
6.867 Section 3: Classification

Contents

1 Intro 2

2 Representation 2

3 Probabilistic models 2
3.1 Estimating Pr(X, Y) . 2

3.1.1 Linear discriminant analysis . 2
3.1.2 Factoring the class conditional probability 4
3.1.3 Exponential family . 5

3.1.3.1 Binomial is in exponential family 6
3.1.3.2 Normal is in exponential family 6
3.1.3.3 LDA for exponential family 6

3.2 Estimating Pr(Y | X) . 6
3.2.1 Least squares . 7
3.2.2 Logistic regression . 7
3.2.3 Generalized linear models . 8

3.3 Generative versus discriminative . 8

4 Distributions over models 9

5 Fitting predictors directly 10
5.1 Linear discriminant functions . 10
5.2 Support vector machines for separable data 12

5.2.1 Primal form . 12
5.2.2 Dual form . 13

5.3 Support vector machines for non-separable data 15
5.4 Perceptron . 17

1

MIT 6.867 Fall 2012 2

1 Intro

Now we will look at the supervised learning problem of classification, in which the data
given is a set of pairs

D = {(x(1),y(1)), . . . , (x(n),y(n))} ,

with x(i) ∈ RD and y(i) ∈ {c1, . . . , ck}; that is, the output is a discrete value indicating the
class of the example. By default, we’ll think about the two-class classification problem, with
the classes or labels often drawn from the set {0, 1} or {+1, −1}.

We’ll look at learning prediction rules, probabilistic models, and distributions over
models, and focus on the case in which the model represent a linear relationship between
inputs and outputs. In later parts of the course, we will return to classification and look at
non-linear and non-parametric approaches.

Because we have recently been looking at probabilistic approaches to regression, we
will begin by looking at probabilistic and Bayesian approaches to classification. When we
are done with that, we will consider some interesting strategies for finding linear separators
directly, without probabilistic modeling.

2 Representation

What does it mean to have a linear model for classification? Generally, it will be that we
can express the output value y(i) by specifying a D − 1-dimensional hyperplane in the D-
dimensional feature space. Then, points that are on one side of the hyperplane are consid-
ered to be in one class, points on the other side, in the other class.

That is, there are some weight values w0 and w = (w1, . . . ,wD) such that

y =

{
+1 if w0 +w1x1 + . . . +wDxD > 0
−1 otherwise

.

Such a model is known as a linear separator.
As in regression, we can transform the input space, via a set of non-linear basis func-

tions, and find a linear separator in the transformed space. Such a separator will be non-
linear when projected back down into the original space.

In the following, to simplify notation, we will omit the possibility of using basis func-
tion to transform the input values, but the extension is completely straightforward.

3 Probabilistic models
No model Prediction rule Prob model Dist over models

Classification c

3.1 Estimating Pr(X, Y)

3.1.1 Linear discriminant analysis

If we’re going to estimate the joint distribution, we need to make some distributional as-
sumptions. A common model is:

Y ∼ Binomial(π)

X | Y = c ∼ Gaussian(µc,Σc)

MIT 6.867 Fall 2012 3

where πc specifies the unconditional probability of getting an object of class c, and π is a
vector of πc for the possible class values c. We will use θ to name all of the parameters:
π,µ,Σ.

We can find the maximum-likelihood parameter estimates for this model straightfor-
wardly. Letting nc = |{y(i) = c | i = 1 . . .n}| be the number of examples in D of class c, we
have:

πc =
nc

n

µc =
1
nc

∑
{i|y(i)=c}

x(i)

Σc =
1
nc

∑
{i|y(i)=c}

(x(i) − µc)(x
(i) − µc)

T

Now, how should we make predictions? If we have 0-1 loss,

h(x) =

{
1 if Pr(Y = 1 | X = x; θ) > Pr(Y = 0 | X = x; θ)
0 otherwise

Let’s concentrate on the conditions under which we predict 1:

Pr(Y = 1 | X = x; θ) > Pr(Y = 0 | X = x; θ)

Pr(X = x | Y = 1; θ) Pr(Y = 1; θ) > Pr(X = x | Y = 0; θ) Pr(Y = 0; θ)

log Pr(X = x | Y = 1; θ) + log Pr(Y = 1; θ) > log Pr(X = x | Y = 0; θ) + log Pr(Y = 0; θ)

log Pr(X = x | Y = 1; θ) − log Pr(X = x | Y = 0; θ) > log Pr(Y = 0; θ) − log Pr(Y = 1; θ)

−
1
2

log det(Σ1) −
1
2
(x− µ1)Σ

−1
1 (x− µ1)

T

+
1
2

log det(Σ0) +
1
2
(x− µ0)Σ

−1
0 (x− µ0)

T > logπ0 − logπ1

−(x− µ1)Σ
−1
1 (x− µ1)

T + (x− µ0)Σ
−1
0 (x− µ0)

T > 2(logπ0 − logπ1) + log det(Σ1) − log det(Σ0)

This is pretty clearly quadratic in x, so it’s what we would call a quadratic separator or
quadratic discriminant.

If we assume that the covariances of the two classes are equal, Σ1 = Σ0, then things
simplify and we are doing linear discriminant analysis. Now we have that (determinant of Σ
cancels):

Pr(Y = c | X = x) ∝ exp
(
µTcΣ

−1x−
1
2
µTcΣ

−1µc + logπc

)
exp

(
−xTΣ−1x

)
.

Define

βc = Σ−1µc

γc = −
1
2
µTcΣ

−1µc + logπc

Then

Pr(Y = c | X = x) =
exp

(
βTcx+ γc

)
exp

(
xTΣ−1x

)∑
c′ exp

(
βTc′x+ γc′

)
exp (xTΣ−1x)

=
exp

(
βTcx+ γc

)∑
c′ exp

(
βTc′x+ γc′

)

MIT 6.867 Fall 2012 4

Note that, in the two class case, this reduces to

Pr(Y = 1 | X = x) =
exp

(
βT1 x+ γ1

)
exp

(
βT0 x+ γ0

)
+ exp

(
βT1 x+ γ1

)
=

1
exp

(
βT0 x+ γ0 − βT1 x− γ1

)
+ 1

= sigmoid(βT1 x+ γ1 − βT0 x− γ0)

where the sigmoid function and its inverse, the logit function are defined as follows:

Bishop uses σ(.) for
the sigmoid function,
but I find that just too
confusing in this con-
text, so I’ll write out
the name.

sigmoid(a) =
1

1 + exp(−a)

=
expa

1 + expa

logit(σ) = log
(

σ

1 − σ

)
.

The sigmoid is a “soft” step function, which takes a real number and maps it to the interval
(0, 1). If we have an expression of the form sigmoid(WTX), then the larger the magnitude
ofW, the steeper slope on the sigmoid.

So, with two classes, we predict class 1 when

Pr(Y = 1 | X = x; θ) > Pr(Y = 0 | X = x; θ)

exp
(
βT1 x+ γ1

)
> exp

(
βT0 x+ γ0

)
βT1 x+ γ1 > βT0 x+ γ0

x (β1 − β0) + γ1 − γ0 > 0

This is definitely a linear separator.

3.1.2 Factoring the class conditional probability

This is a method called ’Naive Bayes’. Let’s assume now that x(i) ∈ {0, 1}D. You could
interpret the X values as numbers, encoded in binary, and put a multinomial distribution
over all 2D values for each class. But that is a lot of parameters to estimate!

Assume: Features are independent, given the class. That is, that

Pr(X | Y = c) =

D∏
j=1

Pr(Xj | Y = c) .

So

Y ∼ Binomial(π)

Xj | Y = c ∼ Binomial(θc,j)

So, now, if we have two classes, we have 2D parameters, each of which is easy to estimate:

Pr(Xj = 1 | Y = 1) = θ1,j

Pr(Xj = 1 | Y = 0) = θ0,j

Use Bernoulli ML estimate, maybe with Laplace “correction”:

θ̂1j =
#(Xj = 1, Y = 1) + 1

#(Y = 1) + 2
.

MIT 6.867 Fall 2012 5

Now, for prediction. Given x, predict C = 1 if

Pr(x | C = 1) Pr(C = 1) > Pr(x | C = 0) Pr(C = 0)

D∏
j=1

Pr(xj | C = 1) Pr(C = 1) >

D∏
j=1

Pr(xj | C = 0) Pr(C = 0)

D∑
j=1

log Pr(xj | C = 1) + log Pr(C = 1) >

D∑
j=1

log Pr(xj | C = 0) + log Pr(C = 0)

D∑
j=1

log(θ
xj

1j (1 − θ1j)
(1−xj)) + logπ1 >

D∑
j=1

log(θ
xj

0j (1 − θ0j)
(1−xj)) + logπ0

D∑
j=1

(xj log θ1j + (1 − xj) log(1 − θ1j)) + logπ1 >

D∑
j=1

(xj log θ0j + (1 − xj) log(1 − θ0j)) + logπ0

D∑
j=1

xj

(
log

θ1j

(1 − θ1j)
− log

θ0j

1 − θ0j

)
> logπ0 − logπ1 −

D∑
j=1

log
1 − θ1j

1 − θ0j

So, this is a linear separator of the form xTw+w0 > 0 with

Wj = log
θ1j

1 − θ1j
− log

θ0j

1 − θ0j
,

and

W0 = log
π1

π0
+

n∑
j=1

log(1 − θ1j)

log(1 − θ0j)
.

Interestingly, the probability model is also sigmoidal. We have

Pr(C = 1 | X = x) =
Pr(x | C = 1) Pr(C = 1)

Pr(x | C = 1) Pr(C = 1) + Pr(x | C = 0) Pr(C = 0)

=
exp(f1(x))

exp(f1(x)) + exp(f2(x))

=
1

1 + exp(f2(x) − f1(x))

= sigmoid(f1(x) − f2(x))

where

fc(x) =

D∑
j=1

(xj log θcj + (1 − xj) log(1 − θcj)) + logπc .

3.1.3 Exponential family

A really cool family of distributions.

• Only family for which conjugate priors exist

• Finite-size sufficient statistics

• Includes Normal, Bernoulli, Multinomial, Poisson, Gamma, Exponential, Beta, Dirich-
let, various combinations

A (somewhat simplified) subset of exponential-family distributions can be written in the
form:

Pr(x | η) = h(x)g(η) exp(ηTu(x))

where x may be a scalar or vector, discrete or continuous; η is called the natural parameters,
and g(η) is a normalization constant.

MIT 6.867 Fall 2012 6

3.1.3.1 Binomial is in exponential family

Pr(x | p) = px(1 − p)(1−x)

= exp (x log(p) + (1 − x) log(1 − p))

= exp (x log(p) − x log(1 − p) + log(1 − p))

= (1 − p) exp
(
x log

p

1 − p

)

This fits in the family with: u(x) = x, η = log p
1−p , h(x) = 1, and g(η) = 1 − p. So

Pr(x | η) = sigmoid(−η) exp(ηx) .

3.1.3.2 Normal is in exponential family We’ll just look at the one-dimensional case, but
it’s true for multi-variate Gaussian as well.

Pr(x | µ,σ2) =
1√
2πσ

exp
(

−
1

2σ2 (x− µ)2
)

=
1√
2πσ

exp
(

−
1

2σ2 x
2 +

µ

σ2 x−
1

2σ2µ
2
)

To make this match up, let

η =

(
µ/σ2

−1/2σ2

)
u(x) =

(
x

x2

)
h(x) = (2π)1/2

g(η) =
√

−2η2 exp
(
η2

1

4η2

)
.

3.1.3.3 LDA for exponential family Cool result! If we have two classes, and Pr(X | Y =

c) is a distribution in the exponential family, with the restrictions that u(x) = x, and that the
scale parameters are shared among the classes (e.g., the covariance in the Gaussian case)
so that the form is

Pr(x | λc, s) =
1
s
h

(
1
s
x

)
g(λc) exp

(
1
s
λTcx

)
,

then

• The separator is linear and

• The predictive probability Pr(Y = 1 | x) is a sigmoid on an activation function which
is the difference between the logs of the class membership probabilities of the two
classes. That is,

Pr(Y = 1 | x) = sigmoid(a(x)) ,

where

a(x) = (λ1 − λ0)
Tx+ logg(λ1) − logg(λ0) + logπ1 − logπ0

3.2 Estimating Pr(Y | X)

This is called estimating a discriminative model.

MIT 6.867 Fall 2012 7

3.2.1 Least squares

A favorite trick is to reduce our current problem to a previous problem we already know
how to solve. In this case, we could try to treat classification as a regression problem, by
taking the Y values to be in {+1, −1} and applying one of our standard regression methods.
We could then predict class +1, given x, if

WTx+W0 > 0 .

That will generate a separator, but it turn out to be a bad idea. There is generally no
hypothesis that does a good job of representing the data, and it is easy to show that there are
situations in which a linear separator for the data exists, but the hypothesis that regression
comes up with does not separate the data.

One reason that this doesn’t work out is that it isn’t founded on a sensible probabilistic
model: the algorithm fundamentally assumes that the Y values are normally distributed,
but they’re not.

3.2.2 Logistic regression

So, what assumption can we reasonably make about the distribution of outputs, in the
classification case? Rather than directly trying to predict the value, we could try to find a
regression model that predicts Pr(Y = 1 | X = x) as a function of x. One thought would be
to use the form

Pr(Y = 1 | X = x) = WTx ,

but the problem is that we need the probabilities to be in the interval [0, 1], and that linear
form is unconstrained.

We can take inspiration from what we saw in the LDA case: that in at least two cases
we considered, the predictive distribution could be described as a sigmoid applied to a dot
product. So, let’s consider models of the form

Pr(Y = 1 | X = x) = sigmoid(WTx) .

Such models are called logistic regression models.

Which is confusing,
since we’re using them
for classification...but
the idea is that we’re
doing a regression to
find a probability value.

So, how does this differ from LDA? We are not making any distributional assumptions
about X. So, we’re going to train a predictive model from the same class, but using a
different criterion.

Given data D, what are the maximum-likelihood estimates of the parameters W? As-
suming y(i) ∈ {0, 1}, the likelihood function is:

Pr(D | W) =

n∏
i=1

s
(
WTx(i)

)y(i) (
1 − s

(
WTx(i)

))(1−y(i))

,

where s is short for sigmoid. The negative log likelihood is:
Which we want to min-
imize.

NLL(W) = −

n∑
i=1

(
y(i) log s

(
WTx(i)

)
+ (1 − y(i)) log

(
1 − s

(
WTx(i)

)))
.

The gradient with respect to the weights is

Here’s the cool thing
about the derivative of
the sigmoid: d

dx
s(x) =

s(x)(1 − s(x))

∇WNLL(W) =

n∑
i=1

(
s
(
WTx(i)

)
− y(i)

)
x(i) .

This is the same as the gradient of the error function for the linear regression model!
We’ll see why in the
next section.

MIT 6.867 Fall 2012 8

If the data is linearly separable, the optimization will want to make the weights as large
as possible (to make the sigmoid as steep as possible, which will push the output values
closer and closer to +1 and −1. Furthermore, again, if the data are separable, there is an

An old trick from neu-
ral network days was
to use targets of +0.6
and −0.6, which are ac-
tually attainable with
finite weights.

infinity of separators that are equally good; so the optimization problem is not well posed.
This can be addressed by adding a regularization penalty or using a prior.

Unfortunately, there is no closed form solution for the maximum likelihood values of
W, so we need to use an iterative optimization method. Two common choices are:

• Gradient descent, especially stochastic gradient descent, which goes through the data
points one by one and does an update to the weights with a very small step size
based on each individual point. This can be guaranteed to converge, though it might
be slow, but it can be less likely than batch gradient descent to get stuck in local
optima on non-convex functions.

• Iterative reweighted least squares, which is essentially Newton’s method. It can be com-
putationally challenging, because it uses the Hessian (matrix of second derivatives),
but is more reliable than regular gradient descent.

3.2.3 Generalized linear models

Both linear regression and logistic regression are instances of a more general framework of
generalized linear models:

• The distribution of Y | X is an exponential family distribution

• The goal is to predict E[Y | X; θ]

• The natural parameter η and the inputs are linearly related: η = θTx.

What is cool about this is that any regression-type problem that satisfies the require-
ments above can be handled in common way. So, there are general purpose methods for

• Maximum likelihood parameter estimation (IRLS)

• Bayesian estimation

• Various statistical tests

This also means that these models are not too sensitive to the distributional assump-
tions made (beyond the general GLM assumptions), since the parameter-fitting is indepen-
dent of which exponential-family distribution you have.

3.3 Generative versus discriminative

Given a choice, should we choose a generative or discriminative model?

This discussion cribbed
from Machine Learning:
A Probabilistic Perspective
by Kevin Murphy. (A
great book!)

• Generative classifiers are usually easier to fit.

• Generative classifiers, in the multi-class case, generalize more easily to adding a new
class (since the per-class models are independent).

• Generative models can be estimated relatively easily in the presence of missing or
unlabeled data.

• Generative models can be run “backwards” (used to predict X from Y).

• Discriminative models apply very well when we expand the input space using a basis
set of feature functions; generative models can get into trouble due to correlation
among the inputs.

MIT 6.867 Fall 2012 9

• If the distributional assumptions are true, generative models can be well estimated with
fewer training examples than discriminative models.

• If the distributional assumptions are not true, generative models can result in really bad
predictions.

In the research literature, there is some interesting work on making models that are a
kind of mixture of the generative and discriminative.

4 Distributions over models
No model Prediction rule Prob model Dist over models

Classification c

Rather than finding a single best weight vector W∗ and using that to make predictions
Pr(y | x;W∗), we might again wish to be Bayesian, by putting a prior onW and then using
the posterior on W, that is Pr(W | D) to make predictions that take uncertainty in the
weights into account.

Unfortunately, there is no conjugate prior for logistic regression. Here, we will show
one strategy (that can be used in all sorts of cases with non conjugate prior, sometimes to
good effect, sometimes less so) for approximating the posterior. The idea is to assume a
Gaussian prior, compute the posterior, which is

log Pr(W | D) = −
1
2
(W − m0)

TS−1
0 (W − m0) +

n∑
i=1

(y(i) logo(i) + (1 − y(i)) log(1 − o(i))) ,

where o(i) = sigmoid(WTx(i)).
This clearly does not have the form of a Gaussian. So we want to find a Gaussian

approximation to the posterior, which means finding parameters mn and Sn that make a
good approximation. Using a second-order Taylor-series expansion about the mode, we
find that the MAP estimate of the weights, which under a simple diagonal Gaussian prior
is

Wmap = arg min
W

NLL(W) + λWTW ,

the appropriate choice of mn.
The gradient of the negative log likelihood at the mode is:

∂NLL(W)

∂W

∣∣∣∣
WMAP

= s−1
0 (W − m0) −

n∑
i=1

(y(i) − o(i))x(i) ,

where output o(i) = sigmoid(x(i)TWMAP).
The covariance matrix is then the inverse of the Hessian, which is a matrix of second

derivatives of NLL. So,

s−1
n = H =

∂2NLL(W)

∂W∂WT

∣∣∣∣
WMAP

= s−1
0 +

n∑
i=1

o(i)(1 − o(i))x(i)x(i)T .

Going from here to a predictive distribution requires further approximation. We won’t
go into it in detail. However, there is one more useful concept to get out of this, which is
the Bayesian information criterion or BIC. We can approximate

log Pr(D) ≈ log Pr(D | WMAP) + log Pr(WMAP) +
D

2
log(2π) −

1
2

log |H| .

MIT 6.867 Fall 2012 10

The second two terms, called the Occam factor, measure the complexity of the model. If the
prior on weights is uniform, then we can simplify to

log Pr(D) ≈ log Pr(D | WML) −
1
2

log |H| .

The determinant of a covariance matrix can be seen informally as characterizing the “size”
of the covariance ellipse: if it’s large then we are more uncertain about the weight values,
which means the marginal likelihood will be lower.

If we think of H as being a sum of Hi over the individual data points, and assume that
they are approximable by single Ĥ, then

log |H| = log |nĤ|

= log
(
nD|Ĥ|

)
= D logn+ log |Ĥ|

We drop log |Ĥ| because it is independent of n and D, and wind up with a fairly gross
approximation:

log Pr(D) ≈ log Pr(D | WML) −
D

2
logn .

This is the BIC score, which can be used as a quick-and-dirty way of selecting model com-
plexity.

BIC is asymptotically consistent as a selection criterion: that is, given a set of models,
as n→∞, BIC will select the correct model. It has a tendency to select models that are too
simple, with small n, though.

5 Fitting predictors directly

No model Prediction rule Prob model Dist over models
Classification c

Another strategy is to abandon the idea of fitting probabilistic models and then using
decision theory to make decisions and, instead, to try to find a prediction rule directly.
This strategy makes no distributional assumptions at all, and is generally unable to make
probabilistic predictions. The fact that it doesn’t make distributional assumptions means
that it can be applied in a much broader variety of situations; but the lack of assumptions
tends to mean that more data is required to obtain a predictor with good generalization
properties.

We will restrict our attention to linear separators, again with the idea that you might
want to transform your original input space by applying a basis set of feature-functions φj
to the original input vector x(i).

5.1 Linear discriminant functions

A linear discriminant function has the form

y(x) = wTx+w0 ,

and we will select output 1 for input x if y(x) > 0, and output 0 otherwise. The decision
boundary is the locus of points x for which y(x) = 0. It is a D − 1-dimensional hyper-
plane in a D-dimensional space. Figure 1 illustrates a linear discriminant function in two
dimensions.

Here are some important properties and definitions:

MIT 6.867 Fall 2012 11

x2

x1

w
x

y(x)
‖w‖

x⊥

−w0
‖w‖

y = 0
y < 0

y > 0

R2

R1

Figure 1: Geometry of linear discriminant functions (Bishop Figure 4.1).

• The decision surface is orthogonal to w.

Consider two points on the decision surface, xa and xb; the vector from xa to xb lies
within that surface. We know that y(xa) = y(xb) = 0, so wT (xa − xb) = 0; so w is
orthogonal to xa − xb.

• The perpendicular distance from the origin to the decision surface is

wTx

‖w‖
= −

w0

‖w‖

We are interested in the magnitude of the projection of x, where x is on the decision
surface, ontow. Let θ be the angle between x andw. Then the perpendicular distance
is ‖x‖ cos θ. We’d like to express this in terms of dot products. We remember from
high school that

wTx = ‖w‖‖x‖ cos θ .

Combining these two facts, we can easily derive the perpendicular distance. Note
that w0 determines the location of the decision surface.

• The signed distance r of a point x to the decision surface is (wTx+w0)/‖w‖.
Let x⊥ be the orthogonal projection of x onto the decision surface. We know that
w
‖w‖r is the perpendicular vector from x to the decision surface (because w

‖w‖ is a unit
vector in the right direction and r is its length). So

x = x⊥ + r
w

‖w‖

wTx+w0 = wTx⊥ + rwT
w

‖w‖
+w0

wTx+w0

‖w‖
= r

The last step is because wTx⊥ +w0 = 0 (because w⊥ is on the decision surface) .

MIT 6.867 Fall 2012 12

• The geometric margin γ(i) of a training example (x(i),y(i)) is the distance of the point on
the “right” side of the decision surface:

γ(i) = y(i)w
Tx(i) +w0

‖w‖

It is positive if either:

– y(i) = +1 and wTx(i) +w0 > 0

– y(i) = −1 and wTx(i) +w0 < 0

• The functional margin γ̂(i) of a training example (x(i),y(i)) is an unnormalized notion of
margin:

γ̂(i) = y(i)(wTx(i) +w0)

5.2 Support vector machines for separable data

The idea here is that, if we’re looking for a separator, it seems reasonable to pick one that
is as far as possible from the closest points. That is to say, it maximizes the margin between
the decision surface and the closest points. Two motivations:

• If there is some noise in the x values, we would like not to be too close to any of the
training points.

• Imagine we use a mixture-of-Gaussians to represent Pr(X | Y = c), and we are very
extreme, using one Gaussian per training example. As we let the variance go to 0,
the optimal predictive hypothesis becomes the one that maximizes the margin. It is
because it is only the closest points that have any influence.

5.2.1 Primal form

So, let’s maximize the margin! That would mean finding

arg max
w,w0

(
1
‖w‖

min
i

(
y(i)(wTx(i) +w0)

))
.

Unfortunately, this isn’t an instance of any kind of optimization problem we know how to
deal with. So, we’ll find a new formulation.

First, note that if we multiplied all of the values inw andw0 by some constant c, the sep-
arator would be unchanged. So we really have an extra degree of freedom in the problem.
Let’s just, arbitrarily decide to set the maximum functional margin to be 1. That means, for
the closest point, x(c), to the surface,

y(c)(wTx(c) +w0) = 1 ,

and so, for all points,
y(i)(wTx(i) +w0) > 1 . (1)

A constraint (or its associated data point) is active if the constraint holds with equality, else
it is inactive.

Subject to those constraints we would like to make ‖w‖ as small as possible, since that
will make the geometric margin bigger, which is what we really want to do. So, we’ll solve
the optimization problem

arg min
w,w0

1
2
‖w‖2 ,

MIT 6.867 Fall 2012 13

subject to the constraints 1. We’ve changed the objective a bit, squaring the norm and
dividing by two for later convenience.

This is good news. It is a quadratic programming problem, with a quadratic objective and
linear constraints. There is software for doing this, and there is a single optimum so we can
actually solve pretty reliably.

I’m following Andrew
Ng’s CS229 story here.
Also look in Bishop
appendix E.

Note that although w0 isn’t in the objective, it is in the constraints, and as we change w
we will have to change w0.

5.2.2 Dual form

Now, let’s formulate this constrained optimization problem with Lagrange multipliers:
we’ll introduce α1, . . . ,αn, one for each constraint, yielding

L(w,w0,α) =
1
2
‖w‖2 −

n∑
i=1

αi

(
y(i)(wTx(i) +w0) − 1

)
.

We let
θP(w) = max

α:αi>0
L(w,α) ;

If w violates any constraints then this value will be infinity; if it satisfies the constraints, it
will just be the value of the original unconstrained objective. So, this problem

p∗ = min
w
θP(w) = min

w
max
α:αi>0

L(w,α)

has the same solutions as the original, primal problem, with optimal value p∗.
Now, we’re going to consider a different, dual problem. Define

θD(α) = min
w
L(w,α) .

The dual problem is

d∗ = max
α:αi>0

θD(w) = max
α:αi>0

min
w
L(w,α) .

In general, d∗ 6 p∗, but under a set of conditions that are satisfied in this problem but
That the objective and
constraints be convex

we’re not going to go into in detail, d∗ = p∗ = L(w∗,α∗). In addition, the KKT conditions
are satisfied for all i:

∂

∂wi
L(w∗,α∗) = 0 (2)

α∗i

(
y(i)(w∗Tx(i) +w∗0) − 1

)
= 0 (3)(

y(i)(w∗Tx(i) +w∗0) − 1
)

> 0 (4)

αi > 0 (5)

This means that, at every point, either α∗i = 0 or
(
y(i)(w∗Tx(i) +w∗0) − 1

)
= 0; that is,

that the constraint on point i is tight. We will call points for which the constraint is tight,
support vectors.

So, let’s find the dual form in detail. We need to find a function θ(α) = minw,w0 L(w,w0,α)

by setting derivatives with respect to w to 0 and solving for w in terms of α:

∇wL(w,w0,α) = w−

n∑
i=1

αiy
(i)x(i) = 0 .

MIT 6.867 Fall 2012 14

So,

w =

n∑
i=1

αiy
(i)x(i) .

Also, we can take the derivative with respect to w0 and set to 0 to get

∂

∂w0
L(w,w0,α) =

n∑
i=1

αiy
(i) = 0 .

Rewriting L as

L(w,w0,α) =
1
2
‖w‖2 −

n∑
i=1

αiy
(i)wTx(i) −w0

n∑
i=1

αiy
(i) +

n∑
i=1

αi ,

plugging this definition of w in, and noticing that
n∑
i=1

αiy
(i)wTx(i) = ‖w‖2 ,

we get

θD(α) =

n∑
i=1

αi −
1
2

n∑
i,j=1

y(i)y(j)αiαjx
(i)Tx(j) −w0

n∑
i=1

αiy
(i)

=

n∑
i=1

αi −
1
2

n∑
i,j=1

y(i)y(j)αiαjx
(i)Tx(j)

So, finally, we end up with the dual optimization problem:

maxα
∑n
i=1 αi − 1

2

∑n
i,j=1 y

(i)y(j)αiαj

(
x(i)Tx(j)

)
subject to αi > 0∑n

i=1 αiy
(i) = 0

If we solve the dual problem for the α∗i , then we can use them to computew∗. Note that
α∗i will be 0 for all points that are not on the margin: so the weights can be computed only
as a function of the support vectors (points with non-zero αi). Let S be the set of indices of
support vectors.

In addition, once we know α, we have our prediction rule:

y(x) =

n∑
i∈S

αiy
(i)
(
xTx(i)

)
+w0 .

To compute w0, note that, for any support vector, x(j), the functional margin is 1. So

y(j)

(∑
i∈S

αiy
(i)
(
x(j)Tx(i)

)
+w0

)
= 1

w0 =
1
y(j)

−
∑
i∈S

αiy
(i)
(
x(j)Tx(i)

)
For more robustness (using all the support vectors), do this instead:

Recall that y = (1/y)
because y is always
either +1 or −1.

w0 =
1
|S|

∑
j∈S

(
y(j) −

∑
i∈S

αiy
(i)
(
x(j)Tx(i)

))
.

Critical point: In the optimization problem for finding α and in the resulting prediction
rule, we depend on x only through dot products with other x values. This will let us do a
cool feature-space maneuver called the kernel trick. Stay tuned.

In the primal, there are D parameters. In the dual, there are n.

MIT 6.867 Fall 2012 15

5.3 Support vector machines for non-separable data

Now, we have two issues to think about:

1. Although the SVM separator is very robust with respect to moving non-support vec-
tors, it is highly sensitive to moving the support vectors or to “outliers” close to the
margin.

2. The SVM optimization problem, as we have formulated it in the previous section, is
infeasible if the data are not linearly separable.

It would be great if we could just “give up” on a few points and construct the classifier
on the basis of the remaining points. This would be a hard problem to solve but we can do
something close to it by introducing slack variables for the margin constraints in support
vector machines.

For each training example, we will add slack variable ξi, which is allowed to “take up
the slack” in the associated constraint; so that the constraints now have the form

y(i)(w · x(i) +w0) > 1 − ξi .

If we picked the slack values in advance, we would have a problem of the same form as
before. But, we will leave them as variables in the optimization, to be chosen in such a way
as to minimize the objective (which now penalizes the sum of the slack variable values)
subject to satisfying the constraints.

The primal soft-margin SVM optimization problem is given by

minimize
1
2
‖w‖2 + C

n∑
i=1

ξi subject to

y(i)(w · x(i) +w0) > 1 − ξi, i = 1, . . . ,n

ξi > 0, i = 1, . . . ,n

Recall that, for the hard-margin SVM (without slack variables), the geometric margin is
defined as the minimum distance from any point to the separating hyperplane. This dis-
tance can be shown to be 1/‖w‖, where the 1 in the numerator comes from the classification
constraints y(i)(w·x(i)+w0) > 1 in the optimization problem. When we use slack variables
(regardless of whether the data is separable), some of the points may be misclassified, so
we can no longer measure the margin directly in terms of the minimum distance to the sep-
arating hyperplane. However, we can still use the expression 1/‖w‖ as the definition of the
margin, where w comes from solving the SVM optimization problem with slack variables.
Indeed, all the points that lie exactly on the margin will satisfy y(i)(w · x(i) + w0) = 1 as
they would without slack variables.

You can think of
n∑
i=1

ξi

as the total amount of distance from the margin to points that are on the wrong side of
it. As we increase C, we will try harder to keep all of the points on the appropriate side
of the margin, at the cost of having a smaller margin. As C → ∞ it turns back into the
hard-margin SVM.

• Data points for which ξi = 0 are correctly classified and are either on the margin or
on the correct side of the margin.

MIT 6.867 Fall 2012 16

• Data points for which 0 < ξi 6 1 are inside the margin but on the correct side of the
decision boundary.

• Data points for which ξi > 1 are on the wrong side of the decision boundary and are
therefore misclassified.

We can set this up as a Lagrangian optimization problem; we will have to introduce a
new set of Lagrange multipliers µi, which we use to enforce the constraint that the ξi be
non-negative.So, we have

What a horrible nota-
tion choice is µ! But
I decided to follow
Bishop here...

L(w,w0,α,µ) =
1
2
‖w‖2 + C

n∑
i=1

ξn −

n∑
i=1

αi

(
y(i)x(i) ·w− 1 + ξi

)
−

n∑
i=1

µiξi .

The detailed derivation is in Bishop. First, we find that the weights are as before!

w =

n∑
i=1

αiy
(i)x(i) .

Then we end up, after taking derivatives with respect to w, w0, and ξ, setting to 0, and us-
ing the results to write the Lagrangian only in terms of α, we end up with this optimization
problem to find the αs:

maximize
n∑
i=1

αi −
1
2

n∑
i−1

n∑
j=1

αiαjy
(i)y(j)

(
x(i) · x(j)

)
subject to

0 6 αi 6 C

n∑
i=1

αiy
(i) = 0

This is a quadratic program, so it’s not too hard to solve. There are strategies for solving
really big ones by optimizing with respect to only a few multipliers at a time. SMO (se-
quential minimal optimization) scales somewhere between linearly and quadratically with
the number of points.

Support vectors are points with αi > 0. It’s important to note that the associated slack
variables for these points can be in any of the cases above: they can be exactly on the
margin, inside the margin, or on the wrong side of the separator. Each support vector
satisfies, the following, because the constraint is tight against the slack variable:

y(i)x(i) ·w = 1 − ξi .

In addition, as a consequence of gradient of Lwith respect to ξi being 0, we have

αi = C− µi .

If αi < C, then µi > 0, so the point lies on the margin. If αi = C, then they might be
correctly classified or misclassified, depending on the value of ξi.

To compute w0, we average over M which is the set of indices for which 0 < αi < C:

w0 =
1

|M|

∑
j∈m

(
y(j) −

∑
i∈S

αiy
(i)
(
x(j)Tx(i)

))
.

MIT 6.867 Fall 2012 17

5.4 Perceptron

No model Prediction rule Prob model Dist over models
Classification c

Here’s a very different method for finding a linear separator. We don’t even have an
objective function....just an algorithm. We will be looking for w such that y(x;w) = x · w,

Assume we’ve added
a column of 1’s to the
data

and our prediction h(x) will be +1 if y(x;w) > 0 and −1 otherwise.

• Start with w assigned to any value, but 0 is typical.

• Go through the training examples x(i)y(i) in order, and go back to the beginning of
the training set until you have a weight vector that categorizes the whole training set
correctly.

• If y(i) 6= h(x(i);w)

w← w+ y(i)x(i) .

Parameter updates tend to correct mistakes. When we make a mistake on x(i),

• the sign of w · x(i) disagrees with y(i)

• the product of y(i)w · x(i) is negative

• the updated parameters are w+ y(i)x(i)

If we try to classify with the new parameters, we will have

y(x;w ′) = y(i)(w+ y(i)x(i)) · x(i)

= y(i)(w · x(i)) + y(i)2
(x(i) · x(i))

= y(i)(w · x(i)) + |x(i) · x(i)|2

So the value increases as a result of the update. Eventually (if this update is repeated) the
point will be classified correctly.

Theorem: If the data are separable, the algorithm is guaranteed to terminate with w
representing a separator. It will not terminate if the data are not separable.

Note also that the weights are a weighted combination of input vectors...sound famil-
iar?

Theorem: If

• There exists R such that, for all i, ‖x(i)‖ < R,

• There exists w∗ with geometric margin γg

This is the margin of
the closest point to the
separator.

Then the perceptron algorithm makes at most

R

γg

errors.
Note that this result is independent of the number of data points n, and the dimension

of the space D. A large margin, relative to R, implies that we will make few mistakes.
Can prove this by showing that the angle between w∗ and w is decreasing by a finite

amount after every mistake.

