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1 Intro

Now we will look at the supervised learning problem of regression, in which the data given
is a set of pairs

D = {(x(1),y(1)), . . . , (x(n),y(n))} ,

with x(i) ∈ RD and y(i) ∈ Rk, but we will mostly focus on the case in which y(i) ∈ R.
We’ll look at learning prediction rules, probabilistic models, and distributions over

models, and focus on the case in which the model represent a linear relationship between
inputs and outputs. In later parts of the course, we will return to regression and look at
non-linear and non-parametric approaches.

2 Representation

What does it mean to have a linear model? Generally, it will be that we can express the
output value y(i) as a linear function of x(i). That is, that there are some weight values w0

and w = (w1, . . . ,wD) such that

y = w0 +w1x1 + . . . +wDxD .

Such a model is known as a linear regression model.
As such, it is capable of representing a fairly limited class of relationships between input

and output. We can extend the reach of these models by doing a fixed non-linear change
of representation. We can define a set of functions φj : RD → R that take an input x and
compute a feature value φj(x). We will refer to φj as basis functions or sometimes features.
Given a set of basis functions, we can find a regression model that is linear in the feature
values:

y = w0 +w1φ1(x) + . . . +wM−1φM−1(x) .

We can, of course, capture our original model by defining a set of basis functions

φi(x) = xi .

But we can extend it considerably by making polynomial basis functions, such as

φ(x) = xki or φ(x) = xi · xj ,

or trigonometric or logistic basis functions.

φ(x) = sin(xi) or φ(x) =
1

1 + exp(−xi)
.

Radial basis functions capture a notion of distance from some set of canonical points µi ∈ RD:

φ(x) = exp
(

−
(x− µj)

2

2s2

)
.

Although using non-linear basis functions means that the output y is a non-linear func-
tion of x, it is still easy to work with this representation because we will seek a linear
function of the feature values of x.

In the following, to simplify notation, we will omit the possibility of using basis func-
tion to transform the input values, but the extension is completely straightforward.
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3 Prediction rule
No model Prediction rule Prob model Dist over models

Regression c

The most direct thing we can do is try to find weights w0,w that define a regression
function that optimizes some criterion on the training data. A popular criterion is mean
squared error between the value the linear model with weights w0,w would have us pre-
dict, w · x(i) +w0 and the training output, y(i). So we would want to find

w∗,w∗0 = arg min
w,w0

n∑
i=1

(
w · x(i) +w0 − y(i)

)2
.

So, how can we find the minimizing weight vector w? Taking the gradient of the error
function, setting to 0, and solving for w.

Err(w,w0) =

n∑
i=1

(
w · x(i) +w0 − y(i)

)2
.

Things will get easier if we do this in matrix notation. Let X be the design matrix or
sometimes data matrix,W be the weight vector, and Y be the vector of training outputs:

X =


1 x(1)

1 x(2)

. . . . . . . .
1 x(n)


︸ ︷︷ ︸
n×(D+1)

W =


w0

w1

. . .
wD


︸ ︷︷ ︸
(D+1)×1

Y =


y(1)

y(2)

. . .
y(n)


︸ ︷︷ ︸
n×1


n input points

Adding the column of 1s to the data matrix means we don’t have to treat w0 specially.

At least until we do
regularization.

In an ideal world, we would have XW = Y. But, we almost certainly can’t do that. So,
we will minimize MSE. Back to taking the derivative and setting it to 0.

Err(W) = (XW − Y)T (XW − Y)

∇wErr(W) = XT (XW − Y) + XT (XW − Y)

0 = 2XT (XW − Y)

XTY = XTXW

W = (XTX)−1XTY

We will see, later, some cures for singular XTX.
This is typically called ordinary least squares regression.

4 Probabilistic model

It might be good to make a probabilistic model, to help understand what assumptions
we’re making and what criterion we really want to optimize; also because we could use
Pr(Y | X) to make decisions more effectively than with a decision rule y = f(x).

No model Prediction rule Prob model Dist over models
Regression c
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4.1 Conditional Gaussian

Since we are trying to do regression, and we know that we will be given queries x and
asked to predict the associated y, then one reasonable model is to estimate Pr(Y | X), which
will let us immediately determine Pr(Y | X = x), given a query.

To approach this problem, we need to make an assumption about the form of this con-
ditional distribution. Let us assume that:

• There is some underlying deterministic linear function h that relates X to Y and

• The observed values of Y are equal to h(X;w,w0), perturbed with additive Gaussian
noise.

That is, that
Y | X ∼ Normal(h(X;w,w0),β−1) .

Here β is the precision (inverse variance) of the conditional distribution, and

h(x;w,w0) = w0 +w · x .

Given this model, we can try to find the maximum likelihood estimators for w,w0.

wml,w0ml = arg max
w,w0

n∏
i=1

Pr(y(i) | x(i);w,w0)

= arg max
w,w0

n∑
i=1

log Pr(y(i) | x(i);w,w0)

= arg max
w,w0

−

n∑
i=1

(w · x(i) +w0 − y(i))2

Hey! This is the same as the least squares criterion! We already know the answer to this!

A story is that Gauss
liked squared error as a
criterion, and then “in-
vented” the Gaussian
distribution because its
MLE is the minimizer
of squared error.

We can also find the maximum-likelihood estimate of the variance parameter to be:

1
βml

=
1
n

n∑
i=1

(w · x(i) +w0 − y(i))2 .

4.2 Joint Gaussian

Another approach we might think of is to estimate Pr(X, Y) from the data. Then, given a
particular query x, we could compute Pr(Y | X = x) using that distribution.

To approach this problem, we need to make an assumption about the form of this joint
distribution. Let us assume that the joint distribution of X, Y is a Gaussian inD+ 1 dimen-
sions, of random variable Z that is obtained by concatenating Y and X, so that z(i)0 = y(i)

and z(i)1,...,n = x(i). So
Z ∼ Normal(µ,Σ) .

The estimates µml and Σml are just the standard ML Gaussian parameter estimates (sample
mean and sample covariance).

We are particularly interested in the conditional distribution Pr(Y | X), because we are
solving a regression problem. Using standard results about the Gaussian, we can express

Σml =

(
ΣYY ΣYX
ΣXY ΣXX

)
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Then
Y | X = x ∼ Normal(µY|X=x,ΣY|X=x) ,

where
µY|X=x = µY + ΣYXΣ

−1
YY(x− µx) ,

and
ΣY|X=x = ΣYY − ΣYXΣ

−1
XXΣXY .

Notice that µY|X=x is linear in x! This gives us a model in which

w = ΣYXΣ
−1
XX and w0 = µY − ΣYXΣXXµX .

Furthermore, it’s the same separator that you would have gotten if you had estimated the
conditional distribution! This will not generally be the case—it relies on special properties
of the Gaussian.

4.3 Regularization

Okay, but what happens if we have a lot of features and not a lot of data? The ML estimates
can have a lot of variance. There are many strategies for reducing variance (at the cost of
some bias, usually). Surprisingly many of them turn out to be the same thing.

4.3.1 L2 norm

Here is a penalized or regularized error function, using the squared L2 norm of the weight
vector as a penalty.

Errridge(w,w0) =

n∑
i=1

(
w · x(i) +w0 − y(i)

)2
+ λ‖w‖2 .

The parameter λ governs the bias/variance trade-off. Any value of λ > 0 induces bias and

Note that we are not
penalizing w0. If we
did that, it would be
harder for the line to
translate along the Y
axis, which would be
a very strange kind of
bias.

reduces the norm of the weight vector, which reduces variance.
Another way to write it is:

wridge,w0ridge = arg min
w,w0

n∑
i=1

(
w · x(i) +w0 − y(i)

)2

subject to ‖w‖2 < η

This method is also called shrinkage because we are trying to shrink the weight vector.

See appendix A for a
discussion of the rela-
tionship between η and
λ.

It’s also called ridge regression. Here’s why. We are going to make a centered data matrix
Z by letting:

z
(i)
j = x

(i)
j − x̄j ,

and leaving off the column of 1’s. Define the mean output

ȳ =
1
n

n∑
i=1

y(n) ,

and center the y values, as well, to define Yc so that

y(i)
c = y(i) − ȳ .
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Now we can write the ridge criterion as:

Eridge(W) = (Yc − ZW)T (Yc − ZW) + λWTW

∇WEridge(W) = ZT (ZW − Yc) + λW = 0

Wridge = (ZTZ + λI)−1ZTYc .

We setW0 to minimize the remaining prediction error once we have committed to weights
W:

W0 = (ȳ−WT X̄) .

There are a couple of other interesting ways to think about regularization in this setting.
They were developed independently, but turn out to do the same thing as ridge regression.

Proving these two as-
sertions are on the exer-
cises for this week.

• Noisy training data If you take each input point x(i) and add a random value εij
drawn from a Gaussian with zero mean and variance σ2 to each component x(i)

j , then
it’s equivalent to regularizing with λ = σ2.

• Adding “ridge” data If you center the data, as described above, and then add an ad-
ditional fictitious example, of the form x(f) = (

√
λ, . . . ,

√
λ), y(f) = 0, and do ordinary

least squares regression, it is equivalent to doing ridge regression with parameter λ.

4.3.2 Lasso

There is another shrinkage method, similar to ridge regression, but using the L1 norm
rather than the squared L2 norm of the weight vector as the penalty term. It is called “the
lasso.”

Yippee-ay-yay!

wlasso,w0lasso = arg min
w,w0

n∑
i=1

(
w · x(i) +w0 − y(i)

)2
− λ|w| .

Or, in Lagrangian form:

wlasso,w0lasso = arg min
w,w0

n∑
i=1

(
w · x(i) +w0 − y(i)

)2

subject to |w| < η

Unfortunately, there is no closed form solution (but you can try other optimization meth-
ods on it in the homework assignment.)

It is of interest, because it tends to drive some of the wj values to 0, thus resulting in
solutions that are sparse (that is, the output may only depend on a subset of the input
features).

See HTF figure 3.11 or
Bishop figure 3.4.

Recently, this has become the method of choice. In particular, regularizing with the
L1 norm has sample complexity logarithmic in number of features, whereas using the

We’ll talk more about
this later...for now, it’s
a rough measure of the
number of training ex-
amples needed to, with
high probability, return
a hypothesis with a
high degree of accuracy.

quadratic penalty it has sample complexity linear in the number of features.

4.3.3 Feature selection

Another way to keep from overfitting is to simplify the model by removing features en-
tirely. You could imagine trying all possible subsets of features, but that quickly becomes
intractable. Two reasonable greedy alternatives are:

• Forward selection:



MIT 6.867 Fall 2012 7

– Do OLS on allD problems with feature sets of size 1. Pick the one that performs
best on validation data. Call the associated feature f1.

– Do OLS on all D − 1 problems with feature sets of size 2, including feature f1

with each possible other feature. Pick the one that performs best on validation
data. Call the associated feature f2.

– Continue until error on the validation starts to go up. Stop and use the set of
features that generated the best performance on validation set.

• Backward deletion: Like forward selection, but consider one feature on each stage for
deletion from the working set of features.

You might want a very small feature set for computational reasons or ease of explana-
tion.

4.3.4 Early stopping

If you are using an iterative method to find the OLS fit, the standard thing is to run until
convergence: some point when the value of the objective function is only changing by a
very small amount. But, if you plot the test-set error against iteration number, it is generally
the case that if you stopped the iterative process before it had converged, you would have
gotten a solution with better generalization ability. Bishop discusses this in 5.5.2. We won’t
go into any more detail, but it’s interesting.

5 Distribution over models
No model Prediction rule Prob model Dist over models

Regression c

We will continue with the basic assumptions we made about the form of the conditional
probabilistic model:

• There is some underlying deterministic linear function h that relates X to Y and

• The observed values of Y are equal to h(X;w,w0), perturbed with additive Gaussian
noise.

That is, that
Y | X ∼ Normal(h(X;W),β−1) .

But now, instead of trying to find a maximum-likelihood estimate of W, we will try to
find a distribution over them Pr(W | D). We will useW to stand for all the weights: w and
w0.

Then, to make a prediction, given an input x, we will integrate the loss function over
the weight vectors:

arg min
g

∫
W

∫
a

L(g,a) Pr(a | x,W) Pr(W | D) .

5.1 Prior

We need to look for a conjugate family, if we want this to work out nicely. We know that
the data likelihood, Pr(y | x,w) has the form of exp(−c(w · x+w0 −y)2, so to keep it all in the
family we will want a prior with a similar form. This will work out if we let

W ∼ Normal(m0, S0) ,

where m0 is a D + 1-dimensional mean vector and S0 is a (D + 1) × (D + 1) covariance
matrix.
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5.2 Update

Now, we can do the multi-dimensional version of the Gaussian update we did last time. If
we incorporate n new data points, then

W | D ∼ Normal(mn, Sn) ,

where
mn = Sn

(
S−1

0 m0 + βXTY
)

,

and
S−1
n = S−1

0 + βXTX .

If we make a simplifying assumption that:

W ∼ Normal(0,α−1I) ,

that is, that our prior over the weights has zero mean, and is round, with standard devia-
tion radius

√
α, then something very familiar will happen:

mn = βSnXTY ,

and
S−1
n = αI + βXTX .

So
log Pr(W | D) = −

β

2
(XW − Y)T (XW − Y) −

α

2
WTW + c .

So, to find the maximum a posteriori probability (MAP) weights, we optimize the same
equations as for OLS with a quadratic regularizer, with λ = α/β.

5.3 Example from Bishop

Look at figure 1. Simple model:

h(x;W) = w0 +w1x .

Data generated from model
h(x;W) = −0.3 + 0.5x .

Assume noise variance is known, β = 25, and let α = 2.0.

• Column 1: Plot of likelihood function Pr(y | x,W) for the training data point. This is
the (smoothed) locus of lines that run through the training point (which is shown in
blue in the right-hand column). True parameter values are shown with a white cross.

• Column 2: Distribution overW.

• Column 3: Samples from Pr(W | D)

Now, we watch it go.

• Row 1: Round zero-mean prior on weights, and some samples.

• Row 2: Data point at about (0, 1). We see the likelihood function for the data, multiply
it by the prior and get the posterior. Samples now go near that point.

• Row 3: Another data point, near (−0.6, −0.8). Likelihood function. Multiply by the
new prior (old posterior) and the posterior gets tight. Samples now go near both
points.

• Row 4: After many more samples, distribution has tightened considerably; mean is
near the truth; samples are clustered and sensible.
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Figure 1: Figure 3.7 from Bishop
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5.3.1 Other norms

There is a whole family of prior distributions parameterized by q:

Pr(w;α) =

(
q

2

(α
2

)1/q 1
Γ(1/q)

)D
exp

−
α

2

D∑
j=1

|wj|
q

 .

These are not conjugate with Gaussian observations unless q = 2. But the MAP estimate
of w has the form of the regularized likelihood, with penalty

∑D
j=1|wj|

q.

5.4 Predictive distribution

But, really, why bother being Bayesian if you are just going to find the MAP estimate and
be done! If we want to make a prediction, we will take expected risk, with the expectation
taken with respect to the posterior predictive distribution

Pr(y | D, x) =

∫
W

Pr(y | x,W) Pr(W | D) .

Writing out the densities and completing the square in the numerator, for the Gaussian
case, we have

Y | X, D ∼ Normal(mn · x,σ2
n(x)) ,

where
σ2
n(x) =

1
β

+ xTSnx .

So, variance in predictions is the sum of the inherent noise in the process plus variance due
to uncertainty in the estimate of the weights.

Note! The variance in the posterior is dependent on x! The example in Bishop 3.3.2 is
using Gaussian basis functions. These are local features centered around some canonical
points xp that go quickly to zero as you move away. So, in places where there is more data,
we tend to have a tighter estimate.

5.5 Equivalent kernel

Let’s imagine that our loss function is squared loss, so that the best prediction is the mean
of the predictive distribution. (Actually, because this is the Gaussian, and the mean is equal
to the median, the mean is optimal for any symmetric loss function.) We can think of our
hypothesis, h, as the predictions we will make as a function of x, parameterized by the
posterior m, S.

h(x; m, S) = mTx = βxTSXTY

=

n∑
i=1

βxTSx(i)y(i)

=

n∑
i=1

k(x, x(i))y(i) ;

where
k(x, x ′) = βxTSx ′ .

This is kind of cool! We can see the prediction that we make for some point x as a weighted
function of the output values y(i) in the training data. They are weighted according to a
kernel function k, which you can think of as measuring the distance between x and x ′. In
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this case, the distance depends on S, which is the posterior covariance matrix of distribu-
tion on weights, which itself depends on the data. Generally, the y values associated with
x ′ values that are close to query point x are weighted more highly.

We will see later that this kernel idea is very important. Sometimes, instead of thinking
about basis functions as a way of transforming our inputs, we will find it easier to think
about a kernel, directly.

6 Bayesian model comparison for regression

In the Bayesian approach to regression, we have even more choices to make: we have both
the model class (which basis functions to use) and the parameters of the prior. How should
we select them? Cross-validation doesn’t really fit nicely into the Bayesian worldview. But
there is an elegant alternative.

Let’s first consider the model class; letM1 andM2 be regression models with two differ-
ent sets of basis functions. In the usual Bayesian inference process we will find a posterior
distribution on the parameters for each model, given the data:

Pr(θ1 | D, M1) and Pr(θ2 | D, M2) .

To see how good a “fit” we have, we can look at the likelihood of the data; but rather
than looking at the likelihood conditioned on one particular set of parameters, we have to
integrate it over the posterior distribution on the parameters. So, we’ll be interested in

Pr(M | D) ∝ Pr(D | M) Pr(M)

You might imagine that the way we will control overfitting is by putting a distribution on
M that prefers lower-complexity models. But the really interesting thing is that the marginal
likelihood,Pr(D | M), will do that for us to a significant degree.

This is also called the
model evidence.

We can expand it out as:

Pr(D | M) =

∫
θ

Pr(D | θ) Pr(θ | M) .

There are two things that can make the marginal likelihood be low:

• If θ describes a very large class of models and we don’t have a lot of data, then our
posterior on θ for a particular model will be very spread out. If it is, there will be lots
of θ values with non-negligible probability, and they will not, generally, all be good
models of D, which will make the marginal likelihood low. Another way to think
about it is that there will generally be a very large number of small data sets that are
consistent with a complex model, and since Pr(D | M) has to integrate to 1, it won’t
be able to assign very high probability to any one of these data sets. This is a problem
of high variance in the Bayesian view.

• If θ describes a class of models, none of which fit the data very well, then all the
Pr(D | θ) terms will be low. This is a problem of high bias in the Baysiean view.

If the true model is in the class of models, then we will on average prefer the correct
model.

But even Bishop ad-
mits it is wise to keep a
held-out set of data to
see whether your mod-
els are roughly right.

Let’s see what happens in a couple of examples.
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6.1 Picking a model class: Bayesian model selection

We will look at a regression problem with one-dimensional input and output. M1 will just
use the basis (1, x) as input. M2 will use the basis (1, x, x2, x3) as input. In each case, we
use a prior on W with zero mean, and diagonal covariance with α = 0.1 (recall that α is
a precision parameter, so it’s like having variance 10.) Furthermore we assume the data is
generated with known precision parameter β = 1.

6.1.1 Small data set

This experiment is shown in detail in figure 2. We show two data sets, drawn from the same
distribution with β = 1. We then plot the predictive distribution for each model, when
trained on each data set. The blue line is the mean, and the red lines show the values of
the predictive distributions one standard deviation away from the mean on each side. We
can see that, on the small data set, the linear model makes reasonable predictions and the
variability of the weights is not too high; however, the cubic model on that same data over-
fits and has very high variance. This is borne out in the evidence computation: the evidence
is higher for the simple model on the small data set. On the large data set, however, the
situation changes. For both models, there is very little variance in the predictions; however,
the predictions of the linear model have a lot of error. In this case the evidence for the cubic
model is much higher.

The truly Bayesian strategy would be to do model averaging, and make predictions

Pr(y | D) = Pr(y | x, D, M1) Pr(M1 | D) + Pr(y | x, D, M2) Pr(M2 | D) .

The result of that is shown in the bottom of the figure. This is particularly useful when one
model is more confident in one part of the space and another is more confident in another
part of the space.

6.2 Picking parameters: empirical Bayes

It is also possible to do this same thing for selecting parameters. For instance, you might
not know how to pick a good value of α. For a single model, you can consider evidence
as a function of α, and either average models over the α values (though this is hard to do
analytically or pick the best α value and use that.

The idea of using the data to pick the prior is pretty weird from a Bayesian philosophical
perspective, but can be pragmatically useful. This strategy is called empirical Bayes.
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(d) Predictive distribution for M1 on large data set:
Log Evidence: −1697.85.
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(e) Predictive distribution for M2 on small data set.
Log Evidence: −13.67.
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(f) Predictive distribution for M2 on large data set.
Log Evidence: −467.75
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(g) Predictive distribution averaged over models on
small data set.
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(h) Predictive distribution averaged over models on
large data set.

Figure 2: Bayesian model selection.
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Figure 3: The hard constraint η corresponding to a regularization penalty λ for a simple
data set.

A Relationship unconstrained and constrained forms of ridge
regression

Here’s the original set-up in the constrained form.

For simplicity in this,
assume the constraint is
going to be tight: that
is that the maximum
likelihood solution vio-
lates the constraint.

wridge,w0ridge = arg min
w,w0

n∑
i=1

(
w · x(i) +w0 − y(i)

)2
(1)

subject to ‖w‖2 6 η (2)

Let’s assume that the data have already been centered, so we don’t need to worry about
w0, and we’ll let Z be our data matrix. Now the Lagrangian is:

L(W, λ) = (ZW − Yc)
T (ZW − Yc) + λ(WTW − η) (3)

Set gradient of L with respect toW to 0, and solve forW:

∇W
(
(ZW − Yc)

T (ZW − Yc) + λ(WTW − η)
)

= 0

2(ZW − Yc) + 2λW = 0

W = (ZTZ + λI)−1ZTYc

Take the gradient of L with respect to λ and set to 0:

WTW − η = 0 .

Now, we have η in terms of λ and the data.

η = WTW (4)

=
(
(ZTZ + λI)−1ZTYc

)T (
(ZTZ + λI)−1ZTYc

)
(5)

So, if you wanted to solve the unconstrained version of the problem in equation 3 with
a fixed λ, that would be equivalent to solving the constrained version of the problem in
equations 1 and 2 with the η determined in equation 5.

I had trouble inverting this to find λ in terms of η. But, a plot of the relationship between
them for a simple data set, in figure 3.
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(a) Maximum likelihood error contours
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(b) Ridge error contours with λ = 0.5, η ≈ 1.3; blue
circle has radius

√
η; magenta dot isw0,w1 optimiz-

ing the ridge criterion
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(c) L1 error contours with λ = 3; green line with half
diagonalη = 1.08; cyan dot isw0,w1 optimizing the
Lasso

Figure 4: Error contours in weight space.


