
6.867 Lecture Notes: Section 1: Introduction

Contents

1 Intro 2

2 Problem class 2
2.1 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Density estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.4 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.5 Dimensionality reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.6 Reinforcement learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.7 Others . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Evaluation criterion 4
3.1 No model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Prediction rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3 Probabilistic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.3.1 Fitting a probabilistic model . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3.2 Decision theoretic prediction . . . . . . . . . . . . . . . . . . . . . . . 7
3.3.3 Benefits of using a probabilistic model . . . . . . . . . . . . . . . . . . 7

3.4 Distribution over models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Model class 8
4.1 Fitting maximum-likelihood probabilistic models . . . . . . . . . . . . . . . 9

4.1.1 Gaussian with fixed variance . . . . . . . . . . . . . . . . . . . . . . . 9
4.1.2 Gaussian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.1.3 Uniform over a continuous interval . . . . . . . . . . . . . . . . . . . 10
4.1.4 Uniform over a finite set of points . . . . . . . . . . . . . . . . . . . . 10
4.1.5 Mixture of Gaussians . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.1.6 Maximum likelihood and binary data . . . . . . . . . . . . . . . . . . 11

4.2 Model selection over classes of probabilistic models . . . . . . . . . . . . . . 11
4.2.1 Bias-Variance decomposition . . . . . . . . . . . . . . . . . . . . . . . 11
4.2.2 Regularization and model selection . . . . . . . . . . . . . . . . . . . 15

4.3 Bayesian inference from prior to posterior over models . . . . . . . . . . . . 16
4.3.1 Bernoulli/Bernoulli . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3.2 Beta/Binomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3.3 Gaussian with fixed variance . . . . . . . . . . . . . . . . . . . . . . . 20
4.3.4 Finding conjugate families . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.4 Bayesian model selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Algorithm 22

6 Recap 22

1



MIT 6.867 Fall 2012 2

1 Intro

The main focus of machine learning is making decisions or predictions based on data.
There are a number of other fields with significant overlap in technique, but difference in
focus: . in economics and psychology, the goal is to discover underlying causal processes

This story paraphrased
from a post on 9/4/12
at andrewgelman.com

and in statistics it is to find a model that fits a data set well. In those fields, the end product
is a model. In machine learning, we often fit models, but as a means to the end of making
good predictions.

Generally, this is done in two stages:

1. Learn or estimate a model from the data

2. Apply the model to make predictions or answer queries

Problem of induction: Why do we think that previously seen data will help us predict
the future? This is a serious philosophical problem of long standing. We will operationalize
it by making distributional assumptions, such as that all training data are IID (independent
and identically distributed) and that queries will be drawn from the same distribution as
the training data.

Two important issues that come up are:

• statistical inference: How do we deal with the fact that, for example, the same treat-
ment may end up with different results on different trials?

• generalization: How can we predict results of a situation or experiment that we have
never encountered before in our data set?

We can characterize problems and their solutions using four characteristics, two of
which characterize the problem and two of which characterize the solution:

1. Problem class: What is the nature of the training data and what kinds of queries will
be made at testing time?

2. Evaluation criterion: What is the goal of the system? That is, how will the answers
to queries be evaluated?

3. Model class: What kind of intermediate model will be made of the the data or the
predictor?

4. Algorithm: What computational process will be used to fit the model to the data
and/or to make predictions?

The introductory section of the course will lay out the spaces of these characteristics
and illustrate them with simple (but not always easy!) examples. Then, in later sections,
we will refer back to these spaces to characterize new problems and approaches that we
introduce.

2 Problem class

There are many different problem classes in machine learning. They vary according to what
kind of data is provided and what kind of conclusions are to be drawn from it. We will
go through several of the standard problem classes here, and establish some notation and
terminology.
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2.1 Classification

Training data D is in the form of a set of pairs {(x(1),y(1)), . . . , (x(n),y(n))} where x(i) is an
object to be classified, most typically a D-dimensional vector of real values, and y(i) is an
element of a discrete set of values. The y values are sometimes called target values.

Our textbooks both use
xi and yi instead of x(i)

and y(i). We find that
notation somewhat dif-
ficult to manage when
x(i) is itself a vector
and we need to talk
about its elements. The
notation we are using is
standard in some other
parts of the machine-
learning literature.

A classification problem is binary or two-class if y(i) is drawn from a set of two possible
values; otherwise, it is called multi-class.

The goal in a classification problem is ultimately, given a new input value x(n+1), to
predict the value of y(n+1).

Classification problems are a kind of supervised learning, because the desired output (or
class) y(i) is specified for each of the training examples x(i).

We typically assume that the elements of D are independent and identically distributed
according to some distribution Pr(X, Y).

2.2 Regression

Regression is like classification, except that y(i) ∈ Rk.

2.3 Density estimation

Given samples y(1), . . . ,y(n) ∈ RD drawn IID from some distribution Pr(Y), the goal is to
predict the probability Pr(y(n+1)) of an element drawn from the same distribution. Density
estimation often plays a role as a “subroutine” in the overall learning method for super-
vised learning, as well.

This is a type of “unsupervised” learning, because it doesn’t involve learning a function
from inputs to outputs based on a set of input-output pairs.

2.4 Clustering

Given samples x(1), . . . , x(n) ∈ RD, the goal is to find a partition of the samples that groups
together samples that are similar. There are many different objectives, depending on the
definition of the similarity between samples and exactly what criterion is to be used (e.g.,
minimize the average distance between elements inside a cluster and maximize the aver-
age distance between elements across clusters). Other methods perform a “soft” clustering,
in which samples may be assigned 0.9 membership in one cluster and 0.1 in another. Clus-
tering is sometimes used as a step in density estimation, and sometimes to find useful
structure in data. This is also unsupervised learning.

2.5 Dimensionality reduction

Given samples x(1), . . . , x(n) ∈ RD, the problem is to re-represent them as points in a d-
dimensional space, where d < D. The goal is typically to retain information in the data set
that will, e.g., allow elements of one class to be discriminated from another.

Standard dimensionality reduction is particularly useful for visualizing or understand-
ing high-dimensional data. If the goal is ultimately to perform regression or classification
on the data after the dimensionality is reduced, it is usually best to articulate an objective
for the overall prediction problem rather than to first do dimensionality reduction without
knowing which dimensions will be important for the prediction task.
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2.6 Reinforcement learning

In reinforcement, the goal is to learn a mapping from input values x to output values y,
but without a direct supervision signal to specify which output values y are best for a
particular input. There is no training set specified a priori. Instead, the learning problem is
framed as an agent interacting with an environment, in the following setting:

• The agent observes the current state, x(0).

• It selects an action, y(0).

• It receives a reward, r(0), which depends on x(0) and possibly y(0).

• The environment transitions probabilistically to a new state, x(1), with a distribution
that depends only on x(0) and y(0).

• The agent observes the current state, x(1).

• . . .

The goal is to find a policy π, mapping x to y, (that is, states to actions) such that some
long-term sum or average of rewards r is maximized.

This setting is very different from either supervised learning or unsupervised learning,
because the agent’s action choices affect both its reward and its ability to observe the envi-
ronment. It requires careful consideration of the long-term effects of actions, as well as all
of the other issues that pertain to supervised learning.

2.7 Others

There are many other problem settings. Here are a few.
In semi-supervised learning, there may be an additional set of x(i) values with no known

y(i). These values can still be used to improve learning performance if they are drawn from
Pr(X) that is the marginal of Pr(X, Y) that governs the rest of the data set.

In active learning, it is assumed to be expensive to acquire a label y(i) (imagine asking a
human to read an x-ray image), so the learning algorithm can sequentially ask for particular
inputs x(i) to be labeled, and must carefully select queries in order to learn as effectively as
possible while minimizing the cost of labeling.

In transfer learning, there are multiple tasks, with data drawn from different, but related,
distributions. The goal is for experience with previous tasks to apply to learning a current
task in a way that requires decreased experience with the new task.

3 Evaluation criterion

Once we have specified a problem class, we need to say what makes an output or the an-
swer to a query good, given the training data. There will be different ways of specifying the
evaluation criterion, some of which place constraints on the nature of the internal models
constructed from the training data.

The desired behavior of a learning algorithm is often expressed in terms of a loss func-
tion. A loss function L(g,a) tells you how much you will be penalized for making a guess
gwhen the answer is actually a. There are many possible loss functions. Here are some:

• O-1 Loss applies to predictions drawn from finite domains.

If the actual values are
drawn from a contin-
uous distribution, the
probability they would
ever be equal to some
predicted g is 0 (except
for some weird cases).

L(g,a) =

{
0 if g = a

1 otherwise
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• Squared loss
L(g,a) = (g− a)2

• Linear loss
L(g,a) = |g− a|

• Asymmetric loss Consider a situation in which you are trying to predict whether
someone is having a heart attack. It might be much worse to predict “no” when the
answer is really “yes”, than the other way around.

L(g,a) =


1 if g = 1 and a = 0
10 if g = 0 and a = 1
0 otherwise

To help understand criteria for learning, in this section we’ll use as a running exam-
ple the simplest of problems, which we can think of as regression, but without any input
value. Assume that there is a single numeric value y to be predicted. We are given training
examples D = {y(1), . . . ,y(n)} and need to predict y(n+1).

3.1 No model

In some simple cases, we can generate answers to queries directly from the training data,
without the construction of any intermediate model.

In our simple prediction problem, we might just decide to predict the mean or median
of the y(1), . . . ,y(n) because it seems like it might be a good idea.

3.2 Prediction rule

It is more typical to use a two-step process:

1. “Fit” a model to the training data

2. Use the model directly to make predictions

In the prediction rule setting of regression or classification, the model will be some hy-
pothesis or prediction rule y = h(x; θ) for some functional form h. The idea is that θ is
a vector of one or more parameter values that will be determined by fitting the model to
the training data and then be held fixed. Given a new x(n+1), we would then make the
prediction h(x(n+1); θ).

We write f(a;b) to de-
scribe a function that
is usually applied to a
single argument a, but
is a member of a para-
metric family of func-
tions, with the particu-
lar function determined
by parameter value b.
So, for example, we
might write h(x;p) = xp

to describe a function
of a single argument
that is parameterized
by p.

The fitting process is usually articulated as an optimization problem: Find a value of
θ that maximizes score(θ; D). As we will explore further in the next section, the optimal
thing to do, if we knew the actual underlying distribution Pr(X, Y) would be to predict the
value of y that minimizes the expected loss, which is also known as the risk. If we don’t have
that actual underlying distribution, or even an estimate of it, we can take the approach
of minimizing the empirical risk: that is, finding the prediction rule h that minimizes the
average loss on our training data set. So, we would seek θ that maximizes

score(θ) = −
1
n

n∑
i=1

L(h(x(i); θ),y(i)) .

In our simple prediction problem, the “hypothesis” would be a single real value, so the
distinction between this case and the “no model” case is not as clear as it will be in the
case of real regression or classification problems. However, we might still formulate the
problem as one of fitting a model by seeking the value, yerm that minimizes empirical risk.
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In the case of squared loss, we would select θerm to maximize

score(θ) = −
1
n

n∑
i=1

(y(i) − θ)2 .

The value of θ that maximizes this criterion is

θerm =
1
n

n∑
i=1

y(i) .

Having selected hypothesis h( ; θerm) to minimize the empirical risk on our data, θerm

will be our predicted value. That is h( ; θerm) = θerm.
We will find that minimizing empirical risk is often not a good choice: it is possible to

emphasize fitting the current data too strongly and end up with a hypothesis that does not
generalize well when presented with new x values.

The prediction-rule approach is also sometimes called a discriminative approach, be-
cause, when applied to a classification problem, it attempts to directly learn a function that
discriminates between the classes.

3.3 Probabilistic model

In the prediction rule approach, we learn a model that is used directly to select a desired
output value. In the probabilistic model approach, we:

1. “Fit” a probabilistic model to the training data; then

2. Use decision-theoretic reasoning to combine the probabilistic model with a loss func-
tion to select the best prediction.

3.3.1 Fitting a probabilistic model

For a regression or classification problem we might choose to fit a joint distribution Pr(X, Y; θ)
or a conditional distribution, Pr(Y | X; θ). The problem of fitting probabilistic models to data
is treated at length in the statistics literature. There are many different criteria that one can
use to fit a probabilistic model to data.

Probably the common objective is to find the model that maximizes the likelihood of the
data from among some parametric class of models; this is known as the maximum likelihood
model. It is found by maximizing the data likelihood,

score(θ) =

n∏
i=1

Pr(x(i),y(i); θ) .

This is called a generative model, because the model describes how the entire data set is
generated. For classification problems, when y is an element of a discrete set of possible
values, it is often easiest to learn a factored model, of the form

Pr(X, Y; θ) = Pr(X | Y; θ1) Pr(Y; θ2) ,

where θ = (θ1, θ2).
Another approach is to fit a discriminative model by maximizing the conditional likelihood,

score(θ) =

n∏
i=1

Pr(y(i) | x(i); θ) .
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We will explore the trade-offs between using generative and discriminative models in more
detail in later sections. In general, we find that generative models can be learned somewhat
more efficiently and are highly effective if their modeling assumptions match the process
that generated the data. Discriminative models generally give the best performance on
the prediction task in the limit of a large amount of training data, because they focus their
modeling effort based on the problem at hand.

We can’t take this approach any further until we consider the particular class of models
we are going to fit. We’ll do some examples in section 4.

3.3.2 Decision theoretic prediction

Now, imagine that you have found some parameters θ, so that you have a probability
distribution Pr(Y | X; θ) or Pr(X, Y; θ). How can you combine this with a loss function to
make predictions?

There is a theory of rational agency that argues that you should always select the action
that minimizes the expected loss. This strategy will, for example, make you the most money
in the long run, in a gambling setting. Expected loss is also sometimes called risk in the

Of course, there are
other models for action
selection and it’s clear
that people do not al-
ways (or maybe even
often) select actions that
follow this rule.

machine-learning literature, but that term means other things in economics or other parts
of decision theory, so be careful...it’s risky to use it.

The optimal prediction, g∗, for our simple prediction problem, is

g∗ = arg min
g

∫
y

Pr(y; θ)L(g,y) dy .

For a regression or classification problem with a conditional probabilistic model, it would
be a function of a new input x:

g∗(x) = arg min
g

∫
y

Pr(y | x; θ)L(g,y) dy .

In general, we have to know both the form of the probabilistic model Pr(y | x; θ) and
the loss function L(g,a). But we can get some insight into the optimal decision problem in
the simple but very prevalent special case of squared error loss. In this case, for the simple
prediction problem, we have:

g∗ = arg min
p

∫
y

Pr(y; θ)(g− y)2 dy .

We can optimize this by taking the derivative of the risk with respect to g, setting it to zero,
and solving for g. In this case, we have

d

dg

∫
y

Pr(y; θ)(g− y)2 dy = 0∫
y

Pr(y; θ)2(g− y) dy = 0∫
y

Pr(y; θ)g dy =

∫
y

Pr(y; θ)y dy

g = E[y; θ]

3.3.3 Benefits of using a probabilistic model

This approach allows us to separate the probability model from the loss function; so we
could learn one model and use it in different decision-making contexts. Models that make
probabilistic predictions can be easily combined using probabilistic inference: it is much
hard to know how to combine multiple direct prediction rules.



MIT 6.867 Fall 2012 8

3.4 Distribution over models

In the distribution over models approach, which we’ll often call the Bayesian approach, we treat
the model parameters θ as random variables, and use probabilistic inference to update a
distribution over θ based on the observed data D. We

1. Begin with a prior distribution over possible probabilistic models of the data, Pr(θ);

2. Perform Bayesian inference to combine the data with the prior distribution to find a
posterior distribution over models of the data, Pr(θ | D);

3. (Typically), integrate out the posterior distribution over models in the context of
decision-theoretic reasoning, using a loss function to select the best prediction

In the Bayesian approach, we do not have a single model that we will use to make pre-
dictions: instead, we will integrate over possible models to select the minimum expected
loss prediction. For the simple prediction problem this is:

g∗ = arg min
g

∫
θ

∫
y

Pr(y | θ) Pr(θ | D)L(g,y) dydθ .

This integral can sometimes be difficult to evaluate. We can evaluate it approximately,
using sampling techniques.

The Bayesian approach lets us maintain an explicit representation of our uncertainty
about the model and take it into account when making predictions. Imagine a situation
in which the most likely model would make a prediction g1, but all of the other models,
which are not that much less likely would predict g2: in such situations g2 is the choice that
is more likely to be correct. Or, it might be that there is a prediction that is not the best,
but has relatively small loss in all the models: that might be the choice that minimizes risk,
even though it is not the best choice in any of the models.

The Bayesian approach can also provide elegant solutions to the problem of model
selection.

4 Model class

What assumptions will we make about the form of the model? When solving a regres-
sion problem using a prediction-rule approach, we might try to find a linear function
h(x;w1,w0) = w1x + w0 that fits our data well. In this example, the parameter vector
θ = (w1,w0).

For problem classes such as discrimination and classification, there are huge numbers
of model classes that have been considered...we’ll spend much of this course exploring
these model classes.

For now, we’ll restrict our attention to model classes with a fixed, finite number of pa-
rameters. Later in the course, we will relax this assumption and look at “non-parametric”
models.

How do we select a model class? In some cases, the machine-learning practitioner will
have a good idea of what an appropriate model class is, and will specify it directly. In
other cases, we may consider several model classes. In such situations, we are solving a
model selection problem: model-selection is to pick a model class M from a (usually finite)
set of possible model classes; fitting is to pick a particular model, specified by parameters
θwithin the model class.
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4.1 Fitting maximum-likelihood probabilistic models

In the following we will consider some particular probabilistic and distributional model
classes for the very simple prediction problem. Recall that for a maximum likelihood fit in
the simple prediction problem, our goal is to find θ that maximizes

score(θ) =

n∏
i=1

Pr(y(i); θ) .

4.1.1 Gaussian with fixed variance

One way to model our data is to assume it was drawn from a Gaussian distribution with a
fixed variance, σ2

0. Our parameter θ will actually be µ, the mean of the Gaussian distribu-
tion. So,

score(µ) =

n∏
i=1

Pr(y(i); θ)

=

n∏
i=1

1√
2πσ2

0

exp
{

−
1

2σ2
0
(µ− y(i))2

}

The product is hard to deal with, but we observe that the value of µ that maximizes this
quantity will also maximize its log, because the log is a monotonic function. So, we’ll

This maneuver will
be used a lot, to con-
vert products to sums,
throughout this subject.

actually seek to maximize

score(µ) =

n∑
i=1

log
1√

2πσ2
0

−
1

2σ2
0
(µ− y(i))2


which, for a fixed σ0, is the same as maximizing

score(µ) = −

n∑
i=1

(µ− y(i))2

This is cool! We find
that the maximum like-
lihood estimate for a
quantity with a Gaus-
sian distribution is the
one that minimizes the
mean squared error
from the data.

Now, to find the value, µml that maximizes the score, we take the derivative, set it to 0
and solve for µ.

d

dµml

n∑
i=1

(µml − y(i))2 = 0

n∑
i=1

2(µml − yi) = 0

n∑
i=1

µml =

n∑
i=1

yi

µml =
1
n

n∑
i=1

yi

This value of µml will make the data as likely as possible.

And now, we see that
the ML estimate is just
the sample mean.
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4.1.2 Gaussian

Now, what if σ is not determined? It seems clear that a very large value of σwill make our
data very unlikely; it is also true that a very small value of σwill make the data unlikely.

This problem can be approached in the same way as the previous problem, just solving
a system of two equations to find the maximum likelihood estimate.

4.1.3 Uniform over a continuous interval

If we know that our data are drawn uniformly from a finite interval, [a,b], then we want to
find aml,bml to maximize the likelihood of D. The likelihood of each point in the data set,
given the parameters, will be 1/(b− a), so

score(a,b) =

n∏
i=1

{
1

b−a if y(i) ∈ [a,b]
0 otherwise

Exercise: What are the
maximum likelihood es-
timators of a and b? In
what ways might you
expect the ML estimates
result in a poor fit to the
underlying distribution
from which the data was
drawn?

4.1.4 Uniform over a finite set of points

What model makes our data as likely as possible? One in which there are k possible values
of y, drawn uniformly. In this case,

score(V) =

n∏
i=1

{
1

|V | if y(i) ∈ V
0 otherwise

What values of V make the data most likely? Vml = D. This is sometimes known as the
empirical distribution.

We can see that, for values of k that are less than the number of distinct values in the
training set, the likelihood of the data will be 0. As k increases past the size of the training
set, the likelihood will decrease. This should give us a hint that the model that maximizes
likelihood is not necessarily the best one for characterizing future data.

4.1.5 Mixture of Gaussians

A Gaussian distribution might not represent a data set very well if the data set is not uni-
modal, that is, if it has multiple peaks of density.

A mixture of Gaussians model is a probability distribution whose PDF is the normalized
sum of multiple Gaussian PDFs, which intuitively describes a process of generating data in
which one first selects which mixture component the data item is to be drawn from and then
selects a data item from that component. So, if we were measuring heights of students in
school, and we believed that the distribution in each classroom was Gaussian, but that there
was a difference in the means between classrooms, we might describe that distribution
using a mixture of Gaussians.

Formally, a mixture of k Gaussians in one dimension is parameterized by

θ = (p1, . . . ,pk,µ1, . . . ,µk,σ1, . . . ,σk),

with the constraints that
∑k
i=1 pk = 1 and σi > 0 for all i. Then, the likelihood of a sample

y is given by

Pr(y; θ) =

k∑
j=1

pj
1√

2πσ2
j

exp

{
−

1
2σ2
j

(µj − y)2

}
Finding the maximum likelihood parameter estimates for this model is difficult. Taking

the derivative and setting to 0 gives something that can’t be solved analytically. In future
homework assignments, we will explore local optimization methods for this problem.
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4.1.6 Maximum likelihood and binary data

It’s also interesting to consider a data set in which y ∈ {0, 1}. If we assume the y(i) are
drawn from a Bernoulli distribution,

Y ∼ Bernoulli(p) ,

then our only parameter is the probability p and

score(p) = Pr(D;p) =

n∏
i=1

{
p if y(i) = 1
1 − p otherwise

There is a sneaky way to write this that makes things much easier:

score(p) =

n∏
i=1

py
(i)

(1 − p)1−y(i)

.

So, we begin by taking the log, so

arg max
p

score(p) = arg max
p

n∑
i=1

y(i) logp+ (1 − y(i)) log(1 − p)

Now we can take the derivative wrt p and set to 0:

n∑
i=1

(
y(i)

pml
−

1 − y(i)

1 − pml

)
= 0

n∑
i=1

(y(i) − pml) = 0

pml =
1
n

n∑
i=1

y(i)

So, the maximum likelihood estimate of p is the fraction of elements in the data set that
have value 1.

4.2 Model selection over classes of probabilistic models

Given a model class, it seems like it’s reasonable to select the model that makes the ob-
served data as likely as possible. Why? Because we think that model will do a good job of
describing the distribution of future data that we will see. But this connection is not as clear
as it might seem. In sections and we explored classes of model classes whose complexity
varied as a function of the number of components k.

The empirical distributions assigns all the probability mass in the distribution to the
data points we’ve seen so far. We are unhappy with such a model, though, because it over-
fits our data: it seems highly unlikely to be a good description of data that we will see in the
future, drawn from the same distribution as D. We can see a way to deal with overfitting
using Bayesian reasoning in the next section. But we can also approach it in this setting.

4.2.1 Bias-Variance decomposition

We start with some preliminaries from frequentist statistics. There are two main schools
of thought about the foundations of probability and this is one of them. The idea is that
probabilities are long-run frequencies of events: the probability that this coin will come up
heads is the long-term limit of the proportion of times it comes up heads.
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When we do statistics in this framework, we can estimate underlying quantities, such
as the probability that the coin will come up heads. An estimator is a function from a data
set to an estimate of some parameter that characterizes the distribution of that data set. An
estimate is the output of an estimator.

When we make an estimate, θ̂, based on a finite amount of data D, we don’t expect it to
be exactly right. We consider the uncertainty we have about our estimate by

• Imagining that we know the value of the parameter of interest, θ;

• Thinking of all the different data sets of the same size as the one that we have, that
might have arisen if θwere the true parameter;

• Considering the distribution of estimates θ̂ that would have arisen from those alter-
native data sets.

Our estimate θ̂ is a function of the data set D. So, given a distribution over D, there is an
induced distribution over θ̂. Now, we can say things about the distribution of θ̂, where, we
emphasize again, there is a fixed underlying θ and the uncertainty is with respect to the
data set.

With this understanding, we can define two useful ways to measure the quality of an
estimator: its bias and its variance.

We will assume we are using some particular estimator f that maps data sets into pa-
rameter estimates. Let:

• θ be the fixed unknown true parameter defining Pr(Y; θ);

• D be a data set with n samples, drawn iid from the distribution Pr(Y; θ); D is a ran-
dom variable;

• θ̂n = fθ(D): be the estimate of θ after n samples; this is a random variable that
depends on the training data (which is, itself, a random variable).

Now, we can define the bias of the estimate as:

bias(θ̂n) = ED(θ̂n) − θ

The expectation is the average of θ̂n over possible data sets of size n, drawn from distribu-
tion Pr(Y; θ). The bias is a measure of the systematic error between the estimated and the
true values. An estimator for which the bias is 0 is called unbiased. An estimator for which
the bias tends to 0 as n tends to infinity is called asymptotically unbiased.

We define the variance of the estimate as:

var(θ̂n) = ED[(θ̂n − ED(θ̂n))2] .

This is the usual definition of the variance of a random variable. It measures how different,
on average, the actual estimator value is from the mean of the distribution of estimator
values. Another way to think of it is that it measures how much the variation in the data
set influences the resulting estimate.

Ultimately, we are interested in measuring the quality of our whole learning algorithm,
which is a combination of estimating the underlying probability distribution and then us-
ing it to make predictions. Let’s assume that:

• We will use some estimator (we don’t have to make a commitment to which one) fθ
to compute an estimated θ̂ from data D.

• We will make a guess g that minimizes the expected squared loss.
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So, our prediction process, π, is defined by:

π(D) = arg min
g

∫
a

(g− a)2 Pr(a; fθ(D))da .

We have already shown that the optimizing prediction with squared loss is the expected
value, so:

π(D) = E[a; fθ(D)] .

Notice that we will be making our predictions using the distributional parameters we es-
timated from the data, not the true ones (which we don’t have access to). We have now
characterized what prediction we will make, given data set D.

Now, we are interested in knowing how good that prediction is, with respect to the
actual distribution Pr(a; θ). We will develop a way of thinking of the expected loss of our
prediction which gives us theoretical insight into the choices we might make for estimators.

The actual risk of making guess g is

R(g) =

∫
a

(a− g)2 Pr(a; θ)da .

Bishop shows in equation 3.7 that this can be rewritten as follows

Exercise: Prove this
for yourself, to be sure
you know what all
these quantities mean.
The critical step is to
rewrite (a − g)2 as
(a−E[a;θ]+E[a;θ]−g)2.

R(g) = (g− E[a; θ])2 +

∫
a

(E[a; θ] − a)2 Pr(a; θ)da .

We really want to characterize how good a particular guess is, but how good a way of
making guesses that is, a prediction process is. We will be interested in the expected risk, now
with the expectation taken with respect to data sets D drawn according to Pr(a; θ).

ER(π) = ED[R(π(D))] (1)

= ED[(π(D) − E[a; θ])2] +

∫
a

(E[a; θ] − a)2 Pr(a; θ)da . (2)

Now, let’s examine the first term in equation 2; the second term is independent of our
prediction rule, and characterizes the variability in the actual values, so we don’t have too
much more to say about it. We can expand the first term using the same trick as before:

ED[(π(D) − E[a; θ])2] = ED[(π(D) − ED[π(D)] + ED[π(D)] − E[a; θ])2]

= (ED[π(D) − E[a; θ]])2 + ED[(π(D) − ED[π(D)])2]

The first term of this expression is bias(π(D))2 and the second is var(π(D)).
So, finally, we can write the expected risk of the prediction process π as:

ER(π) = bias(π(D))2︸ ︷︷ ︸
systematic error

+ var(π(D))︸ ︷︷ ︸
sensitivity to data variability

+

∫
a

(E[a; θ] − a)2 Pr(a; θ)da︸ ︷︷ ︸
noise in true distribution

.

This is sometimes known as the bias-variance decomposition theorem.
This is a critical idea in machine learning: generally, more complex models have lower

bias (they can represent a wide variety of hypotheses) but higher variance (small changes
in the data set can generate big changes in the estimate). The variance of an estimator
decreases with n; so, with more data you can (and should) use a more complex model.

Here is an example of the bias and variance of two simple estimators. Imagine that we
have yi, drawn from a Bernoulli distribution,

Y ∼ Bernoulli(p) .
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Because they are exchangeable (the order doesn’t matter) we really need to keep track of the
number of 1’s, h, and the number of 0’s, t, in the data set. Then, the maximum likelihood
estimator is

θ̂ml =
h

h+ t
.

A frequently used alternative estimator uses the Laplace correction:

θ̂lp =
h+ 1

h+ t+ 2
.

The reason for using the Laplace correction is illustrated by a small data set: {0, 0}. In
this case, θ̂ml = 0. On one hand, this seems reasonable, but on the other hand, it seems a
very strong conclusion to draw from only two data points. For that same data, θ̂lp = 0.25.
In fact, the maximum likelihood estimator is unbiased, but on small data sets, it has high
variance. The estimator with the Laplace correction is biased, but has lower variance.

In this very simple case, we can actually compute the bias and variance, by taking an
expectation over all possible data sets, since all that matters about a data set is the number
of 1’s it contains. Here are plots of the bias, variance, and MSE of the two estimators (ML
in blue and LP in purple) as a function of n, the size of the data set. We can see that, for
small data sets, ML has significantly higher bias and MSE, but the difference disappears in
data sets of size about 20 or higher. Asymptotically, the estimators are equivalent.
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(b) N = 4
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(c) N = 10
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(d) N = 100

Figure 1: Expected risk as a function of θ, for data sets of size 2, 4, 10, and 100. Maximum
likelihood is blue solid line; Laplace correction is purple dashed line.

Intuitively, the increased bias and decreased variance in the Laplace estimator comes
from the fact that data has a smaller effect on the resulting estimate in the Laplace case
than in the ML case.
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(c) Expected Risk

Figure 2: Bias, variance, and expected risk as a function of training set size, with a true
underlying θ = 0.3. Blue circles are maximum likelihood estimate and purple squares are
estimate with the Laplace correction.

4.2.2 Regularization and model selection

We were able to compute the MSE in the previous case because the data sets were very
small and simple, and only with respect to a particular assumed distribution for the data.
In general, it is intractable to do so, so we must turn to other methods for both selecting pa-
rameters of a given model class (regularization) and choosing between model classes (model
selection).

We will discuss these strategies in lots of detail for particular model classes in the rest
of the course, but just give a short introduction here.

Regularization is a method for decreasing variance by preventing parameter estimates
from being extremely effected by data; this phenomenon is known as overfitting. Simply
maximizing the likelihood of the data is tends to result in solutions that are highly depen-
dent on the training data, and hence high variance.

Some methods of preventing overfitting include

• Using the Laplace correction when estimating a probability; or, even more extremely,
using something like (h + 5)/(h + t + 10). This prevents the ratio from taking on
extreme values, until the number of actual data points is very large.

• Adding (c/n)I, where I is the identity matrix, to the estimate of the covariance matrix
for a multivariate Gaussian. This keeps the covariance from becoming extremely non-
circular or extremely rotated, until the number of actual data points is very large.

• In curve-fitting problems, keeping the magnitudes of the parameters from getting too
large.

In many cases, we can construct regularized estimators that have the form of maximizing
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a penalized likelihood:
θ̂ = arg max

θ
log Pr(D; θ) − α|θ|c ,

for some complexity measure of the parameters.
Model selection is the problem of deciding, for example, how many mixture compo-

nents to use in a mixture of Gaussians, or whether to use a line or a 3rd-order polynomial
to fit a function to 1-D inputs.

Ultimately, the best value of the regularization parameter α or the most appropriate
model class is governed by generalization properties: we are using these mechanisms to
help generate a predictor that will perform well on data we have yet to see. One thing
we can do is use a proxy: we can divide our training data into two parts, run several
estimators on one part of the data, and then see how well it performs on the other part of
the data (often called a hold-out set or validation set). If the total amount of data available
is too small to have a large validation set, then it may be appropriate to do k-fold cross
validation, in which we divide the training set into k subsets, and then repeatedly:

• Train a model on k− 1 of the subsets;

• Test it on the remaining subset

This process will yield k estimates of the testing error of the data. It can be applied to differ-
ent model classes or to estimators with different values of a complexity penalty, to select the
model class or penalization function that generates the best generalization performance in
the domain, and for the amount of data available. Once the best model class or complexity
penalty is selected, it is typical to run the estimator one more time, for that model class, on
all the data, and use the resulting model.

The cross-validation approach is widely used, but can be computationally very expen-
sive and it still has problems with generating biased estimates.

HTF 7.10 has a good
discussion of this.

There are other strategies for penalizing model complexity based on an assessment of
the number of free parameters of the model. These include the Akaike information crite-
rion, which attempts to maximize

log Pr(D; θ) − |M| .

where |M| is the number of parameters in the model; the Bayesian information criterion is
similar in form, but subtracts (1/2) logn|M| from the log likelihood. In general, counting
parameters is a blunt instrument.

See HTF 7.5–7.6 for a
more nuanced discus-
sion of the effective
number of parameters.

4.3 Bayesian inference from prior to posterior over models

The Bayesian approach to statistics is very different from the frequentist approach at the
foundational and philosophical levels, but most of the mathematical manipulations are
shared. The philosophical difference is that we treat the model M and its parameters θ
that generated the data as a random variable, and use probability to model our uncertainty
about it. Probability is subjective: you and I could assign a different probabilities to the
same event, and not be wrong. The data are not treated as a random variable: they are the
observations that we have in hand, that give us evidence about the underlying model.

We will use a prior distribution Pr(θ) to encode what we believe, before seeing any
data, about the distribution over processes that might have generated our data. In many
cases, we can put a uniform distribution over the parameters, indicating no prior prefer-
ence among models; or, we can adopt a strong prior when we know something about the
model in advance.
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The posterior distribution is Pr(θ | D), which is the result of conditioning on the data
we have actually observed. If we need a point estimate of θ we sometimes compute the
maximum a posteriori probability (MAP) estimate:

arg max
θ

Pr(θ | D) .

Using Bayes rule, we can see a relationship between the MAP and ML estimates:

arg max
θ

Pr(θ | D) = arg max
θ

Pr(D | θ) Pr(θ)
Pr(D)

= arg max
θ

Pr(D | θ) Pr(θ)

So, if Pr(θ) is uniform, then the MAP estimate is the same as the ML estimate.
In the following, we will show three examples of Bayesian estimation for different com-

binations of prior distributions and data distributions. In each case, we must consider:

• A distribution Pr(D | θ) that governs the generation of data, characterized by param-
eters θ.

• A prior distribution Pr(θ;η) which is characterized by some fixed, known parameters
η.

Bayesian inference is at its most beautiful and convenient when Pr(D | θ) and Pr(θ;η)
have a relationship called conjugacy. It means that if the PDF of the prior has some para-
metric form f(η), then the PDF of the posterior has the same parametric form, with new
parameter values that depend on the parameters of the prior and on the data; that is the
PDF of the posterior has the form f(g(η, D)) and we write

Y ∼ Family1(Θ)

Θ ∼ Family2(η)

Θ | D ∼ Family2(g(η, D))

Here Family1 and Family2 are classes of distributions, such as the normal or uniform. In
each of the cases below, we describe which families we are considering and determine the
function g that maps prior parameter values and data into posterior parameter values.

4.3.1 Bernoulli/Bernoulli

Imagine that there is a hidden variable binary variable θ that governs a distribution of
binary observations Y. If θ = 0, then Y = 1 with probability φ0; otherwise, if θ = 1, then
Y = 1 with probability φ1. Furthermore, we have a prior distribution over whether θ is 0
or 1: Pr(θ = 1) = η0.

Here is a formal description of the model:

• θ ∈ {0, 1}

• y(i) ∈ {0, 1}

• y(i) | θ = k ∼ Bernoulli(φk)

• θ ∼ Bernoulli(η0)

A situation fitting this model might be that we have a coin, and we know it came either
from factory 0 or factory 1. Factory 0 produces coins that come up heads with probability
φ0. Factory 1 produces coins that come up heads with probability φ1. We have a coin and
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we’re not sure which factory it came from. But we believe, with probability η0 that it came
from factory 1.

The parameter we want to estimate is θ, but rather than getting a point estimate for θ,
we will seek a distribution over values of θ.

Exercise: Without seeing any flips of this coin, what is Pr(Y = heads)?

If we flip the coin and get outcome y, what can we infer about where the coin was
manufactured?

We’ll use that exponen-
tiation trick again, so
that we can write it in
a generic form, though
it doesn’t always come
out so cleanly.

Pr(θ = 1 | y) =
Pr(y | θ = 1) Pr(θ = 1)

Pr(y)

=
φ
y
1 (1 − φ1)

1−yη0

φ
y
0 (1 − φ0)1−y(1 − η0) + φy1 (1 − φ1)1−yη0

= g(η0,y)

So, for example, let:

• φ0 = 0: coins from factory 0 have heads on both sides (never come up tails)

• φ1 = 0.5: coins from factory 1 are fair

• η0 = 0.7: we think with probability 0.7 that this coin came from factory 1

Now we flip. First flip is heads.

η1 =
0.5 · 0.7

0.5 · 0.7 + 1 · 0.3
≈ 0.54

What flip 2 is heads? The update is the same, but starting from the posterior we had
before.

η2 =
0.5 · 0.54

0.5 · 0.54 + 1 · 0.46
≈ 0.46

Instead, what if flip 2 is tails? We know for sure where this coin came from!

η2 =
0.5 · 0.54

0.5 · 0.54 + 0 · 0.46
= 1 .

Exercise: Prove to yourself that the order of the sequence doesn’t matter.

4.3.2 Beta/Binomial

Here is a more interesting case. Imagine that, again, we have a coin that we don’t under-
stand very well, but in this case, instead of having only two possible underlying θ values,
with associated probabilities, now θ ranges over continuous probability values from 0 to
1. We will use a Beta distribution as a prior on θ; we will find that it is conjugate with
Bernoulli observations, yielding a Beta as a posterior as well.

• θ ∈ [0, 1]

• y(i) ∈ {0, 1}

• y(i) | θ ∼ Bernoulli(θ)

• θ ∼ Beta(α,β)
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Beta distribution
Parameters are two positive numbers, α and β. The PDF is

f(y;α,β) =

{
Γ(α+β)
Γ(α)Γ(β)y

α−1(1 − y)β−1 if 0 < x < 1

0 otherwise

The gamma function is a generalization of factorial. If n is an integer, then

Γ(n) = (n− 1)! .

0.0 0.2 0.4 0.6 0.8 1.0

1

2

3

4

Figure 3: Several examples of the Beta distribution: Beta(.1, .1) (goes up at the ends), Beta(1,
1) (uniform), Beta(2, 4) (asymmetric), Beta(10, 10) (peaked at 0.5).

Here are some important facts about the beta distribution. If X ∼ Beta(α,β), then

E(X) =
α

α+ β

If α,β > 1, then

Mode(X) =
α− 1

α+ β− 2

Let’s go ahead and see how to do an evidence update, conditioned seeingm heads and
l tails (it would work out the same way if we did it one at a time, but this is pretty cool).
Remembering that the probability, under the Binomial distribution of seeing m heads and
l tails is

Pr(D | θ) =

(
l+m

m

)
θm(1 − θ)l

Now, we can compute the posterior

Pr(θ | D) ∝ Pr(D | θ) Pr(θ)

∝ θm(1 − θ)lθα−1(1 − θ)β−1

∝ θm+α−1(1 − θ)l+β−1

So,
θ | D ∼ Beta(m+ α, l+ β) .

Sometimes we call α,β pseudocounts because they act just like actual observations.
Examples
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Let’s compare two inference scenarios. Assume that we have a coin with unknown θ of
coming up heads. We get D consisting of 2 heads and 4 tails. We need to predict the next
result, with the following loss function:

L(g,a) =


l10 if g = 1 and a = 0
l01 if g = 0 and a = 1
0 otherwise

In the first case, we begin with a “uniform” prior:

θ ∼ Beta(1, 1) .

So,
θ | D ∼ Beta(3, 5) .

The risk of predicting heads is l10 · (1 − Pr(y(n+1) = 1 | D)) = .625 · l10. The risk
of predicting tails is l01 · Pr(y(n+1) = 1 | D) = .375 · l01. So, we should predict heads if
.625 · l10 < .375 · l01.

If, instead, we had a prior of Beta(0.1, 0.1), the posterior would be Beta(2.1, 4.1), and we
should predict heads if .661 · l10 < .339 · l01.

The prior affects the resulting decision-making.

4.3.3 Gaussian with fixed variance

Now, let’s consider a case where the samples in our data set are real values, and that they
are drawn from a Gaussian distribution with known variance, σ2

D, but unknown mean.
We will also assume a prior distribution on the mean, which is a Gaussian with parameters
µ0,σ2

0. So:

• θ ∈ R

• y(i) ∈ R

• y(i) | θ ∼ Normal(θ,σ2
D)

• θ ∼ Normal(µ0,σ2
0)

Assume we make a single observation y(1). What is the posterior?

Pr(θ | y(1)) ∝ Pr(y(1) | θ;σ2
D) Pr(θ;µ0,σ2

0)

∝ exp
(

−
(y(1) − θ)2

2σ2
D

)
exp

(
−

(θ− µ0)
2

2σ2
0

)
∝ exp

(
−

(θ− µ1)
2

2σ2
1

)
where

µ1 =
σ2
Dµ0 + σ2

0y
(1)

σ2
D + σ2

0
,

which is a weighted average of the prior mean and the data, and

σ2
1 =

σ2
0σ

2
D

σ2
0 + σ2

D

.
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Note that the new variance is less than the prior variance and less than the variance of the
observation. So, we can conclude that

θ | y(1) ∼ Normal(µ1,σ1) .

When D contains N observations, whose values have mean µml, then we have

θ | D ∼ Normal(µn,σn) ,

where

µN =
µ0σ

2
D +Nµmlσ

2
0

Nσ2
0 + σ2

D

and

σ2
N =

Nσ2
0σ

2
D

Nσ2
0 + σ2

D

.

In this case, we have incorporated a whole batch of data at once. You should be con-
vinced that this is equivalent to incorporating each data element at a time, using the pos-
terior from the previous step as the prior for the next, and that the order of presentation of
the data doesn’t matter.

Another important question in this case is, what is the posterior predictive distribution??
It is

Pr(y(n+1) | D) =

∫
θ

Pr(y(n+1) | θ) Pr(θ | D)dθ

=

∫
θ

Pr(y(n+1) | θ) Pr(θ | µn,σn)dθ

= N(y(n+1);µn,σ2
n + σ2

D)

4.3.4 Finding conjugate families

Finding a prior/observation distribution pair that is conjugate can be kind of tricky. For
distributions in the exponential family (see Bishop 2.4), it is reasonably straightforward to
find appropriate pairs, because we end up with products of densities which have linear
functions in the exponent; such products are also from that same class.

For example, if you have a Gaussian with uncertainty over both the mean and standard
deviation, you can construct a prior on the joint distribution of those parameters that has
the same parametric form as the data likelihood. Bishop works through this in section 2.3.6.

4.4 Bayesian model selection

In the Bayesian framework, we can put a prior on anything! Could be on the parameters
of a polynomial fit to data, or even on class of models. But, even without a strong prior on
the model class, taking the Bayesian view of parameter estimation actually helps control
complexity. Here’s a sketch of how it works, and we’ll see it in context a couple of times
later in the course.

• You have a choice between two different model classes, one of which is drawn from
a much larger space than the other.

• Conditioned on the data you have distributions over the parameters for each model.
Generally, the distribution over the parameters from the smaller model class will be
tighter.
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• If you then evaluate Pr(D | Mi), which is the likelihood assigned to the data, integrat-
ing out the model parameters according to the posterior distribution, you will find
that the model class with bigger variance in the parameter distributions will assign
lower likelihood to the data.

• As you get more data, if the smaller model class is actually a poor fit, then the larger
model class will still have larger variance in its parameter estimates, but the likeli-
hood it assigns to the data will be larger.

• As a result, you can either just pick the best model class and use that model...or be
really Bayesian and average over all your model classes to make a prediction.

5 Algorithm

How can we find the best model, according to our criterion, given the data that we have?
Note that we will often have to approximate. There are two reasons. First, there may

not be any closed-form representation of the result, so we have to project it into a different,
hopefully close, form. Second, it might be intractable to find the optimum.

Homework 1 will explore simple optimization strategies applied to several machine
learning problems.

6 Recap

We have shown how to think about learning problems and solutions according to these
characteristics.

1. Problem class: What is the nature of the training data and what kinds of queries will
be made at testing time?

2. Approach: What is the goal of the system? That is, how will the answers to queries
be evaluated?

3. Model class: What kind of intermediate model will be made of the the data or the
predictor?

4. Algorithm: What computational process will be used to fit the model to the data
and/or to make predictions?

As we go forward, we will explore different model classes, algorithms for fitting those
model classes, and theoretical approaches to selecting appropriate models, making good
predictions, and providing formal analyses of the quality of the predictions and models.

We will try to characterize each of the methods we study in terms of their problem class
and approach, placing it into this space:

No model Prediction rule Prob model Dist over models
Regression
Classification
Density estimation
Reinforcement learning
Clustering
Dimensionality reduction
Other


