
6.867 Section 4: Kernels

Contents

1 Intro 2

2 Kernels 2
2.1 When is κ a kernel? . 3
2.2 Creating new kernels . 3
2.3 Gaussian kernel . 4
2.4 Symbolic kernels . 5

2.4.1 All subsets . 5
2.4.2 String kernels . 5

3 Kernelizing learning algorithms 6
3.1 Perceptron . 6
3.2 Ridge Regression . 6

4 More generally 7
4.1 Representer theorem . 8
4.2 Loss functions . 8

5 Sparsity 8
5.1 Import vector machine . 8
5.2 Relevance vector machine . 9

1

MIT 6.867 Fall 2012 2

1 Intro

So far, we have spent a lot of time looking at linear classifiers and regression methods,
and finding that they arise in various places, expected (when we explicitly search for one
as in SVMs) and unexpected (when Naive Bayes or LDA turns out to generate a linear
separator).

We have also seen that, using an explicit transformation of the original input space
to a new, typically higher-dimensional, feature space, we can find more complex hypothe-
ses. These hypotheses are linear in the feature space, but non-linear when they are re-
interpreted in the original input space.

Let x be an element of the original input space, generally Rd; then Φ(x) is the corre-
sponding element of the feature space, generally RD whereD > d. We already understand
that we can useΦ(x) in place of x everywhere in our learning algorithms, and get solutions
that are non-linear in the input space.

However, there are two big worries about this approach:

1. Representational capacity and computational efficiency: As D increases, the computa-
tional complexity of the learning algorithms increases.

2. Model selection and regularization: AsD increases, the hypothesis space gets bigger and
the risk of overfitting increases.

Maximizing the margin, and other regularization techniques can help address the prob-
lem of overfitting in a large hypothesis space. We’ll concentrate in the next two lectures on
a method for addressing the problem of learning in very large spaces.

2 Kernels
Following the develop-
ment in Kernel Methods
for Pattern Analysis by
Shawe-Taylor and Cris-
tianini.

The term “kernel” has
two different, but ul-
timately related, uses
in Machine Learning.
Later in the course
we’ll talk about ker-
nel density estimation,
which uses kernels in a
different way.

If we look at the dual form of the SVM or the perceptron, we see that it depends on the
data only through dot products: x(i) · x(j). If we apply a feature mapping φ, then it will
depend on φ(x(i)) ·φ(x(j)). We will call the matrix of these dot-products of feature vectors
the gram matrix or kernel matrix:

Gij = φ(x(i)) · φ(x(j)) .

This matrix is size n×n, but whenD is very high, then it might be easier to deal with than
something that is D×D.

A kernel is a function κ that for all x, z ∈ Rdsatisfies We will generalize this
to other spaces later.

κ(x, z) = φ(x) · φ(z) ,

for some φmapping from Rd to RD.
The magic idea here is that, for many kernels, there is a way to compute κ(x, z) without comput-

ing φ(x) and φ(z), and so to be (relatively) independent of D.
Example Let d = 2, D = 3, and

φ((x1, x2)) = (x2
1, x2

2,
√

2x1x2) .

In this case, the space of linear functions is

g(x) = w1x
2
1 +w2x

2
2 +w3

√
2x1x2 .

MIT 6.867 Fall 2012 3

Let’s look at the kernel function:

κ(x, z) = φ(x) · φ(z)

= (x2
1, x2

2,
√

2x1x2) · (z2
1, z2

2,
√

2z1z2)

= x2
1z

2
1 + x2

2z
2
2 + 2x1x2z1z2

= (x1z1 + x2z2)
2

= (x · z)2

So, cool! We can compute dot products of data points in feature space without ever explic-
itly constructing the feature vectors!

This same kernel function computes the dot product in feature space with feature map-
ping

φ((x1, x2)) = (x2
1, x2

2, x1x2, x2x1) ,

so there need not be a unique φ for a particular κ.
This a special case of a more general polynomial kernel.

κ(x, z) = (x · z+ c)p ,

for any positive integer p and input dimension d. For p = 2 it corresponds to

φ((x1, . . . , xd)) = (xixj | i, j ∈ {1 . . .d}) + (
√

2cxi | i ∈ {1 . . .d}) + (c) .

where + here means concatenation of feature vectors. The parameter c controls the weight-
ing between the quadratic and constant terms.

In general, φ maps features in a d-dimensional space to a
(
d+p
p

)
-dimensional space. κ

computes dot products of elements of this space in O(n) time.
The linear kernel is just the polynomial kernel with p = 1.
An important property is modularity: If you have the dual form of an algorithm, you can

pass in the Gram (kernel) matrix, of all dot products of all points in the feature space, and
the algorithm operates on it unchanged. So it’s easy to experiment with different kernels.

2.1 When is κ a kernel?

A matrix K is positive semi-definite if all its eigenvalues are non-negative. A more useful
(equivalent) definition is that K is PSD iff for any z, zTKz > 0.

Result: Kernel matrices are positive semi-definite and symmetric.
Theorem: κ is a kernel if and only if it is a symmetric function such that all kernel

matrices generated on a finite subset of its domain are positive semi-definite. (Mercer)
Given a kernel function, there is a systematic way to construct the corresponding fea-

ture space.

But it’s kind of hairy
and we won’t go into
it.

You can think of κ as a measure of similarity of x and z: it captures the correlation
among its features.

This positive-semidefinite property applies to kernels on all spaces, not just Rd.
Designing a kernel function is a way to put our knowledge about a domain into the

representation of a problem.

2.2 Creating new kernels

If κ1 and κ2 are kernels over Rd ×Rd, f is a real-valued function on Rd, φ : Rd → RD, κ3 is
a kernel over RD × RD, B is a symmetric positive-definite d × d matrix, q is a polynomial
with non-negative coefficients, a > 0 is a constant, then the following functions are kernels:

MIT 6.867 Fall 2012 4

• κ(x, z) = κ1(x, z) + κ2(x, z)

• κ(x, z) = aκ1(x, z)

• κ(x, z) = κ1(x, z)κ2(x, z)

• κ(x, z) = f(x)f(z)

• κ(x, z) = κ3(φ(x),φ(z))

• κ(x, z) = q(κ1(x, z))

• κ(x, z) = exp(κ1(x, z))

• κ(x, z) = xTBz

2.3 Gaussian kernel

Also called the radial basis function (RBF) kernel.
Here is a simple and important kernel:

κ(x, z) = exp(−β‖x− z‖2) .

for β > 0 (called the bandwidth).

Be careful: some soft-
ware packages ask you
to supply 1/β.

In an SVM, any data-set is separable using this kernel, for any value of β (but it’s easier
if it’s small).

Why is this a kernel? Let f(x) = exp(−βx · x):

κ(x, z) = exp(−β‖x− z‖2)

= exp(−β(x− z) · (x− z))

= exp(−β(x · x+ z · z− 2x · z))
= exp(−βx · x) exp(−βz · z) exp(2βx · z)
= f(x) exp(2βx · z)f(z)

= f(x)[1 + 2β(x · z) + β2(x · z)2 +
1
3
β3(x · z)3 + . . .]f(z)

What φ(x) corresponds to the RBF kernel? It is an infinite feature space, index by w ∈
Rd.

The corresponding feature “vector” is actually a function:

φ(x)(w) = c(β,d)N(w; x, 1/β) .

The c(β,d) factor is a constant. The second part can be thought of as specifying how likely
it is that wwould have been drawn from a Gaussian with mean x and variance 1/β.

A dot-product of two functions is an integral over the index space:

κ(x, z) =

∫
w

φ(x)(w)φ(z)(w)dw .

When β is large, the boundary is more jagged, points have more local influence. When
β is small, boundary is smoother, more points are support vectors in SVM. Tune β using
cross validation.

We can use a different notion other than euclidean distance between the points. So, if
κ1 is a valid kernel, then we can make a Gaussian that uses κ1 as the distance:

κ(x, z) = exp (−β(κ1(x, x) + κ1(z, z) − 2κ1(xz))) .

MIT 6.867 Fall 2012 5

2.4 Symbolic kernels

What is amazingly powerful is that our original space doesn’t have to be Rd: it can be, for
example, a space of sets or strings or trees.

2.4.1 All subsets

If our original space is a space of sets of objects, and we are interested in knowing whether
the same subsets of elements occur together in each set, then we could imagine making
feature vectors where each feature corresponds to the presence of a particular subset within
the set. So, define xa = I(a ∈ x) for all a ∈ A where A is the domain of the sets; that is,
there is a feature in the original space for each element in A indicating whether it is in set
x. Now define subset features:

φA(x) =
∏
a∈A

I(a ∈ x) =
∏
a∈A

xa

for every A ⊂ A. The corresponding kernel is:

κ(x, z) =
∑
A⊂A

φA(x)φA(z)

=
∑
A⊂A

∏
a∈A

xaza

=
∏
a∈A

(1 + xaza)

2.4.2 String kernels

How to compare two strings, especially if they are of different lengths? This might be
important in a language or computational biology application.

Following “The spec-
trum kernel: A string
kernel for SVM protein
classification,” Christina
Leslie, Eleazar Eskin,
William Stafford Noble,
Pacific Symposium on
Biocomputing, 2002.

Let φk(x) be a vector with a feature φa for each possible substring a of length k, where

φa(x) = number of times a occurs in x .

So φ(x) is a really big feature vector in general. The associated kernel is called the k-
spectrum kernel:

Kk(x, z) = φk(x) · φk(z) .

It can be computed very efficiently by building suffix trees. But here’s a reasonably
cheap method, that depends on the sparseness:

• Make a sorted list of all length k sub-strings of x (there will be |x| − k+ 1 of them)

• Make a sorted list of all length k sub-strings of z (there will be |z| − k+ 1 of them)

• Walk down both sorted lists accumulating the φa(x)φa(z) terms for the sub-strings
a that occur in both x and z.

This method takes O(n logn) in the length of the longer sequence.
Can be extended to handle, efficiently, all sub-strings of any length, or all non-contiguous

sub-sequences using dynamic programming methods, or building more complicated data
structures.

MIT 6.867 Fall 2012 6

3 Kernelizing learning algorithms

3.1 Perceptron

We can easily make a dual form of the perceptron:

• αi = 0 for i ∈ 1, . . . ,n

• Repeat until no sample is misclassified:

– For i = 1, . . . ,n:
if

y(i)
n∑
j=1

αjy
(i)K(x(i), x(j)) 6 0 :

then
αi := αi + 1

3.2 Ridge Regression

Objective is to find weights that minimize penalized squared error (maximize penalized
likelihood):

Assume that the data
are centered so we
don’t have to deal with
w0 specially.

J(w) =
1
2

n∑
i=1

(
wTx(i) − y(i)

)2
+
λ

2
wTw .

Start with normal equations (derivative of objective set to 0):

XTXw+ λw = XTy

Ridge regression:
w = (XTX+ λI)−1XTy .

Prediction:

h(x) = w · x
= ((XTX+ λI)−1XTy)Tx

= yTX(XTX+ λI)−1x

Dual form: rewrite normal equation

XTXw+ λw = XTy

λw = XT (y− Xw)

w = λ−1XT (y− Xw)

w = XTα

where
αi = λ−1(y(i) − x(i) ·w) .

So, w can be written as a linear combination of training examples:

Interesing! αi looks like
an error...reminds us of
perceptrons.

w =

n∑
i=1

αix
(i) .

MIT 6.867 Fall 2012 7

Let’s play with the form a bit, substituting w = XTα into the objective function:

J(w) =
1
2
(Y − Xw)T (Y − Xw) +

λ

2
wTw

J(α) =
1
2
(Y − X(XTα))T (Y − X(XTα)) +

λ

2
(XTα)T (XTα)

=
1
2
YTY +

1
2
αTXXTXXTα− αTXXTY +

λ

2
αTXXTα

Let K = XXT be the Gram (Kernel) matrix, Kij = K(x(i), x(j)). Then

J(α) =
1
2
YTY +

1
2
αTKKα− αTKY +

λ

2
αTKα .

Take the gradient with respect to α, set to 0, and solve.

∇J(α) = KKα− KY + λKα

0 = Kα− Y + λα

α(K+ λI) = Y

α = (K+ λI)−1Y

Note that once we have the αs, we can make a prediction for a new x as:

y(x) = wTX

= αTXx

= k(x)Tα

where k(x) is a vector with elements k(x)i = k(x(i), x).
Yay! We can find the α values only using the kernel matrix. Of course, solving this

requires time O(n3) where solving the primal version requires time O(D3), so whether
doing this in the dual is a good idea depends on the relative sizes of the spaces.

4 More generally

If we look at the SVM, it is seeking w that minimize

J(w) =

n∑
i=1

[1 − y(i)h(x(i))]+ + λ‖w‖2 ,

where h(x) = x ·w+w0 and [z]+ = z if z > 0 and 0 otherwise.
In ridge regression, we are minimizing

J(w) =

n∑
i=1

(y(i) − h(x(i)))2 + λ‖w‖2 .

In general, we can describe a loss function L(a,h) and write the criterion as

This is not exactly the
same as the prediction
loss functions we have
looked at before, be-
cause we are consider-
ing not just the actual
prediction made by the
SVM, for example, but
the h value before it is
thresholded.

J(w) =

n∑
i=1

L(y(i),h(x(i))) + λ‖w‖2 .

MIT 6.867 Fall 2012 8

4.1 Representer theorem

If we seek to minimize

J(h) =

n∑
i=1

L(y(i),h(x(i))) + λ‖h‖2 ,

the solutions have the form

We are taking the norm
of a function here...you
can think of it as a
kind of penalty on the
roughness of the func-
tion.

h∗(x) = w0 +

n∑
i=1

α̂iK(x, x(i)) ,

for some vector α̂ ∈ Rn. The equivalent finite-dimensional criterion is:

min
α
L(Y, Kα̂) + λα̂TKα̂ ,

4.2 Loss functions

A comparison of the loss functions of logistic regression, SVMs, and squared error for
classification. See figure 1. Black is 0-1 loss, blue is hinge loss (SVM), green is squared
error, and red is a scaled version of the logistc regression error function.

For logistic regression we have

L(y,h(x)) = log(1 + exp(−yh(x))) .

−2 −1 0 1 2
z

E(z)

Figure 1: Comparison of loss functions (Bishop Figure 7.5).

5 Sparsity

SVMs aren’t the only way to get a sparse solution.

5.1 Import vector machine

Kernel logistic regression with greedy algorithm to pick a subset of the x(i) to use in the
representation of α. Goal is to find a small subset of vectors that approximates the nominal
solution with error less than ε.

Zhu and Hastie, 2001,
“Kernel logistic regres-
sion and the import
vector machine.”

MIT 6.867 Fall 2012 9

5.2 Relevance vector machine

RVMs are Bayesian methods that use a prior that tends to force αi to go to zero. They have
the advantage that you don’t need to use cross-validation to pick C, and they generate a
probabilistically interpretable output value. However the optimization problem is non-
convex.

ARD prior has a concentration parameter αj for each weight.

Pr(w | α) =
1

2π

d/2
 d∏
j=1

α
1/2
j

 exp

−
1
2

d∑
j=1

αjw
2
j

 .

Put a Gamma distribution on αj. Then Pr(wj) is a Student’s T distribution: fatter tails
than Gaussian. Equivalent penalty function is

∑
j log|wj|. Encourages sparsity just as the

Lasso does. Tends to be sparser than SVM.

“Sparse Bayesian
learning and the rele-
vance vector machine,”
Michael Tipping, JMLR,
2001.

