal point.

The last problem instance is followed by a line containing two zeroes.

Output

For each problem instance, output the problem number (starting at 1) followed by the minimum
and maximum profits, using the format shown in the sample output. Display all numbers with
two fractional digits. All problem instances are guaranteed to have at least one solution using all
of the pie slices and ice cream scoops.
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Sample Input

2 3
40 50
27 30 33
1.11 1.27 0.70
-1 2 0.34
4 4
10 10 10 10
10 10 10 10
1.01 -1 -1 -1
-1 1.01 -1 -1
-1 -1 1.01 -1
-1 -1 -1 1.01
0 0

Sample Output

Problem 1: 91.70 to 105.87
Problem 2: 40.40 to 40.40
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C Ars Longa

You have been struck with inspiration, and are designing a beautiful new art sculpture for the
foyer of your local museum. For highly important artistic reasons, you are designing it using very
specific materials. However, you are not sure if physics is on your side. Will your sculpture actually
stand up?

The sculpture will be composed of various ball joints weighing 1 kilogram each, and various
rods (of negligible weight) connecting the joints. Rods cannot be stretched or compressed, and
they can never detach from a joint. However, they are free to rotate around the joints in any
direction. The joints that lie on the ground are glued in place; all others are free to move. For
simplicity, you may ignore the effects of intersections of rods; each rod exerts force only on the 2
joints connected to it. Also, any joint that is in the air will have at least one rod coming out that
is not parallel to the ground. This prevents the degenerate case where a ball is supported only
horizontally by a rigid structure. In real life, it would sag just a little.

Write a program to determine whether your structure is static (that is, will not immediately
move from the effects of gravity). Note that each rod can transmit an arbitrarily large tensional
force along its length, and that “being static” means that the tensional forces at each joint balance
the weight of the joint.

If the structure is static, you must also determine whether it is stable (that is, will not move if
perturbed slightly by pulling its joints).

Input

The input contains several sculpture descriptions. Every description begins with a line containing
integers J and R, the number of joints and rods in the structure, respectively. Joints are numbered
from 1 to J . The description continues with J lines, one per joint, each containing 3 floating point
numbers giving the x, y, z coordinates of that joint. Following are R lines, one per rod, with 2
distinct integers indicating the joints connected by that rod.

Each rod is exactly the right length to connect its joints. The z coordinates will always be
non-negative; a z coordinate of 0 indicates that the joint is on the ground and fixed in place.
There are at most 100 joints and 100 rods.

The last description is followed by a line containing two zeroes.

Output

For each sculpture description, output ‘NON-STATIC’, ‘UNSTABLE’, or ‘STABLE’, as shown in the
sample output.
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Sample Input

4 3
0 0 0
-1.0 -0.5 1.0
1.0 -0.5 1.0
0 1.0 1.0
1 2
1 3
1 4
4 6
0 0 0
-1.0 -0.5 1.0
1.0 -0.5 1.0
0 1.0 1.0
1 2
1 3
1 4
2 3
2 4
3 4
7 9
0 0 0
-1.0 -0.5 1.0
1.0 -0.5 1.0
0 1.0 1.0
-1.0 -0.5 0
1.0 0.5 0
0 1.0 0
1 2
1 3
1 4
2 3
2 4
3 4
2 5
3 6
4 7
0 0

Sample Output

Sculpture 1: NON-STATIC
Sculpture 2: UNSTABLE
Sculpture 3: STABLE
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D Bipartite Numbers

The executive officers of the company where you work want to send each other encrypted messages.
Rather than use off-the-shelf encryption software such as PGP, they have tasked the IT staff with
handling the encryption problem. The IT staff decided on a solution that requires “public” and
“private” integer keys. The idea is that everyone can see your public key, but only you know your
private key.

Your best friend in the company is a wonderful person but a not-so-wonderful programmer. He
has created a publicprivate key scheme as follows. A public key can be any positive integer. The
corresponding private key is the smallest bipartite number that is greater than and a multiple of
the public key.

A bipartite number is any positive integer that contains exactly 2 distinct decimal digits s and
t such that s is not 0 and all occurrences of s precede all occurrences of t. For example 44444411
is bipartite (s is 4 and t is 1), So are 41, 10000000, and 5555556. However, neither 4444114 nor
44444 are bipartite.

Notice that the large bipartite number 88888888888800000 can be nicely described as 12 8’s
followed by 5 0’s. You can express any bipartite number using four numbers: m s n t. The numbers
s and t are the leading and trailing digits as described above, m is the number of times the digit
s appears in the bipartite number, and n is the number of times the digit t appears.

The trouble with your friend’s scheme is that it is not too difficult to compute a private key
if you know the public key. You need to convince your friend that his public-private key scheme
is inadequate before he loses his job over his bad decision! You must write a program that takes
public keys as input and displays the corresponding private keys.

Input

The input consists of several test cases. Each test case is on a separate line, and it consists of a
single public key in the range 1 . . . 99999.

The last case is followed by a line containing the integer zero.

Output

For each test case, display a line consisting of the public key, a colon, then 4 integers m s n t where
m, n, s, and t are as described above.

Sample Input

125
17502
2005
0

Sample Output

125: 1 5 2 0
17502: 4 7 4 8
2005: 3 2 3 5
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E Bit Compressor

The aim of data compression is to reduce redundancy in stored or communicated data. This
increases effective data density and speeds up data transfer rates. One possible method to compress
any binary message is the following:

Replace any maximal sequence of n 1’s with the binary version of n whenever it shortens
the length of the message.

For example, the compressed form of the data 11111111001001111111111111110011 be-
comes 10000010011110011. The original data is 32 bits long while the compressed data is only
17 bits long.

The drawback of this method is that sometimes the decompression process yields more than
one result for the original message, making it impossible to obtain the original message. Write
a program that determines if the original message can be obtained from the compressed data
when the length of the original message (L), the number of 1’s in the original message (N) and
the compressed data are given. The original message will be no longer than 16 Kbytes and the
compressed data will be no longer than 40 bits.

Input

The input file contains several test cases. Each test case has two lines. The first line contains L
and N and the second line contains the compressed data.

The last case is followed by a line containing two zeroes.

Output

For each test case, output a line containing the case number (starting with 1) and a message ‘YES’,
‘NO’ or ‘NOT UNIQUE’. ‘YES’ means that the original message can be obtained. ‘NO’ means that the
compressed data has been corrupted and the original message cannot be obtained. ‘NOT UNIQUE’
means that more than one message could have been the original message. Follow the format shown
in the sample output.

Sample Input

32 26
10000010011110011
9 7
1010101
14 14
111111
00

Sample Output

Case #1: YES
Case #2: NOT UNIQUE
Case #3: NO
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F Building a Clock

In Old Town Square in the city of Prague, there is a beautiful Astronomical Clock, constructed
in the year 1410. For centuries, the clockmaker’s art consisted of using gears to connect a shaft,
turning at a known rate, to other shafts until, by the proper combination of gears, two shafts could
be made to turn at the correct rates to represent minutes and hours.

You must write a program that, given an input shaft speed and a collection of gears, computes
how the gears can be connected to create a clock with an hour hand and a minute hand. You
may use as many shafts as you like, but each shaft may have a maximum of three gears. All the
gears on a shaft turn at the same rate. If a gear having T1 teeth turning at a rate R1 is engaged
with another gear having T2 teeth, the turning rate of the second gear is −R1(T1/T2). Your
solution must include two shafts, a minute shaft that turns clockwise at the rate of one revolution
per hour, and an hour shaft that turns clockwise at the rate of one revolution per twelve hours.
Your solution is not required to use all the available gears.

Input

The input consists of several trials, each described by one line of input. Each input line begins
with an integer N (3 ≤ N ≤ 6), the number of gears available for building a clock. N is followed
by another integer R (−3600 ≤ R ≤ 3600, R 6= 0), the turning rate of the input shaft, which is
the number of revolutions made by the shaft in 24 hours. (A positive number represents clockwise
rotation, and a negative number represents counter-clockwise rotation.) R is followed by N gear
descriptions. Each gear description is a pair: a one-character name that identifies the gear, followed
by an integer T (6 ≤ T ≤ 120), that is the number of teeth on the gear. The names and numbers
on each input line are separated by spaces, as shown in the sample input.

The last trial is followed by a line containing a single zero.

Output

For each trial, print a line containing the trial number, as shown in the sample output. If it is
possible to construct a clock using the given set of gears, the line containing the trial number
must be followed by two more output lines, one for the minute hand and one for the hour hand.
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Otherwise, the line containing the trial number must end with the words ‘IS IMPOSSIBLE’ as shown
in the sample output.

The line for the minute hand starts with ‘Minutes:’ followed by a plan that shows how the input
shaft is connected by a sequence of gears to the minute shaft. The plan consists of a sequence
of shafts, separated by hyphens. Each shaft is represented by one or two characters. The first
character is the name of the driven gear—the gear on the shaft that is engaged with a gear on
the previous shaft. For the input shaft, use an asterisk (*) to represent the absence of a driven
gear. The second character describing a shaft is the name of the driving gear—the gear on the
shaft that is engaged with a gear on the next shaft. The driven gear and the driving gear can be
the same gear, in which case the shaft is described by a single character which is the name of this
gear. The last shaft in the plan is the minute shaft, described by a single letter which is the name
of its driven gear.

The line for the hour hand starts with ‘Hours:’ followed by a plan for connecting the input
shaft to the hour shaft. Use the same format as the minute plan.

Each gear may occur only once in the clock. The minute plan and the hour plan may have an
initial part in common, however. A gear in a common initial part will occur both in the minute
plan and the hour plan. For the same reason, a given shaft can be used in both the hour plan and
the minute plan. If a shaft is used in both plans, it may or may not have the same description
in both plans. For example, a shaft containing a single gear named A will be represented as A
in both plans. On the other hand, a shaft containing three gears named A, B, and C might be
represented as AB in the minute plan (if B is the driving gear in that plan) and as AC in the hour
plan (if C is the driving gear in that plan). The following lines represent valid output lines:

Hours: *A-BC-D An input shaft having one gear, engaged with an interme-
diate shaft having two gears, engaged with an hour shaft
having one gear.

Minutes: *A-B-C An input shaft having one gear, engaged with an interme-
diate shaft having one gear, engaged with a minute shaft
having one gear.

Minutes: * A plan in which no gears are needed because the input
shaft is turning at the correct rate for the minute shaft.

If there are multiple ways to build a clock using the given gears, print the solution that uses the
minimum number of shafts. In case of a tie for the minimum number of shafts, print the solution
that uses the minimum number of gears. In case of a tie for both the minimum numbers of shafts
and gears, print the solution whose string description is alphabetically first. The string description
of a solution is its minute plan, followed by its hour plan, concatenated together with asterisks and
hyphens removed. For example, a solution in which the minute plan is ‘*A-B’ and the hour plan is
‘*A-BC-D-E’ has the string description ‘ABABCDE’.

Print one blank line between trials.

Sample Input

6 40 P 7 Q 84 R 50 A 40 B 30 C 14
6 40 P 7 Q 84 R 45 A 40 B 30 C 14
0

Sample Output

Trial 1
Minutes: *B-A-R
Hours: *B-A-RP-C-Q

Trial 2 IS IMPOSSIBLE
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G Pilgrimage

Jack is making a long distance walk with some friends along the old pilgrim road from Vézelay
to Santiago de Compostela. Jack administers money for the group. His administration is quite
simple. Whenever an amount (e 60, say) has to be paid for the common good he will pay it, and
write in his booklet: PAY 60.

When needed, Jack will ask every member of the group, including himself, to pay an amount
(e 50, say) to the collective purse, and write in his booklet: COLLECT 50. If the group size is 7, he
collects e 350 in total.

Unfortunately some of the group members cannot participate in the full walk. So sometimes
the group will grow, sometimes it will shrink. How does Jack handle these comings and goings of
group members in terms of collective money? Suppose, for example, the group size is 7, and that
Jack has e 140 in cash, which is e 20 for every group member. If two group members leave, each
will receive e 20, and Jack will write in his booklet: OUT 2. If under the same circumstances three
new group members arrive, they will each have to pay e 20, and Jack will write: IN 3.

In these cases the amount in cash could easily be divided, without fractions. As a strange
coincidence, this happened during the whole trip. Jack never had to make calculations with
fractional numbers of euros.

Near the end of the trip, Jack was joined by all his fellow travelers. Nobody was willing to miss
the glorious finale of the trip. It was then that Jack tried to remember what the group size had
been during each part of the trip. He could not remember.

Given a page of Jack’s booklet, could you figure out the size of the group at the beginning of
that page?

Input

The input file contains several test cases. Each test case is a sequence of lines in Jack’s booklet.
The first line of each test case will give the number N (0 < N ≤ 50) of lines to follow. The next
N lines have the format: < keyword > < num >, where

< keyword > = PAY | COLLECT | IN | OUT

and < num > is a positive integer, with the following restrictions:

IN k k ≤ 20
OUT k k ≤ 20
COLLECT k k ≤ 200
PAY k k ≤ 2000

The last case is followed by a line containing a single zero.

Output

For each test case, print a single line describing the size of the group at the beginning of the part
of the trip described in the test case. This line contains:

• The word ‘IMPOSSIBLE’, if the data are inconsistent.

• A single number giving the size of the group just prior to the sequence of lines in Jack’s
booklet, if this size is uniquely determined by the data.
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• Several numbers, in increasing order, separated by spaces, giving the possible sizes of the
group, in case the number of solutions is finite, but the solution is not unique.

• A statement in the format: ‘SIZE >= N ’, giving a lower bound for the size of the group,
in case the number of solutions is infinite. Observe that the inequality SIZE >= 1 always
applies, since at least Jack himself did the whole trip.

Sample Input

5
IN 1
PAY 7
IN 1
PAY 7
IN 1
7
IN 1
COLLECT 20
PAY 30
PAY 12
IN 2
PAY 30
OUT 3
3
IN 1
PAY 8
OUT 3
1
OUT 5
0

Sample Output

IMPOSSIBLE
2
3 7
SIZE >= 6
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H Pockets

Origami, or the art of paper folding, often makes use of “pockets” of paper, particularly in com-
plicated models made from multiple pieces of paper where a tab on one piece of paper needs to fit
into a pocket in another piece of paper. In this problem you must count pockets in a flat folded
square of paper. A pocket is defined as any opening (lying between two surfaces of paper) that is
accessible from the boundary of the folded piece of paper. Note that one accessible opening can
account for several pockets since each open side contributes one pocket. Figure 1 shows an exam-
ple. Observe that the “middle” opening (between the second and third layers of paper) contributes
3 to the total pocket count.

Figure 1: Pockets

Assume the paper is initially lying on a flat surface and is never completely lifted from the
surface. All folds will be horizontal or vertical. Fold lines will fall only along equally-spaced crease
lines, N in each direction. On the original unfolded square, creases and edges are numbered from
top to bottom and from left to right as shown in Figure 2. Each fold reduces the boundary of
the folded piece of paper to a smaller rectangle; the final fold results in a square one unit in each
direction. Folds are described using a crease line and a direction. For instance, ‘2 U’ means to
fold the bottom edge up using horizontal crease 2; ‘1 L’ means to fold the right edge to the left
using crease 1. (See Figure 2.) After several folds, creases may be aligned (for instance, creases 1
and 3 in Figure 2). Either number may be used to specify a fold along that line (so, in Figure 2,
‘1 D’ and ‘3 D’ are equivalent instructions after the first fold). Pockets are to be counted for the
boundary of the final one-unit square. Once a crease is made it cannot be undone. All creases go
through every layer of paper from top to bottom; disregard paper thickness.
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Input

Input is a sequence of test cases. Each test case begins with a line containing two integers, N and
K. N is the number of horizontal crease lines (the same as the number of vertical crease lines) of
the square. Creases are numbered 1, 2, . . . , N from top to bottom and from left to right. K is the
number of folds to be made. N and K are each less than or equal to 64.

Following N and K are K fold descriptions. Each fold description consists of an integer crease
number C and a direction, either U, D, L, or R (for up, down, left or right) separated by whitespace.
Whitespace also precedes and follows each fold description.

The final result for each test case will be a square one unit in size.

The final test case is followed by a line containing two zeroes.

Output

For each input case, display the case number followed by the number of pockets in the final one-unit
square. Use the format shown in the sample output.

Sample Input

1 2
1 R 1 U
3 5
2 U 1 L
3 D

3 R 2 L
0 0

Sample Output

Case 1: 7 pockets
Case 2: 17 pockets
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I Degrees of Separation

In our increasingly interconnected world, it has been speculated that everyone on Earth is related
to everyone else by no more than six degrees of separation. In this problem, you must write a
program to find the maximum degree of separation for a network of people.

For any two people, the degree of separation is the minimum number of relationships that must
be traversed to connect the two people. For a network, the maximum degree of separation is the
largest degree of separation between any two people in the network. If there is a pair of people in
the network who are not connected by a chain of relationships, the network is disconnected.

As shown below, a network can be described as a set of symmetric relationships each of which
connects two people. A line represents a relationship between two people. Network A illustrates a
network with 2 as the maximum degree of separation. Network B is disconnected.

Network A: Max. degree of separation = 2 Network B: Disconnected

Input

The input consists of data sets that describe networks of people. For each data set, the first line
has two integers: P (2 ≤ P ≤ 50), the number of people in the network, and R (R ≥ 1), the
number of network relationships. Following that first line are R relationships. Each relationship
consists of two strings that are names of people in the network who are related. Names are unique
and contain no blank spaces. Because a person may be related to more than one other person, a
name may appear multiple times in a data set. The final test case is followed by a line containing
two zeroes.

Output

For each network, display the network number followed by the maximum degree of separation. If
the network is disconnected, display ‘DISCONNECTED’. Display a blank line after the output for each
network. Use the format illustrated in the sample output.

Sample Input

4 4
Ashok Kiyoshi Ursala Chun Ursala Kiyoshi
Kiyoshi Chun
4 2
Ashok Chun Ursala Kiyoshi
6 5
Bubba Cooter Ashok Kiyoshi Ursala Chun
Ursala Kiyoshi Kiyoshi Chun
0 0

Sample Output

Network 1: 2

Network 2: DISCONNECTED

Network 3: DISCONNECTED
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J Routing

As more and more transactions between companies and people are being carried out electronically
over the Internet, secure communications have become an important concern. The Internet Cryp-
tographic Protocol Company (ICPC) specializes in secure business-to-business transactions carried
out over a network. The system developed by ICPC is peculiar in the way it is deployed in the
network.

A network like the Internet can be modeled as a directed graph: nodes represent machines
or routers, and edges correspond to direct connections, where data can be transmitted along the
direction of an edge. For two nodes to communicate, they have to transmit their data along
directed paths from the first node to the second, and from the second node to the first.

To perform a secure transaction, ICPC’s system requires the installation of their software not
only on the two endnodes that want to communicate, but also on all intermediate nodes on the two
paths connecting the end-nodes. Since ICPC charges customers according to how many copies of
their software have to be installed, it would be interesting to have a program that for any network
and end-node pair finds the cheapest way to connect the nodes.

Input

The input consists of several descriptions of networks. The first line of each description contains
two integers N and M (2 ≤ N ≤ 100), the number of nodes and edges in the network, respectively.
The nodes in the network are labeled 1, 2, . . . , N , where nodes 1 and 2 are the ones that want to
communicate. The first line of the description is followed by M lines containing two integers X
and Y (1 ≤ X, Y ≤ N), denoting that there is a directed edge from X to Y in the network.

The last description is followed by a line containing two zeroes.
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Output

For each network description in the input, display its number in the sequence of descriptions. Then
display the minimum number of nodes on which the software has to be installed, such that there
is a directed path from node 1 to node 2 using only the nodes with the software, and also a path
from node 2 to node 1 with the same property. (Note that a node can be on both paths but a path
need not contain all the nodes.) The count should include nodes 1 and 2.

If node 1 and 2 cannot communicate, display ‘IMPOSSIBLE’ instead.

Follow the format in the sample given below, and display a blank line after each test case.

Sample Input

8 12
1 3
3 4
4 2
2 5
5 6
6 1
1 7
7 1
8 7
7 8
8 2
2 8
2 1
1 2
0 0

Sample Output

Network 1
Minimum number of nodes = 4

Network 2
IMPOSSIBLE




