
6.867 Section 5: Graphical models

Contents
1 Intro 2

2 Representation and semantics 2
2.1 Directed models: Bayesian networks . 3
2.2 Undirected models: Markov random fields . 6
2.3 Directed and undirected graphs . 7
2.4 Factor graphs . 8

3 Exact inference 8
3.1 Variable elimination . 9

3.1.1 Simple chain . 9
3.1.2 More generally . 9

3.2 Message passing . 10
3.2.1 On a chain . 10
3.2.2 On a factor graph that is tree . 11
3.2.3 Finding MAP values . 15

3.3 Converting graphs to trees . 17

4 Approximate Inference 17
4.1 Loopy BP . 17
4.2 Variational methods . 18
4.3 Sampling . 19

4.3.1 Rejection sampling . 20
4.3.2 Importance sampling . 20
4.3.3 Gibbs sampling . 21

5 Parameter estimation 21
5.1 Completely observed data . 22
5.2 Latent variable models and EM . 22

5.2.1 EM Algorithm . 23
5.2.2 Bayesian networks with hidden nodes . 25
5.2.3 Gaussian mixtures . 25
5.2.4 Exponential family and expected sufficient statistics 27

5.3 Parameter estimation in undirected models . 28

6 Structure learning 28
6.1 Finding the best tree-structured model . 28
6.2 Structure search . 29
6.3 Bayesian score and model complexity . 30

7 Temporal models 31
7.1 Hidden Markov models . 31
7.2 Exact Inference . 33
7.3 Learning . 35

1

MIT 6.867 Fall 2012 2

1 Intro

We are now going to focus on the problem of density estimation. In density estimation,
we are given a set of data D = {x(1), . . . , x(n)} that we assume are drawn IID from some
distribution Pr(X). Our job is to estimate that distribution.

We have seen versions of this problem already twice before:

• When building a probabilistic discriminative model for regression or classification,
we estimate Pr(Y | X; θ). So, for a given x value, we are delivering an estimate of
the distribution on Y; however, in the case of discriminative learning, the whole con-
ditional distribution is parameterized by θ, so we are not typically concentrating di-
rectly on representing a density on Y.

• When building a probabilistic generative model for regression or classification, we
convert the problem of estimating Pr(Y | X) to one of estimating Pr(Y,X; θ), knowing
that Pr(Y | X = x) = Pr(Y,X = x)/Pr(X = x). That is a density estimation problem,
on the joint distribution of Y and X. In the case of classification, we further convert
this to a problem of estimating Pr(Y; θ1) and Pr(X | Y; θ2).

Other times, we may be interested in density estimation as our primary problem. It can
be useful for:

• Building models that reveal something about the underlying structure of a collection
of objects

• Doing anomaly detection; that is, after training on D, given a new x, predict its likeli-
hood in the distribution the training data was drawn from. This may let us discover
unlikely or unusual events.

But we tend to find
that unlikely doesn’t
usually mean interesting.

No model Prediction rule Prob model Dist over models
Density estimation c

The distinction between a prediction rule and a probabilistic model doesn’t make much
sense here, since we’re predicting probabilities. Later on, we will look at non-parametric
methods, which can also be seen as doing density estimation, but with a model that is
based directly on the training data.

We also use graphical models, as researchers and practitioners, as a way of describing
the models we are applying to solve a problem.

2 Representation and semantics

Barber’s book is a
gentler introduc-
tion than Bishop, if
you want something
with more examples:
http://web4.cs.ucl.ac.uk/staff/

D.Barber/textbook/270212.pdf .

The idea behind graphical models is that we can decompose the problems of estimating
a joint distribution and of reasoning with it (for instance, computing Pr(Y | X = x)), into a
set of related but easier sub-problems, based on

• Factoring the domain into multiple random variables X1, . . . ,Xd; the random vari-
ables may be discrete or continuous

• Describing Pr(X1, . . . ,Xd) as a product of factors
∏
kφk(X), where each factor φk

depends only on a subset of the random variables Xi.

By factoring the distribution in this way, we improve the computational efficiency of rea-
soning in the model and decrease the number of samples required for learning.

MIT 6.867 Fall 2012 3

x1

x2 x3

x4 x5

x6 x7

Figure 1: Bayes net (Bishop Figure 8.2)

These models are called graphical models because we use graphs to model the depen-
dency structure among the variables that is induced by the factors φ.

In addition, it is often the case that a good factoring of the domain can be provided
based on human insight into the structure of the problem; graphical models let us easily
combine structural prior knowledge with statistical data.

Graphical models are multi-purpose: if we learn a (compact) joint distribution onX1, . . . ,Xd,
then we can compute any conditional distribution Pr(Xi1,...,ik | Xj1,...jm). We can condition
on any evidence available, and ask about any marginal or joint distribution over the other
variables.

2.1 Directed models: Bayesian networks

We will first consider directed graphical models, also known as Bayesian networks. They are
made up of:

• Nodes: representing random variables

We will tend to focus
on the discrete case, but
the continuous case is
interesting and impor-
tant. Some combina-
tions of discrete and
continuous nodes can
be challenging to deal
with.

• Arcs: representing dependencies between variables

Together, the arcs and nodes must constitute a directed acyclic graph (DAG). This means that
there must be no directed cycles among the arcs. The graph in figure 1 is a DAG: although
there are cycles, none of them are directed cycles (you can’t follow it all the way around in
the direction of the arrows).

In figure 1,

• x1 and x2 are parents of x4

• x1 is an ancestor of x6

• x6 is a descendant of x1

• Any two nodes that share a parent are siblings

Each node Xi contains a definition for the conditional distribution

Pr(Xi | Parents(Xi)) .

Generally, it takes many fewer parameters to specify a Bayes net than to specify the
whole joint distribution.

MIT 6.867 Fall 2012 4

The joint distribution is a product of the individual factors. This is sometimes known
as the chain rule of Bayesian networks:

Pr(X) =
∏
i

Pr(Xi | Parents(Xi)) .

So,

Pr(X1 = x1, . . . ,X7 = x7) = Pr(X1 = x1) Pr(X2 = x2) Pr(X3 = x3)

Pr(X4 = x4 | X1 = x1,X2 = x2,X3 = x3)

Pr(X5 = x5 | X1 = x1,X3 = x3) Pr(X6 = x6 | X4 = x4)

Pr(X7 = x7 | X4 = x4,X5 = x5)

Semantics of arcs

First, we define conditional independence: A is conditionally independent of B given C,
written A ⊥ B | C, iff

Pr(A | B,C) = Pr(A | C) .

I think about this as
saying “If I know the
value of C, then know-
ing B doesn’t give me
any further information
about A.”

Bayesian networks make the local Markov assumption (LMA): the random variable rep-
resented by a node Xi in the graph is conditionally independent of its non-descendants given
its parents. That is, for all Xi,

Xi ⊥ Nondescendants(Xi) | Parents(Xi) .

It is the absence of links that encodes independence information.
These structures make the same conditional independence assertions:

A -> B -> C
A <- B <- C
A <- B -> C

The LMA in the first structure asserts C is conditionally independent of A given B:

Pr(C | A,B) = Pr(C | B) .

The LMA in the second structure asserts A is conditionally independent of C given B:

Pr(A | C,B) = Pr(A | B) .

The LMA in the third structure asserts both:

Pr(C | A,B) = Pr(C | B)

Pr(A | C,B) = Pr(A | B)

To show these are all equivalent, we really only need to show that the first implies the
second:

Pr(C | A,B) = Pr(C | B)

Pr(A,B,C)

Pr(A,B)
=

Pr(B,C)

Pr(B)

Pr(A,B,C) =
Pr(A,B) Pr(B,C)

Pr(B)

Pr(A,B,C)

Pr(B,C)
=

Pr(A,B)

Pr(B)

Pr(A | B,C) = Pr(A | B)

This structure is different

MIT 6.867 Fall 2012 5

A -> B <- C

The LMA doesn’t make any conditional independence assertions in this case.
To further explore this, let’s consider the number of parameters in these models. As-

suming each variable is binary, then in the top model, we need to specify Pr(A), Pr(B | A)

and Pr(C | B). To specify Pr(A), we just need one parameter: Pr(A = 1). Each of the other
two conditional probability tables (CPTs) requires 2 parameters:e.g., Pr(B = 1 | A = 1) and
Pr(B = 1 | A = 0). So, to specify the whole network, in each of the top three cases, we need
5 parameters.

To specify this last network, we need to specify Pr(A), Pr(C), and Pr(B | A,C). It takes
one parameter for each of the first two distributions, and then 4 for the last one. So, this is
a more expressive model.

Exercise: How many pa-
rameters does it take to
specify Pr(A,B,C) with
structural assumptions at
all?

Exercise: Give a proba-
bility distribution that (1)
cannot be expressed in
the top three models; (2)
can be expressed in the
bottom model.

Example: explaining away

Consider the network

Battery -> Gauge <- FuelTank

Here are some CPTs:

Pr(B = 1) = 0.9

Pr(F = 1) = 0.9

Pr(G = 1 | B = 1, F = 1) = 0.8

Pr(G = 1 | B = 1, F = 0) = 0.2

Pr(G = 1 | B = 0, F = 1) = 0.2

Pr(G = 1 | B = 0, F = 0) = 0.1

• What is the prior that the tank is empty?

Pr(F = 0) = 0.1

• What if we observe the fuel gauge and find that it reads empty?

Pr(F = 0 | G = 0) =
Pr(G = 0 | F = 0) Pr(F = 0)

Pr(G = 0)

=

∑
b Pr(G = 0,B = b | F = 0) Pr(F = 0)∑

f,b Pr(G = 0, F = f,B = b)

=

∑
b Pr(G = 0 | F = 0,B = b) Pr(B = b | F = 0) Pr(F = 0)∑

f,b Pr(G = 0 | F = f,B = b) Pr(F = f,B = b)

=

∑
b Pr(G = 0 | F = 0,B = b) Pr(B = b) Pr(F = 0)∑
f,b Pr(G = 0 | F = f,B = b) Pr(F = f) Pr(B = b)

=
(0.8 · 0.9 + 0.9 · 0.1) · 0.1

(0.8 · 0.9 + 0.9 · 0.1) · 0.1 + (0.2 · 0.9 + 0.8 · 0.1) · 0.9
≈ 0.257

This is greater than Pr(F = 0); so, seeing the gauge reading empty makes us think it
is more likely that the fuel tank is empty. Seems reasonable.

MIT 6.867 Fall 2012 6

• Now, what if we find the battery is dead?

Pr(F = 0 | G = 0,B = 0) =
Pr(G = 0 | F = 0,B = 0) Pr(F = 0 | B = 0)

Pr(G = 0 | B = 0)

=
Pr(G = 0 | F = 0,B = 0) Pr(F = 0)∑

f Pr(G = 0, F = f | B = 0)

=
Pr(G = 0 | F = 0,B = 0) Pr(F = 0)∑

f Pr(G = 0 | F = f,B = 0) Pr(F = f | B = 0)

=
Pr(G = 0 | F = 0,B = 0) Pr(F = 0)∑
f Pr(G = 0 | F = f,B = 0) Pr(F = f)

=
0.9 · 0.1

0.9 · 0.1 + 0.8 · 0.9
= 0.111

The probability that the tank is empty has decreased! Finding that the battery is flat
explains away the empty fuel tank reading.

Conditional independence

NodeA is d-separated from node B given set of nodes C iff all paths fromA to B are blocked
by C. A path is blocked if and only if it includes a node such that either:

• The arrows on the path meet either head-to-tail or tail-to-tail at the node, and the
node is in C; or

• The arrows meet head-to-head at the node, and neither the node nor any of its de-
scendants, is in C.

Theorem: If A is d-separated from B given C, then A is conditionally independent of B
given C.

A useful concept is the Markov blanket of a node Xi. It consists of:

• The parents of Xi

• The descendants of Xi

• The parents of the descendants of Xi

Theorem: Xi is conditionally independent of all other nodes in the graph, Given the values
of the nodes in the Markov blanket of Xi.

2.2 Undirected models: Markov random fields

A Markov random field has

• Nodes representing random variables

• Arcs representing the existence of dependencies between variables

• Potential functions representing the numerical dependencies between groups of vari-
ables; generally one potential per clique in the graph, but okay to have one potential
per maximum clique

MIT 6.867 Fall 2012 7

In undirected models, the Markov blanket of a node is simply its set of neighbors.
The equivalent notion to d-separation is simply separation in the graph: A is separated

from B by the set C if, in the graph with the nodes in C removed, there are no paths from
A to B.

The joint probability distribution is

Pr(X1, . . . ,Xd) =
1
Z

∏
C

φC(Xc) ,

where C ranges over all of the cliques in the graph, φC is a function from assignments of
values to the variables in clique C to positive values (they do not need to be probabilities!!),
and Z is a normalizing constant which is called the partition function:

Z =
∑
x

∏
C

φC(xc) .

Hammersley-Clifford theorem: The set of probability distributions with conditional in-
dependence relations consistent with the graph structure of an MRF is the same as the
set of probability distributions describable as a normalized product of potentials over the
maximal cliques of the graph.

• Good: potentials don’t have to be normalized; easy to describe a model

• Bad: hard to compute Z.

• Bad: hard to estimate φ from data.

Bishop has a nice example application of image de-noising: one random variable for
each observed pixel; one for each actual pixel. Potentials are such that the actual pixel
value strongly wants to have the same value as the observed value of that pixel; and that
neighboring pixels would prefer to have same or similar values. The opinions of several
agreeing neighbors can “override” a noisy observation value.

2.3 Directed and undirected graphs

Given a directed graph, it is very easy to make an undirected graph.

• Add edges to the undirected graph so that it contains a clique for each set {Xi} ∪
Parents(Xi). This process is called moralization.

Somewhat annoyingly,
but yet memorably, be-
cause what we have to
do is marry the parents
of Xi.

• Add a potential function

φi({Xi} ∪ Parents(Xi)) = Pr(Xi | Parents(Xi))

In general, this will result in a model with more, smaller, clique potentials than necessary.
It will always be possible to convert this into a model with potentials only on the maximal
cliques.

It is important to note that, in the process of going from a directed model to an undi-
rected model, we generally lose the ability to express, graphically, all of the conditional
independence relations we had in the original model.

They are, of course, still
there in the distribu-
tion, but they may be
harder to “see”.

Given an undirected graph, it is generally much trickier to make a directed graph. It’s
not often done and we won’t address it here.

It is also possible to make graphs that contain both directed and undirected edges, but
that is also a story for another time.

MIT 6.867 Fall 2012 8

2.4 Factor graphs

A really useful unifying representation for directed and undirected graphs is something
called a factor graph.

Factor graphs have two kinds of nodes, and are bipartite:

• A node representing a random variable is connected to each of the nodes representing
factors to which it is an argument;

• A node representing a factor is connected to each of the random variables that is an
argument to that factor.

Factor graphs make more representation details clear.
To convert an undirected graph to a factor graph: make a variable node for each variable

node in the undirected graph; make a factor node for each maximal clique in the graph;
connect each variable node to the factor nodes for any cliques it is a member of.

To convert a directed graph to a factor graph: make a variable node for each variable
node in the directed graph; make a factor node for each CPT in the directed graph; connect
every variable mentioned in the CPT for a factor node to that factor node.

Bishop’s figures 8.41
and 8.42 give good ex-
amples of factor graphs.

Trees are easy! If we start with a directed or indirected tree, then the corresponding We’ll see what this
means in a little bit...for
now, just remember that
we like trees.

factor graph will be a tree. If we start with a directed polytree (which is a DAG with no
cycles at all, directed or undirected), then although the corresponding undirected model
has cycles in it, the associated factor graph will not.

If, however, we start
with an undirected
model that has loops or
with a directed model
that is a DAG but not a
tree or polytree, then
the resulting factor
graph will not be a tree.
Sadface.

3 Exact inference

There are two inference problems that we commonly find useful to solve:

• Conditional probability: Pr(Y | E = e), where Y and E are sets of variables, Y ⊂ X, E ⊂ X,
and generally Y ∩ E = ∅; and e is the observed values of the variables in E. Note that
it is not necessary that Y ∪ E = X: generally, there will be some additional variables
that are neither observed nor in the query, which will need to be marginalized out. A conditional proba-

bility query in which
E = ∅ corresponds to
asking for a marginal
distribution on one or
more variables.

• Most probable assignment (MAP):

arg max
y

Pr(Y = y | E = e) .

Note that the MAP of a set of variables is not necessarily the set of MAPs of the
individual variables.

We will find that: inference on factor graphs that are trees is polynomial in the sizes of
the factors. Inference on non-trees is generally exponential in a measure called the “tree
width”. Generally, we can exploit the graphical structure of a model to make inference
efficient.

We’ll focus on conditional probability queries. Letting Z = X \ (Y ∪ E), we can write

Just to keep things
simple-looking, we are
using y to range over
all assignments of val-
ues to the Y variables;
we’ll use e and z simi-
larly.

Pr(Y = y | E = e) =
Pr(Y = y,E = e)

Pr(E = e)

=

∑
z Pr(Y = y,Z = z,E = e)∑
y,z Pr(Y = y,Z = z,E = e)

So, if our graphical model describes a joint probability distribution on Pr(X) = Pr(Y,Z,E),
then all we have to be able to do is compute two different marginals and divide.

This is easier said than done, though: the number of possible assignments we will have
to add up is exponential in the number of unobserved variables.

MIT 6.867 Fall 2012 9

3.1 Variable elimination

3.1.1 Simple chain

Let’s start with a simple case, in which the nodes are connected in a chain. Converting from
directed to undirected is trivial. The corresponding factor graph just has a factor between
each pair of nodes. The models are shown in Bishop figure 8.32

The joint distribution is:

Pr(x) =
1
z
φ1,2(x1, x2)φ2,3(x2, x3) · · ·φn−1,n(xn−1, xn) .

Can we be clever about marginalizing? Let’s look at a simple chain with three nodes, where
we want to marginalize out the nodes on each end:

We don’t need a nor-
malizing constant z
here, because these po-
tentials are the CPDs
from a directed network
and are, hence, already
normalized.

Pr(X2 = x2) =
∑
x1

∑
x3

φ1,2(x1, x2)φ2,3(x2, x3)

=
∑
x1

φ(x1, x2) ·
∑
x3

φ2,3(x2, x3)

= µα(x2) · µβ(x2)

where µα(Xj) is a function mapping values of a set of variables Xj to R+.It is called µ for

Throughout this section,
we will be computing
new factors or a special
kind of factor called a
message: you can think
of these as: functions,
from values of a set of
random variables to
real numbers, indicat-
ing how “compatible”
those value are with
one another; or as ta-
bles representing those
functions; or as unnor-
malized probability dis-
tributions. In the case
of messages, they will
be indexed by a single
variable (or, in the func-
tion view, have a single
argument). In the case
of factors, they may be
indexed by multiple
variables.

message. Here we have a forward message, µα and a backward message, µβ. Because there are
a finite number of values of Xj, you can also think of it as a vector of values: then the dot
product operation between them is the usual vector dot product.

What’s good about this? We were able to do two independent sums, one over values
for X1 and one over values for X3, instead of a quadratic operation. This is a (very simple)
instance of a more general algorithm called variable elimination. Returning to the general
case of the chain, we can compute a marginal over a variable in the middle with:

Pr(Xk = xk) =
1
z

(∑
xk−1

φk−1,k(xk−1, xk) · · ·

(∑
x2

φ2,3(x2, x3)

(∑
x1

φ1,2(x1, x2)

))
· · ·

)
·(∑

xk+1

φk,k+1(xk, xk+1) · · ·

(∑
n

φn−1,n(xn−1, xn)

)
· · ·

)
= µα(xk) · µβ(xk)

This takes O(nm2) for n nodes withm values each; much less than O(mn)!!
The fundamental properties we are taking advantage of, here, is the distribution of

summation over a product: ab + ac = a(b + c). When we do that, we save an arithmetic
operation.

3.1.2 More generally

To compute a single marginal distribution, we can use the variable elimination algorithm. It
can be applied to any graphical model, whether or not it has directed or undirected loops.
We will just present it informally.
To compute Pr(Xj)

• V = {X1, . . . ,Xj−1,Xj, . . . ,Xn} is a set of variables to be eliminated

• F = {φ1, . . . ,φm} is a set of factors that are still relevant to the problem, initialized to
contain all the factors in the model

• Loop until |F| = 1:

MIT 6.867 Fall 2012 10

– Select a variableW ∈ V to eliminate

– Find all factors Φ ⊆ F that takeW as an argument

– Let Z be the set of variables involved in some factor inΦ, but not includingW

– Construct a new factor, φnew with arguments Z, where

φnew(z) =
∑
w

∏
φ∈Φ

φ(w, z) .

– V = V \ {W}

– F = F ∪ {φnew} \Φ

At termination F contains a single factor on Xj. If the original potentials were unnormal-
ized, then it will be necessary to normalize it in order to get Pr(Xj.

Variable elimination can be applied to any directed model (it need not be a tree).

• It will take time exponential in the number of variables in the largest factor φnew that
gets created.

• The size of the largest factor depends on the order in which we eliminate variables.

• It is NP-complete to find the best variable ordering. But there are some reasonable
heuristics.

• The number of variables in the largest factor using the best ordering is called the tree
width.

• This problem cannot be solved faster than exponentially in the tree width no matter
what algorithm we use.

3.2 Message passing

We will explore an alternative inference algorithm, called message passing or belief propa-
gation. It really only applies to models (directed or undirected) whose factor graphs are
trees.

It is useful because:

• It can be used to compute all the marginals in the same amount of time it takes vari-
able elimination.

• It can be used to compute a MAP assignment as well as a marginal or conditional
probability.

• It can actually be applied to factor graphs that aren’t trees...but the results are not
exactly correct in that case.

3.2.1 On a chain

We can compute the necessary quantities on the chain recursively, thinking of messages
µα as propagating from left to right in the graph and messages µβ as propagating from
right ot left. Whenever we know both α and β messages for a node, we can compute its
distribution.

Remember that a message µxk
is a vector ofmk values, wherem is the number of values

that xk can take on. Now, the recursive definitions, first for the forward messages:

Think of these as ex-
pressing a collective
opinion, based on all
the nodes with indices
lower than k, about the
values of xk.

MIT 6.867 Fall 2012 11

µα(xk) =
∑
xk−1

φk−1,k(xk−1, xk)

(∑
xk−2

· · ·

)
=
∑
xk−1

φk−1,k(xk−1, xk) · µα(xk−1)

The base case is
µα(x1) = 1 .

Now, for the backward messages:

Think of these as ex-
pressing a collective
opinion, based on all
the nodes with indices
higher than k, about the
values of xk.

µβ(xk) =
∑
xk+1

φk,k+1(xk, xk+1)

(∑
xk+2

· · ·

)
=
∑
xk+1

φk,k+1(xk, xk+1) · µβ(xk+1)

The base case is
µβ(xn) = 1 .

One pass of “message passing” in each direction along the whole chain yields all marginal
distributions.

If we have observed variable Xj to have value vj, then we

• Add one more potential

φobs(xj) =

{
1 if xj = vj

0 otherwise

• Multiply it into φj−1,j and φj,j+1

3.2.2 On a factor graph that is tree

Now we’ll generalize the algorithm to apply to factor graphs. Think of the variable Xk. It
is connected to a set of factors, which we will call neighbors(Xk). On the “far side” of each
factor is a whole set of other factors. These factor sets do not overlap. We will express the
marginal at node Xk as a product of new factors Fs, one for each neighbor φs of Xk, each of
which summarizes the effects of the whole set of variables Xw and factors that are on the
far side of factor φs.

We can express the marginal at node k as:

Pr(xk) =
∑
x−{xk}

Pr(x)

=
∑
x−{xk}

∏
i

φi(x)

=
∑
x−{xk}

∏
S∈neighbors(Xk)

Fs(xk, zs)

where zS is the set of variables that are in the tree rooted at factor S, but not including the
children of Xk and Fs(xk, zs) represents the product of all the factors in that tree.

Exchanging sums and products in a similar way as for the chain, and adding in one
term for each factor S connected to Xk, we can write this as a product of incoming messages:

Pr(xk) =
∏

S∈neighbors(Xk)

∑
xs

Fs(xk, xs)

=
∏

S∈neighbors(Xk)

µφS→Xk
(xk)

MIT 6.867 Fall 2012 12

Now we can express a recursive algorithm in which messages are passed “inward,”
from the leaves of the tree. There are two kinds of messages: those going from factors to
nodes, and those going from nodes to factors.

This is a pretty abstract
description. There is a
small worked example
in the recitation hand-
out.Factor-to-node messages: Let XS be the set of variables connected to factorφS. To compute

a message from φS to Xk, we take the sum over all the values of variables in φS except for
Xk, of the product of the factor φs applied to those values times the product, over all the all
the variables Xm that are neighbors of φk except for Xk, of the messages going from those
variables into φS:

µφS→Xk
(xk) =

∑
xS\xk

φs(xs)
∏

Xm∈Xs\Xk

µXm→φS
(xm) .

Base case if φ is a leaf:
µφ→Xi

(xi) = φ(xi) .

Node-to-factor messages: There is a similar method for computing messages from nodes
to factors:

µXm→φS
(xm) =

∏
φl∈neighbors(Xm)\φS

µφl→Xm
(xm) .

Base case if Xi is a leaf:
µXi→φ(xi) = 1 .

Sum-Product Algorithm for finding marginal Pr(Xj): every variable and factor node com-
putes and sends a message to its remaining neighbor whenever it has received messages
from all but one of its neighbors; leaves can send a message immediately. As soon as node
Xj has received a message from every one of its neighbors, it does a pointwise multiplica-
tion on the messages, and normalizes the result to get Pr(Xj).

To find all the marginals:

• Arbitrarily pick a root node

• Do one phase of message passing toward root

• Do one phase of message passing away from root

If the original graph was a directed graph, then the marginals we compute will already
be normalized; otherwise, the marginals will not be normalized, but since they are over a
single variable, it easy to compute 1/Z by summing the values of any one of the unnormal-
ized marginals.

Example of sum-product algorithm Figure 2 illustrates the operation of the sum-product
algorithm. It contains a factor graph, with the factors shown in blue tables. The messages
in red illustrate an “inward pass” toward node A. We’ll work through part if it, starting
from the message originating from G.

• The base case for a leaf that is a variable is to pass in a message that is 1 for all values.
Recall that a message is mapping from possible values of a variable, in this case, G,
to real numbers. In this example, all the variables are binary, so the messages have
two numbers, one for variable value 0 and one for variable value 1.

• Now, we compute a message from factor φDG to node D. Recall that

Written F_DG→D in the
figure, out of laziness.

µφS→Xk
(xk) =

∑
xS\xk

φs(xs)
∏

Xm∈Xs\Xk

µXm→φS
(xm) .

MIT 6.867 Fall 2012 13

A

E

G

C

D

F

B

B

1
0

7
3

1 1
5 5

3 7

3 7

1 1

1 1

5 4

5 3

25 12

73 112

3 7
5 5 255 230

55845 180320
0.236 0.763

Marginal on A

765 1610

7205 4670

36025 14010

78055 158100
0.331 0.669

Marginal on F

78055 158100

A

1
0

7
3

111
210

CE

01
00

4
1

111
310

CF

01
00

4
1

111
410

AC

01
00

4
1

111
410

DG

01
00

4
1

3111
110 1
101 4
100 2

2011
4010

ABD

001
000

2
1

G→F_DG
F_DG →D

F_B →B

B→F_ABD

D→F_ABD

F_A →A

F→F_CF

F_CF →C

E→F_CE

C→F_AC

F_AC →A

F_ABD →A

A→F_AC

F_AC →C
F_CE →C

C→F_CF

Figure 2: Example partial execution of the sum-product algorithm. All variables are binary.
Blue boxes are factors; red boxes are message going in to node A; green boxes are messages
going out toward F.

MIT 6.867 Fall 2012 14

In this case,
µφDG→D(d) =

∑
g

φDG(d,g)µG→φDG
(g) .

Since the incoming message is all 1, this amounts to summing over all values of G in
the factor to get an entry in the outgoing message on D. Because there are only two
factors connected to variable D, the message from the factor on B to φB is the same
as the message from B to φABD.

• Now something interesting happens: we have messages µB→φABD
and µD→φABD

coming in, so factor φABD is ready to compute an outgoing message to A. This one
is somewhat trickier. We have

µφABD→A(a) =
∑
bd

φABD(abd) · µB→φABD
(b) · µD→φABD

(d) .

One way to think about this computing this is to “multiply the tables”. We would
do this by taking the table for the factor, and then multiplying the messages into the
table: so, for instance, to take the incoming message from B, we would multiply all
the entries in the factor table that have B = 0 by 3, and all the entries in the factor
table that have B = 1 by 7. The other factor has a value of 5 for both values, so that
results in just multiplying all the table entries by 5. Then, to compute a message to
A, we sum all the entries in the product table that have value A = 0 and get 255; then
sum all entries that have valueA = 1 and get 230. This is the message from this factor
to variable A.

• We will assume that this process has taken place in other parts of the tree, resulting
in three messages coming into variable A. Now, we can compute the marginal at A:

Pr(Xm) ∝
∏

φl∈neighbors(Xm)

µφl→Xm
(xm) .

In this case,
Pr(A) ∝ µφABD→A(a) · µφA→A(a) · µφAC→A(a) .

This gives us an unnormalized potential on A of (55845, 180320), which normalizes
to 0.236, 0.763.

• Now, to illustrate the computation of other marginals, let’s see how the computation
of Pr(F) proceeds. The critical thing is that the node A sends a message toward factor
φAC, which is not the marginal on A. It is computed as usual, taking into account
messages from all the factors except φAC. So,

µA→φAC
(a) = µφABC→A(a) · µφA→A(a) .

• This process continues, generating the messages shown in green, until we get a marginal
on F of (0.497, 0.503).

Incorporating evidence Just as in variable elimination, we can add in a extra factors that
assign value 1 to observed values of the evidence variables and 0 to non-observed values
of the evidence variables, and proceed with the sum-product algorithm as above.

Continuous variables If the distributions are appropriately conjugate, then we can run
the same algorithm on graphs of continuous variables. For instance, distributions in which
the variables have linear-Gaussian dependence on one another can be handled directly, by
replacing sums with integrals.

MIT 6.867 Fall 2012 15

3.2.3 Finding MAP values

If we want to find the most likely assignment of some variables, we might consider running
the sum-product algorithm to get all the marginals and then finding the maximum value
in each marginal. Although these values individually maximize the marginals, they do not
necessarily constitute a maximizing assignment in the joint probability distribution.

This is a homework
exercise.

In the sum product algorithm, we took advantage of the fact that

ab+ ac = a · (b+ c) .

Now, we will take advantage of a similar relationship for max:

max(ab,ac) = a ·max(b, c) .

Algebraically, max has the same relationship to multiplication as summation does. That
means that our strategy for computing maxx

∏
iφi(x) can be structurally the same as our

strategy for computing
∑
x

∏
iφi(x).

Max-product algorithm If we simply take the sum-product algorithm, change all addi-
tion operations to max, and do a single pass inward from leaves to an arbitrarily chosen
root note, then we will compute maxx Pr(x).

Max-sum algorithm Multiplying all those small probabilities can lead to serious loss of
precision; to make the computation better conditioned, we can work with log probability
values. Because log is monotonic, it preserves the maximum, so:

log max
x

∏
i

φi(x) = max
x

log
∏
i

φi(x) = max
x

∑
i

logφi(x) .

The distributive property is preserved because

max(a+ b,a+ c) = a+ max(a, c) .

So, if we change the max-product algorithm by replacing products of factor values by sums
of logs of factor values, we get the max-sum algorithm, which has the following messages:

µφS→Xk
(xk) = max

xS\xk

logφs(xs) +
∑

Xm∈Xs\Xk

µXm→φS
(xm) .

µXm→φS
(xm) =

∑
φl∈neighbors(Xm)\φS

µφl→Xm
(xm) .

Base case if φ is a leaf:
µφ→Xi

(xi) = logφ(xi) .

Base case if Xi is a leaf:
µXi→φ(xi) = 0 .

Backtracking Now, what we might really want to find is the entire maximizing assign-

Not to be confused
with backtracking
search...

ment,not just its probability. Unfortunately, we can’t do it using the straightforward ex- This is sometimes called
“decoding” and has a
connection to coding
theory.

tension of sum-product and doing an “outward” pass of message propagation through the
algorithm, in case there are multiple joint assignments with the same maximizing proba-
bility that have different assignments.

MIT 6.867 Fall 2012 16

A

E

G

C

D

F

B

1 1

4, G04, G1

3 7

3 7

1 1

1 1

4, F1 3, F0

4, E1 2, E0

16 6

24, C1 64, C0

3 7

4 4 112,B1D0 84, B1D1

Max P = 37632 / Z
Maximizing A = 1

B = 1, D = 1, G = 0, C = 0, E = 1, F = 1

B

1
0

7
3

A

1
0

7
3

111
210

CE

01
00

4
1

111
310

CF

01
00

4
1

111
410

AC

01
00

4
1

111
410

DG

01
00

4
1

3111
110 1
101 4
100 2

2011
4010

ABD

001
000

2
1

G→F_DG

F_DG →D

F_B →B

B→F_ABD

D→F_ABD

F_A →A

F→F_CF
F_CF →C

E→F_CE

C→F_AC

F_AC →A

F_ABD →A

F_CE →C

Figure 3: Example execution of the max-product algorithm. All variables are binary. Blue
boxes are factors; red boxes are message going in to node A, and also include the local
assignments that were selected to compute a particular maximum value; maximizing as-
signment shown in black text at the bottom.

We begin with an inward pass, but with a bit of extra bookkeeping. When we compute
inward message from each clique,

µφS→Xk
(xk) = max

xS\xk

logφs(xs) +
∑

Xm∈Xs\Xk

µXm→φS
(xm) .

we keep track, for each value of xk, of a set Y∗S(xk) of possible maximizing joint assignments
to XS \ Xk, which were responsible for the max value in the message.

Then, for whatever node Xj we decided to use as the root in the first pass of max-sum,
we know that x∗j = arg maxxj

Pr(Xj = xj) is a component of some MAP assignment. Now,
we begin an outward pass. Instead of passing a probability message into a clique φS, we
pass in the maximizing value x∗k of the variable that was missing when it was evaluated.
Now, that cliques selects any member of Y∗S(xk), which provides maximizing assignments
for the variables XS \ Xk. These maximizing assignments are propagated to any cliques
that are neighbors of variables in XS \ Xk, and so on, out to the trees.

Example of max-product algorithm The figure 3 shows an example execution of the max-
product algorithm.We will walk through some parts of the computation.

We didn’t take logs
and do max-sum here,
in order to keep the
numbers intuitively
understandable; but
in a real example, it’s
much more numerically
stable to do max-sum.

• This time, let’s start from node F. The message µF→φCF
is the base case, (1, 1). We

multiply it into the factor φCF . Now, instead of summing out values of F, we maxi-

Which has no effect
because it is (1, 1).

MIT 6.867 Fall 2012 17

mize over them. The result is a message on C, which says that for C = 0 we an attain
a value of 4, if F = 1, and that for C = 1 we can attain a value of 3, if F = 0.

• At node C, we multiply the incoming messages (4, 3) and (4, 2), to get an outgoing
message µC→φAC

of (16, 6).

• We keep going...let’s see what finally happens at node A. We have incoming mes-
sages on all the arcs, and just do a pointwise multiply to get a factor onA of (8064, 37632).
This potential is not a marginal distribution on A. But we can conclude that value of
A in an assignment of values to all the variables that maximizes Pr(X) is A = 1.

Because that value is
higher in the potential.

• Now, we can do the “backtracking” to find the rest of the assignment. We see that,
for A = 1, to get the value 84 from φABD, we need B = 1 and D = 1.

• If D = 1, then to get value 4 from φDG, we need to have G = 0.

• Similarly, in the other part of the network, we see we need C = 0, which forces E = 1
and F = 1.

3.3 Converting graphs to trees

The message-passing algorithms are only well-defined on factor graphs that are trees. If
we want to do exact inference on a graph that is not a tree, we must convert it into a tree. It
is possible to look at the sequence of factors that get generated during variable elimination
and use them to create a tree of cliques, which is sometimes called a junction tree. Then,
there is a message passing algorithm on the junction tree that can be used to compute all
the marginals. It is exponential in the tree width (as is variable elimination).

4 Approximate Inference

If we have a graph with a large tree-width, or with a mixture of distributions that makes it
impossible to represent intermediate messages, then we have to fall back on approximate
inference methods. We will explore three different strategies.

4.1 Loopy BP

One easy approximation method, in models for which belief propagation is appropriate
(e.g., all discrete or linear Gaussian models), but where the factor graph is not a tree, is to
apply the message passing algorithm. Now, instead of just doing two passes, we could
continue to apply it, iteratively.

• This algorithm will not always converge. It is possible to increase the chance of con-
vergence by, instead of computing a new message each time through, to average the
old message with the newly-calculated message, and propagate the average instead.

• If it does converge, it might converge to the wrong answer. In particular, it can be-
come overconfident about certain values because information that some evidence
yields about a variable might be “double counted” if there are multiple paths through
the graph from the evidence to the node in question.

MIT 6.867 Fall 2012 18

4.2 Variational methods

Another strategy, with much wider applicability is to use variational methods. Assume that
we are trying to compute some distribution p ∗ (x), but it is intractable. We might, instead,
try to find an approximation from some other family of distributions Q. We would like to
pick Q so that

• It is in some way simpler than P, so that it will be computationally easier to work
with;

• It can come close to representing p∗ in the aspects that are important to us.

This approach is also useful in Bayesian models where it is difficult to directly construct
an exact representation of a posterior, for example, when it is non-conjugate. Such applica-
tions are often called variational Bayes.

So, we will treat inference as an optimization problem: we will seek to find q ∈ Q that is
as close as possible to p∗. A typical measure on the distance between two distributions is
the Kullback-Liebler divergence:

It is called a diver-
gence because it is not
a proper distance met-
ric: it is not symmetric
and doesn’t satisfy the
triangle inequality.

KL(p || q) =
∑
x

p(x) log
p(x)

q(x)
.

It ranges from 0 (if the distributions are equal) to infinity (if q(x) assigns 0 probability to an
element that has positive probability in p).

It might make sense to seek q∗ = arg maxq KL(p∗ || q), but because we assume that p∗

is hard to evaluate, this will be also difficult. Instead, we will try to find

q∗ = arg max
q
KL(q || p∗) =

∑
x

q(x) log
q(x)

p∗(x)
.

Even evaluating p∗(x) at a point might be hard because of the normalizing constant, Z. So,
letting p̃(x) = Zp∗(x), we will try to minimize

J(q) = KL(q || p̃)

=
∑
x

q(x) log
q(x)

p̃(x)

=
∑
x

q(x) log
q(x)

Zp∗(x)

=
∑
x

q(x) log
q(x)

p∗(x)
− logZ

= KL(q || p∗) − logZ

Since Z is a constant, if we maximize J, we will be forcing q to be close to p∗.

Mean Field approximation The mean field approximation is a version of variational in-
ference in which we pick Q to be the family of completely factored distributions: that is,
where

q(x) =
∏
i

qi(xi) .

So, to optimize J, we will optimize the parameters of each individual marginal to come as
close as possible to the joint distribution.

We will minimize this by coordinate descent, in which we adjust one parameter to mini-
mize the objective, holding all the others constant. Let E−j[f(x)] be the expectation over all
the variables except for xj.

MIT 6.867 Fall 2012 19

We will maximize
L(q) = −J(q) =

∑
x

q(x) log
p̃(x)

q(x)
.

If we treat all terms that do not involve qj as constants, we get
Derivation in Murphy
section 31.3.1.

L(qj) =
∑
xj

qj(xj) log fj(xj) −
∑
xj

qj(xj) logqj(xj) + c ,

where
log fj(xj) =

∑
x−j

∏
i 6=j

qi(xi) log p̃(x) = E−j (log p̃(x)) .

You can see this as
L(qj) = −KL(qj || fj), ,

which is maximized by setting qj = fj:

qj(xj) =
1
Zj

exp (E−j(log p̃(x))) .

We can usually ignore the normalization constant, so we can update

logqj(xj) = E−j(log p̃(x)) .

This a set of equations that may be hard to solve, but they can form the basis of an iterative
algorithm; it is guaranteed to converge, because L is convex with respect to each of the
factors qi.

This process is particularly nice in graphical models because computing E−j(log p̃(x))
really only depends on the Markov blanket of the node j.You take an expectation over all

The rest of the factors
in the distribution are
constant from the per-
spective of xj

assignments of values to the variables in the Markov blanket, according to the distribution
of values assigned to them by the current qi parameters.

logqj(xj) =
∑
xmb(j)

 ∏
i∈mb(j)

qi(xi)

 ∑
φs∈neighbors(Xj)

logφs(xmb(j) ∪ {xj}) ;

where xmb(j) is an assignment of values to variables in the Markov blanket of Xj.
Intuitively, we:

• Start with some assignment to the marginal of each variable, qi;

• Select a variable Xj to update;

• Compute its distribution, using the distributions qi on variables i in the Markov
blanket, together with the factors φS that involve variable Xj;

• Assign qj to be that marginal on Xj.

4.3 Sampling

We can estimate a distribution by drawing samples from it, and then doing density estima-
tion: fit a Gaussian, or count, or fit a histogram, etc.

We can estimate an expectation by observing that

E[f(x)] =

∫
x

f(x) Pr(x) ≈
n∑
i=1

f(x(i)) ,

for x(i) drawn from Pr, for large enough n.
In a directed graphical model, it is easy to sample from Pr(X):

This method is some-
times called ancestral
sampling.

MIT 6.867 Fall 2012 20

• Sample from the “root” nodes that have no parents;

• For each additional node, draw a sample from the conditional distribution, condi-
tioned on the sampled values for the parents.

Given a set of samples of the joint distribution, you can obtain samples of any marginal
just by looking at the relevant dimensions of the joint samples.

In an undirected model, even sampling from the joint is difficult: we will concentrate on
directed models for a while, and return to undirected models in the context of Monte-Carlo
methods and Gibbs sampling.

An alternative, but po-
tentially hairy, strat-
egy is to convert the
undirected model to a
directed model and pro-
ceed as described here.

4.3.1 Rejection sampling

What if we are in a directed model and we wish to estimate Pr(Y | E = e) for some set of
variables Y ⊂ X? A valid strategy is to draw samples from the joint distribution, throw
away any of them that do not have E = e, and then observe the empirical distribution over
Y in that set of samples. This is great if Pr(E = e) is reasonably high, but if E = e is a rare
event, this is very inefficient.

4.3.2 Importance sampling

It feels like maybe we could just force the evidence variables to have the desired values,
and combine that with ancestral sampling. But then we wouldn’t be drawing from the
correct distribution. We’ll do this in a more subtle way, called likelihood weighting, which
generates a set of samples that are weighted: to estimate our final quantity or distribution,
we will have to work with the weighted samples.

To generate a weighted sample x̂(j):

• Set wj = 1

• Do ancestral sampling, starting from the roots, to construct x̂

• Whenever you account a variable Xi ∈ E:

– Set x̂i = ei

– Let wj = wj · Pr(ei | parents of Xi in x̂)

Now, to compute the resulting distribution, we use weights

P̂r(Xi = xi | E = e) =

∑m
j=1wjI(x̂

(j)
i = xi)∑m

j=1wj
.

This is an instance of a method called importance sampling, in which we wish we were
able to draw samples from P, but instead we are able to draw them from Q. We can take
advantage of the following relationship:

EP(X)[f(X)] = EQ(X)

[
f(X)

P(X)

Q(X)

]∑
x

Q(x)f(x)
P(X)

Q(X)
=
∑
x

f(x)P(x) .

If we draw samples x(j) from Q, then

EP(X)[f(X)] ≈ 1
m

m∑
j=1

f(x(j))
P(x(j))

Q(x(j))
.

MIT 6.867 Fall 2012 21

In likelihood weighting, the Q distribution is the one we get when we force all of the
evidence variables to have the specified values. This is sometimes called the mutilated
network distribution.

w(x) =
P(x)

Q(x)
=

∏
i Pr(xi | pa(xi), e)∏

i 6inE Pr(xi | pa(xi), e)
=
∏
i∈E

Pr(ei | pa(ei)) .

4.3.3 Gibbs sampling

One problem with likelihood weighting is that evidence only affects the sampling for de-
scendant nodes: if the evidence is at a leaf, then it doesn’t really help. Gibbs sampling is an
instance of a general class of sequential sampling methods called Markov-chain Monte Carlo
methods. The idea is that we will generate a sequence of samples:

• The samples we generate are no longer independent;

• After we run the process for a certain amount of time (called the “burn-in period”)
the samples will be IID;

• The distribution they are drawn from is the desired conditional distribution;

• May not work if there are 0 values in the factors. distributions.

It is easiest to think of this algorithm on an undirected graph:

• Start by generating an initial sample x(0) using forward sampling

• For i = 1, . . . ,n do

– x(i) = x(i−1)

– For j = 1 . . . ,d do:

∗ Sample x(i)
j from Pφ(xi | MarkovBlanket(x(i)

j))

There are variations in which we only change one value at a time.
Note that this sampling takes the child values into account. Remember that in a directed

model, the Markov blanket consists of parents (Z), children (C), and other parents of the
children (O).

Pr(X | Z,C,O) ∝ Pr(C | Z,X,O)P(X | Z,O)

= Pr(C | X,O)P(X | Z)

Effective, but practically tricky:

• How long to “burn in”?

• Use every sample, or skip some?

5 Parameter estimation

Finally! We get to do learning! There are two parts to learning a graphical model: learning
the graph structure and learning the parameters. We will start by thinking about how to
learn the graph structure, assuming the parameters are fixed.

MIT 6.867 Fall 2012 22

5.1 Completely observed data

The easiest case is when we observe values for all the variables in our model:

D = {x(1), . . . x(n)) .

In this case, our job is simple parameter estimation of the kind that we did in the beginning
of the term. One can find maximum-likelihood estimates or take a Bayesian approach. It
is common to assume a Beta(1, 1) or uniform Dirichlet prior, and then effectively use the
Laplace correction in estimating the parameter values.

5.2 Latent variable models and EM

Things start to get interesting and tricky when all the data are not available: it might be that
you’re just missing some observations of some attributes in the data set or that entire nodes
are latent: that is, never observed. We will explore an algorithm called EM for expectation-
maximization for maximum likelihood parameter estimation when there are unobserved
values in the model.

We’ll start with a very simple problem, in which single attribute of a single data set is
missing. There are two attributes, A and B, and this is our data set, D:

i A B
1 1 1
2 1 1
3 0 0
4 0 0
5 0 0
6 0 H ***missing **
7 0 1
8 1 0

Assume the data is missing completely at random (MCAR): that is, that the fact that it is
missing is independent of its value.

Our goal is to estimate Pr(A,B) from this data. We’d really like to find the maximum-
likelihood parameter values, if we can. The likelihood is

L(θ) = log Pr(D; θ) = log (Pr(D,H = 0; θ) + Pr(D,H = 1; θ)) .

Naive strategy 1 Maybe we’re lazy. We could just ignore x(6) all together, and estimate
the parameters:

θ̂1 =

(
3/7 1/7
1/7 2/7

)
=

(
.429 .143
.143 .285

)
If we do that, then

L(θ̂1) = log

Pr(00 ; θ̂1)
∏
i 6=6

Pr(xi ; θ̂1) + Pr(01 ; θ̂1)
∏
i 6=6

Pr(xi ; θ̂1)

= 3 log 0.429 + 2 log 0.143 + 2 log 0.285 + log(0.429 + 0.143)

= −9.498

Naive strategy 1 Let H be the ’best’ value it could have, that is to make the log likelihood
as large as possible. That value is 0. So, then we’d have

θ̂2 =

(
.5 .125

.125 .25

)

MIT 6.867 Fall 2012 23

and
L(θ̂2) = −9.481 .

That’s a little better!

Non-naive strategy: optimize likelihood directly

θ̂ = arg max
θ

L(θ) .

We can do this with gradient methods, but it gets tricky because of constraint that θ̂ be a
valid probability distribution. Instead we’ll explore a new algorithm.

5.2.1 EM Algorithm

If we have a parameter estimation problem in which there are some variables, H, which
are unobserved, we approach the problem of finding a distribution, P̃, on H together with
parameters θ. We will do this by coordinate ascent, alternating between holding the first
constant while optimizing the second and holding the second constant while optimizing
the first. Define

L(P̃, θ) =
∑
h

P̃(h) log
Pr(D,h ; θ)

P̃(h)

and
PH(h) = Pr(h | D ; θ) .

Then, for any P̃
L(θ) = log Pr(D ; θ) = L(P̃, θ) + KL(P̃ || PH) .

KL divergence is defined

KL(P̃ || Ph) = −
∑
h

P̃(h) log
P(h | D ; θ)

P̃(h)
.

KL is always > 0, with value 0 when distributions are equal.

Bound L(P̃, θ) is a lower bound on L(θ) for any P̃. So, we will try to maximize L(P̃, θ) by
coordinate ascent.

Algorithm

• Initialize θold arbitrarily

But the result of the
algorithm will be sensi-
tive to this choice.

• E step: Hold θold constant; select P̃ to maximize L(P̃, θold).
This happens when KL(P̃,PH) = 0, so P̃ = PH, so,

P̃(h) := Pr(H = h | D ; θold) .

• M step: Hold P̃ constant; select θnew to maximize L(P̃, θnew).

θnew := arg max
θ

∑
h

P̃(h) log Pr(D,H = h ; θ) .

Now, we know that unless θnew = θold, L(P̃, θ) has increased and so has KL(P̃,PH);
so L(θ) has increased as well.

• If θold ≈ θnew or L(θold) ≈ L(θnew), then terminate.

• Else, repeat M step and E step.

MIT 6.867 Fall 2012 24

Properties of EM

• Monotonic convergence to a local optimum of L(θ)

• Result depends on initialization

• E and M steps usually easier than direct optimization of log likelihood

• Extends easily to Bayesian MAP case: find (local)

arg max
θ

Pr(θ | D) ,

taking prior Pr(θ) into account.

• Sometimes the M step can be computationally difficult. Generalized EM can still
converge if M step generates an improvement in L but not necessarily the maximum.

Back to the missing data example

• Guess

θ0 =

(
.25 .25
.25 .25

)
• E Step

P̃(H = 1) = Pr(H = 1 | D ; θ0) = Pr(H = 1 | x(6) ; θ0) = Pr(B = 1 | A = 0 ; θ0) = 0.5

• M Step

θ1 = arg max
θ

(0.5 log Pr(D,H = 0 ; θ) + 0.5 log Pr(D,H = 1 ; θ))

=

(
7/16 3/16
2/16 4/16

)

This step is not immediately obvious: to derive it, we need to take the derivative with
respect to each of the parameters, set to 0, and solve for θ. We find that we can treat
the estimation problem as one in which we have a data item for each possible value
of H, weighted by the probability that H has that value. We get such a decomposi-
tion because, for each particular value of H, only one of the parameter estimates is
affected.

We get the same result by doing estimation as usual, but treating Pr(H) as giving us
fractional counts on both data cases:

i A B count = P~(H)
1 1 1
2 1 1
3 0 0
4 0 0
5 0 0
6a 0 0 0.5
6b 0 1 0.5
7 0 1
8 1 0

On subsequent EM iterations, we have L(θ) = −10.39, −9.47, −9.4524, −9.4514,

MIT 6.867 Fall 2012 25

5.2.2 Bayesian networks with hidden nodes

Why would we consider learning a Bayes net with a completely hidden node? Because
sometimes causal theories that postulate a hidden, shared cause are simpler. Compare:

• Completely connected graph on 4 highly dependent observable variables

• Graph with hidden H as parent and 4 observable variables that are conditionally
independent given H.

How can we estimate CPTs when we don’t know the values of H? With two observable
variables, one row of our data looks like:

x
(i)
1 , x(i)

2 ,h(i) .

• Guess θ0.
Now, assuming the rows in our data table are independent, we we can find

Pr(h) = Pr(h | x ; θ) =
∏
i

Pr(h(i) | x(i) ; θ) .

Computing this is a Bayes net inference problem we know how to solve, no matter
where h is in the network (or if there are multiple hidden variables).

• M Step Turn
x

(i)
1 , x(i)

2 ,h(i) .

into

x
(i)
1 , x(i)

2 , 0 with weight Pr(h(i) = 0 | x(i) ; θ)

x
(i)
1 , x(i)

2 , 1 with weight Pr(h(i) = 1 | x(i) ; θ)

These weights are sometimes called responsibilities.

• E step: Estimate θ using weighted data counts.

As in the simple case, the fact that we can do estimation with the expected counts
under Pr(h) is derivable by finding the α that maximizes the expectation, under Pr(h)

of the log of the complete data likelihood.

5.2.3 Gaussian mixtures

One particular latent-variable Bayesian network that is of particular interest is one in which
there is a latent discrete variable Z with values in {1, . . . ,k} and an observable continuous
variable X with values in Rd. The network structure is Z → X. This model can be used
for density estimation or clustering, depending on what we’re interested in doing with our
data.

To make some things come out more beautifully, we will let Z = (Z1, . . . ,Zk) with
Zj ∈ {0, 1}, with the constraint that

∑
j Zj = 1; that is, we will have a single indicator

variable for each cluster, so that z(i)j = means that example i was drawn from Gaussian
component j.

Z ∼ Multinomial(π1, . . . ,πk)

X | Zj = 1 ∼ Normal(µj,Σj)

MIT 6.867 Fall 2012 26

If we knew the values of Z, life would be easy. The complete-data likelihood is:

Pr(X,Z ; µ,Σ,π) =

n∏
i=1

Pr(x(i), z(i) ; µ,Σ,π)

=

n∏
i=1

Pr(z(i) ; π) Pr(x(i) ; z(i)µ,Σ)

=

n∏
i=1

k∏
j=1

π
z

(i)
j

j N(x(i) ; µj,Σj)z
(i)
j

Log likelihood

L(µ,Σ,π) =

n∑
i=1

k∑
j=1

z
(i)
k (logπj + log N(x(i) ; µj,Σj)) .

It’s clear that if we knew the z(i)j it would be trivial to find the maximizing parameters
using regular parameter estimation. In EM, we have to take the expectation over the Z.

Algorithm

• Choose initial πold, µold, Σold

• E Step Compute responsibilities, which are probabilities of the hidden variables hav-
ing value 1:

γ(z
(i)
k) = E[z

(i)
j] =

πjN(x(i) ; µj,Σj)∑k
l=1 πlN(x(i) ; µl,Σl)

.

• M Step Re-estimate parameters using the fractional responsibilities as weights on the
data.

µnew
j =

1
nj

n∑
i=1

γ(z
(i)
j)x(i)

Σnew
j =

1
nj

n∑
i=1

γ(z
(i)
j)(x(i) − µnew

j)(x(i) − µnew
j)T

πnew
j =

nj

n

nj =

n∑
i=1

γ(z
(i)
j)

Some things to worry about:

• EM only goes to a local optimum, which depends on initialization

• The model is not identifiable: that is, there may be many “best” models in the likeli-
hood sense. A particular issue is the assignment of the class variables: the likelihood
is the same if they are interchanged.

• The optimization problem is ill-formed: the model can get infinite likelihood score if
it assigns a single point to a cluster, which then gives it variance approaching zero.
In practice, it is usually necessary to implement some special safeguards to keep this
from happening.

MIT 6.867 Fall 2012 27

5.2.4 Exponential family and expected sufficient statistics

A statistic is a function T(D) of the data. A statistic is sufficient for parameter θ if D is con-

This exposition
is following from
people.missouristate.edu/

songfengzheng/Teaching/MTH541.

You don’t have to fol-
low this derivation, but
the punch line is impor-
tant.

ditionally independent of θ given T(D). That is, T(D) captures everything that is relevant
about the data for θ.
Factorization theorem T(D) is a sufficient statistic for θ iff Pr(D | θ) can always be factor-
ized as

Pr(D | θ) = u(D)v(T(D), θ) ,

where u and v are nonnegative functions.
Now, we can show that the maximum likelihood estimator depends only on the suffi-

cient statistic:

θML = arg max
θ

Pr(D | θ)

= arg max
θ
u(D)v(T(D), θ)

= arg max
θ
v(T(D), θ)

Distributions in the exponential family have sufficient statistics of the same dimension
as the parameter space, regardless of sample size. One-parameter members of the expo-
nential family have

Pr(x | θ) = exp(c(θ)T(x) + d(θ) + S(x)) .

So

Pr(D | θ) =

n∏
i=1

exp(c(θ)T(x(i)) + d(θ) + S(x(i)))

= exp

(
n∑
i=1

c(θ)T(x(i)) + nd(θ)

)
exp

(
n∑
i=1

S(x(i))

)

So,
∑n
i=1 T(x

(i)) is a sufficient statistic (by the factorization theorem). And (taking the log)
we can write the maximum-likelihood estimator as

θML = arg max
θ
c(θ)T(D) + nd(θ) .

In the M step of EM, when Pr is in the exponential family, then we want

arg max
θ

L(P̂, θ) = arg max
θ

∑
Z

P̂(Z) log Pr(X,Z | θ)

= arg max
θ

∑
Z

P̂(Z) log exp (c(θ)T(X,Z) + nd(θ))

= arg max
θ

∑
Z

P̂(Z)(c(θ)T(X,Z) + nd(θ))

= arg max
θ
c(θ)
∑
Z

P̂(Z)T(X,Z) + nd(θ)

= arg max
θ
c(θ)T̄(X,Z) + nd(θ)

where T̄(X,Z) =
∑
Z P̂(Z)T(X,Z). This estimator has the same form as the maximum likelihood

estimator, but using the expected value of the sufficient statistics in place of the actual sufficient
statistics (which are unknown because we don’t know the values of Z).

MIT 6.867 Fall 2012 28

5.3 Parameter estimation in undirected models

This is generally a very difficult problem: all methods are some version of gradient descent.
The reason it is hard is that the computation of the gradient at each step requires a full
inference step in the graphical model. We won’t go into it further.

6 Structure learning

Now we know how to estimate the parameters in a graphical model given the structure.
How can we estimate the structure? There are two general strategies:

• Do a pre-processing pass in which some measure of the correlations between pairs of
variables is computed; then build a structure based on the strength of those correla-
tions.

• Search directly in the space of network structures: for each structure, finding the
maximum-likelihood parameters and score the structure using a weighted combina-
tion of the likelihood of the training data and a penalty for model complexity. There
is a beautiful Bayesian scoring method we will also consider.

6.1 Finding the best tree-structured model

Define a tree-structured network to be a directed graphical model in which no node has more
than one parent. There is a polynomial-time algorithm for finding the best tree-structured

This is a subclass of
polytrees, in which a
node may have more
than one parent.

model, given a data set. It is due to Chow and Liu.
The joint distribution for any tree-structured model can be written:

Pr(X) =
∏
j

Pr(Xj)
∏
j,k

Pr(Xj,Xk)
Pr(Xj) Pr(Xk)

.

Verify this for yourself
by example: draw any
tree-structured directed
graphical model, write
out the joint distribu-
tion in terms of condi-
tional probabilities, use
the definition of con-
ditional probability to
turn each into a joint
divided by a marginal,
and cancel.

The log likelihood for a tree is:

Pr(D; θ, T) =
∑
t

∑
k

Ntk log Pr(Xt = k; θ) +
∑
s,t

∑
j,k

Nstjk log
Pr(Xs = j,Xt = k; θ)

Pr(Xs = j; θ) Pr(Xt = k; θ)
,

whereNstjk is the number of times Xs = j and Xt = k. We’ll define the empirical distribution
to be the obvious estimates of these quantities from the data:

P̂(Xt = k) =
Ntk

N

P̂(Xs = j,Xt = k) =
Nstjk

N

So,
Pr(D; θ, T)

N
=
∑
t

∑
k

P̂(Xt = k) log P̂(Xt = k) +
∑
s,t

Î(Xs,Xt) ,

where Î(Xs,Xt) is the mutual information between Xs and Xt in the empirical distribution;
that is

Î(Xs,Xt) =
∑
j

∑
k

P̂(Xs = j,Xt = k) log
P̂(Xs = j,Xt = k)

P̂(Xs = j)P̂(Xt = k)
.

The first term in the log likelihood is independent of the structure; so when choosing
structure, we only need to worry about the second term. So, the maximum likelihood tree

MIT 6.867 Fall 2012 29

structure is the maximum weighted spanning tree, where the edge weights are the pairwise
empirical mutual informations. Finding the MST can run in O(E logV) time where E = D2

is the number of edges and D is the number of nodes. So, the overall running time is
O(ND2 +D2 logD).

6.2 Structure search

If we want a general, non-tree structure, then there’s no straightforward method. We typi-
cally just do direct local search in the space of structures.

• Pick an initial graph, G, possibly by running ChowLiu

• Loop

– Propose several local changes to the graph: add an arc, delete an arc, reverse an
arc

Reversing an arc can be
accomplished by delet-
ing, and then adding a
new one back in the
other direction; but
deleting the arc might
decrease the score, pre-
venting this move from
being considered.

– For each proposed graph, G ′, compute the maximum likelihood score:

scoreML(G ′;D) = max
θ

Pr(D | θ,G ′) .

– Depending on the search strategy, select a G ′ and set G = G ′

Some points about this algorithm:

• Note that there are many graph structures that represent equivalent sets of condi-
tional independence assumptions;cut down the search space by only considering on

The set of conditional
independence assump-
tions is the same for
any graph with the
same undirected skele-
ton and the same set
of V structures (cases
where there are multi-
ple parents of a node.)

element of each equivalence class of graph structures

• The simplest search strategy is to always select the G ′ with the highest score, and to
terminate if the new score is less than or equal to the old one.

• Could be better to use some form of stochastic search, such as simulated annealing,
that sometimes takes a “downhill” step, in order to avoid local optima.

• The scoring function is decomposable:

scoreML(G;D) = max
θ

Pr(D; θ,G)

= max
θ

n∏
i=1

Pr(x(i); θ,G)

= max
θ

n∏
i=1

D∏
j=1

Pr(x(i)
j | Pa(xj,G); θ,G)

= max
θ

D∏
j=1

n∏
i=1

Pr(x(i)
j | Pa(xj,G); θj,G)

= max
θ

D∑
j=1

n∑
i=1

log Pr(x(i)
j | Pa(xj,G); θj,G)

=

D∑
j=1

max
θj

n∑
i=1

log Pr(x(i)
j | Pa(xj,G); θj,G)

So, we can select each CPT, θj independently from the others, given the graph struc-
ture.

MIT 6.867 Fall 2012 30

• This makes structure search more efficient, because, when we add or remove an arc, it
only requires re-estimation of the θj for variables Xj whose set of parents is changed
from G to G ′.

6.3 Bayesian score and model complexity

The maximum-likelihood score, by itself, isn’t very useful: it will generally choose the
model that makes no conditional independence assumptions. We can add a direct penalty
term on the complexity (e.g. number of parameters) in the model. Or, we can be Bayesian!

The Bayesian score for a graphical structure is derived from

Pr(G | D) = Pr(D | G) Pr(G)/Pr(D) ,

resulting in
scoreB(G, D) = log Pr(D | G) + log Pr(G) .

We immediately see that there is an opportunity to put a prior on graph structures. That
would be one way to penalize overly complex graphs. But, because of the coolness of
marginal likelihood, we still get a regularization effect even when we make Pr(G) in some
sense “uniform”.

The marginal likelihood integrates out the parameter values:

Pr(D | G) =

∫
θG

Pr(D | θG,G) Pr(θG | G)dθG .

Let’s see how this works by considering two networks on two variables, X and Y:

• G∅: considers the two variables as being completely independent

• GX→Y : has X as a parent of Y

Independent model has two parameters θX and θY .

Pr(D | G∅) =

∫
θX,θY

Pr(D | θX, θY ,G∅) Pr(θX, θY | G∅)dθXdθY .

Assuming parameter independence Pr(θX, θY | G∅) = Pr(θX | G∅) Pr(θY | G∅), we have

Pr(D | G∅) =

(∫
θX

Pr(θX | G∅)

n∏
i=1

Pr(x(i) | θXG∅)dθX

)(∫
θY

Pr(θY | G∅)

n∏
i=1

Pr(y(i) | θY ,G∅)dθY

)
.

Dependent model has three parameters: θX, θY|X=0, and θY|X=1. Again, assuming pa-
rameter independence, we have

Pr(D | GX→Y) =

(∫
θX

Pr(θX | GX→Y)

n∏
i=1

Pr(x(i) | θX,GX→Y)dθX

)

·

∫
θY|X=0

Pr(θY|X=0 | GX→Y)
∏

{i:x(i)=0}

Pr(y(i) | x(i), θY|X=0,GX→Y)dθY|X=0

·

∫
θY|X=1

Pr(θY|X=1 | GX→Y)
∏

{i:x(i)=1}

Pr(y(i) | x(i), θY|X=1,GX→Y)dθY|X=1

MIT 6.867 Fall 2012 31

Comparison Note that the first factor is the same in both cases. In the independent model,
we are using all of our data to compute a posterior in θY . The more data we have, the more
peaked the distribution will be and so the larger the second term will be.

In the dependent model, we are dividing our data into to groups, depending on whether
Y = 0 or not, to estimate two parameters. We would expect the distributions on these pa-
rameters to be less peaked than the distribution on θY , and therefore for the product of
the second two terms in the dependent model to be smaller than the second term in the
independent model.

This, even without putting a prior on model structures, using the Bayesian model se-
lection criterion, we will tend to select simpler structures when we have less data.

General Bayesian score with independent Dirichlet priors on each row of each CPT:

Pr(D | G) =

D∏
t=1

(
Ct∏
c=1

∏K
k=1 Γ(Ntck + αtck)

Γ(
∑K
k=1(Ntck + αtck))

)
.

where Ntc =
∑
kNtck, where Ntck is the number of times variable t has value k and its

parents have value c; αtc =
∑
k αtck, where αtck is the kth parameter to the Dirichlet prior

on row c of the CPT for variable t.
This score also decomposes according to the graph structure, making search sort of tractable.

Picking a prior Under the assumption that we would like our prior to be likelihood equiv-
alent, that is, that if G1 and G2 are Markov equivalent (have the same conditional indepen-
dencies) then they have the same marginal likelihood, and we would like it to have the
parameter independence property so that the score decomposes, then there is effectively
only one satisfactory prior. The BDE prior sets

αtck = αP0(Xt = k,XParents(Xt) = c) ,

where α is an equivalent sample size and P0 is some prior distribution over all possible
joint configurations. If we assume that it is uniform, then we have

αtck = α
1

Kt,Ct
,

where Kt is the number of possible values that variable Xt can take on andCt is the number
of possible values that its parents can take on, given the graph structure.

7 Temporal models

How can we model sequential data when we don’t think it is IID? If we think there is a
temporal dependency, then we could try, for instance, to make a model in which the next
observation depends probabilistically on the history of previous observations.

It seems very complicated to build a model in which the next output can depend on
an arbitrarily long history of previous observations. We could make a model in which the
most recent observation depends on a fixed number of the previous observations.

7.1 Hidden Markov models

An alternative strategy for building a fixed-size probabilistic model of arbitrary-length se-
quences is to postulate some (possibly hidden) state of the world such that, assuming that
time is measured in discrete steps,

MIT 6.867 Fall 2012 32

• The state at time t+ 1, Zt+1 is conditionally independent of the states at all previous
times, Z1, . . . ,Zt−1, given the current state Zt.

• The conditional probability distribution that governs the evolution of the state,
Pr(Zt+1 | Zt), is constant for all t;

This property is called
stationarity; it is also
possible to consider
non-stationary models,
but we will not do so.

• If Zt is not observable, then we might make an observation Xt; if so, the Xt is condi-
tionally independent of all other observations and all states at other times, given Zt.
Generally, we assume that an observation model Pr(Xt | Zt) governs the generation of
observations.

The joint distribution of observations and states on this model is given by:

Pr(X1, . . . ,Xn,Z1, . . . ,Zn) = Pr(Z1)

(
n∏
t=2

Pr(Zt | Zt−1)

)(
n∏
t=1

Pr(Xt | Zt)

)
.

Using the d-separation criterion, there is always a path connecting any two observed
variables Xi and Xj via the latent state variables, and this path is never blocked. So, the
predictive distribution Pr(Xt+1 | X1, . . . ,Xt) doesn’t exhibit any conditional independen-
cies.

If the Xi are discrete, then we call this a hidden Markov model; if all the variables are real
and the dependencies are linear-Gaussian, then it is a linear dynamical system. We’ll focus
on HMMs. They are widely used in natural language, speech, computational biology, and
a variety of other fields.

HMM formal definition:

• States are integers 1, . . . ,K. We will let Zt be the state at time t, encoded as a vector of
binary numbers, so if Ztk = 1 then the system is in state k at time t.

• The state transition model is described by a matrix A, where

Ajk = Pr(ztk = 1 | Zt−1,j = 1) ,

Because these are probabilities, all the entries in A are in [0, 1] and every row sums to
1. So

This is called a stochas-
tic matrix.

Pr(Zt | Zt−1) =

K∏
k=1

K∏
j=1

A
zt−1,j·zt,k
jk .

The idea is that we are using the binary encoding of theZ’s to pick out the appropriate
element of the transition matrix.

This will be useful
later!

• The initial state distribution is represented with a vector or probabilities π with ele-
ments πk = Pr(Z1k = 1). Then

Pr(Z1 | π) =

K∏
k=1

πZ1k

k .

• Observations are integers 1, . . . ,Ω. Let Xt be the observation at time t, encoded as a
vector of binary numbers, so if Xtl = 1 then the observation at time t is l.

• The observation model is described by a matrix BWe define

Blk = Pr(Xt = l | Zt = k) ,

so

Pr(Xt | Zt) =

K∏
k=1

Ω∏
l=1

Bztk·xtl

lk .

You can constrain the fundamental structure of the model by putting 0 values into the
Amatrix.

MIT 6.867 Fall 2012 33

7.2 Exact Inference

There are specialized ways of thinking about inference problems in HMMs. Here, we will
pursue an approach that takes advantage of inference methods we already understand for
graphical models.

We can think of an HMM as a factor graph, with:

• A unary factor, corresponding to π, connected to Z1:

φπ(z) = πz

• Binary factors, with values from A, between each Zt, Zt+1 pair:

φZt,Zt+1(z,w) = Pr(Zt+1 = w | Zt = z) .

• Binary factors, with values from B, between each Zt, Xt pair:

φZt,Xt
(z, x) = Pr(Xt = x | Zt = z) .

Filtering What if we are given an observation sequence x1, . . . , xn and want to know the
current state Zn? All we need to do is one round of message passing toward Zn in the
factor graph.

• Factor φπ sends a message π to Z1

• Each Xt, since it is observed, sends a message

µXt→φXt ,Zt
(l) = xtl

to the factor φXt,Zt

Recall that this is a
Boolean vector with
exactly one 1.

• Each factor φXt,Zt
sends a message

µφXt ,Zt→Zt
(k) =

∑
l

xtlBlk ,

to variable Zt.

• Moving from left to right, first variable Zt sends message

µZt→φZt ,Zt+1
(k) = µφXt ,Zt→Zt

(k) · µφZt−1,Zt→Zt
(k)

to factor φZt,Zt+1 .

• Then factor φZt,Zt+1 sends message

µφZt ,Zt+1→Zt+1(j) =
∑
k

φZt,Zt+1(k, j) · µZt→φZt ,Zt+1
(k)

to variable Zt+1.

• Finally, the marginal at Zn is just

Pr(Zn = k) =
1
z
µφXn ,Zn→Zn

(k) · µφZn−1,Zn→Zn
(k) .

MIT 6.867 Fall 2012 34

Smoothing To figure out the marginal distribution on some other Zs, we need to do a
“backward” pass of message passing.To compute the marginals at all the Zt,

This algorithm was de-
veloped before the gen-
eral message passing
sum-product algorithm,
and was called, unsur-
prisingly, the forward-
backward algorithm.

• Variable Zn sends message

µZn→φZn−1,Zn
(k) = µφXn ,Zn→Zn

(k)

to factor φZn−1,Zn
.

• Now, working backwards, first factor φZt,Zt+1 sends message

µφZt ,Zt+1→Zt
(k) =

∑
j

φZt,Zt+1(k, j) · µZt+1→φZt ,Zt+1
(k)

to variable Zt.

• Then variable Zt sends message

µZt→φZt−1,Zt
(k) = µφXt ,Zt→Zt

(k) · µφZt ,zt+1→zt
(k)

to factor φZt−1,Zt
.

• At any node, the conditional marginal on Zt is

Pr(Zt = k | X) =
1
z
µφXt ,Zt→Zt

(k) · µφZt−1,Zt→Zt
(k) · µφZt ,Zt+1→Zt

(k) .

Pairwise marginals For learning, later, we will also need the pairwise marginals Pr(Zt =

j,Zt+1 = k | X). We can compute these easily from the messages we have already com-
puted:

Pr(Zt = j,Zt+1 = k | X) =
1
z
µφXt ,Zt→Zt

(j) · µφXt+1,Zt+1→Zt+1(k)

·µφZt−1,Zt→Zt
(j) · µφZt+1,Zt+2→Zt+1(k) · φZt,Zt+1(j,k) .

Probability of a sequence We might be given a sequence x and a model with parameters
θ, and be asked to compute its probability Pr(x; θ). We can compute this easily using mes-
sage passing. For compactness and to remind ourselves that the transition and observation
distributions are stationary, we will use φA for factors corresponding to the transition dis-
tribution matrix and φB for factors corresponding to the observation distribution matrix.

MIT 6.867 Fall 2012 35

Pr(x; θ) =
∑
z

Pr(x, z; θ)

=
∑
zn

Pr(xn | zn)
∑
zn−1

Pr(zn | zn−1) Pr(xn−1 | zn−1)
∑
zn−2

. . .

. . .
∑
z2

Pr(z3 | z2) Pr(x2 | z2)
∑
z1

Pr(z2 | z1) Pr(x1 | z1) Pr(z1)

=
∑
zn

ΦB(xn, zn)
∑
zn−1

ΦA(zn−1, zn)ΦB(xn−1, zn−1)
∑
zn−2

. . .

. . .
∑
z2

ΦA(z2, z3)ΦB(x2, z2)
∑
z1

ΦA(z1, z2)φB(x1, z1)φπ(z1)

=
∑
zn

ΦB(xn, zn)
∑
zn−1

ΦA(zn−1, zn)ΦB(xn−1, zn−1)
∑
zn−2

. . .

. . .
∑
z2

ΦA(z2, z3)ΦB(x2, z2)
∑
z1

ΦA(z1, z2)µφX1,Z1→Z1(z1)π(z1)

=
∑
zn

ΦB(xn, zn)
∑
zn−1

ΦA(zn−1, zn)ΦB(xn−1, zn−1)
∑
zn−2

. . .

. . .
∑
z2

ΦA(z2, z3)ΦB(x2, z2)µφZ1,Z2→Z2(z2)

=
∑
zn

ΦB(xn, zn)
∑
zn−1

ΦA(zn−1, zn)ΦB(xn−1, zn−1)
∑
zn−2

. . .µφZ2,Z3→Z3(z3)

=
∑
zn

ΦB(xn, zn)
∑
zn−1

ΦA(zn−1, zn)ΦB(xn−1, zn−1)µφZn−2,Zn−1→Zn−1(zn−1)

=
∑
zn

ΦB(xn, zn)µφZn−1,Zn→Zn
(zn)

So, doing a single forward pass of message passing, with the observations X fixed, and
then summing out Zn will give the probability of the sequence. Note that this works because
all of the factors are conditional probability distributions, and so the resulting probability is already
normalized. If that were not true, then we would have to compute the partition function Z in order
to get a calibrated probability value.

MAP estimation: the Viterbi algorithm We might want to find the most probable se-
quence of hidden states. It is a straightforward special case of the max-product (or max-
sum) algorithm.

• Pass max-sum messages to the right to find the probability of the most likely se-
quence; keep track, in each factor, when you maximize out a variable, which value of
that variable contributed to the max

• Do a “back-tracking” pass to figure out which variable assignment at each factor
contributed to the max.

7.3 Learning

Given one or more data sequences X, and letting θ = (A,B,π), we would like to do
maximum-likelihood estimation, to find

arg max
θ

Pr(X; θ) = arg max
θ

∑
Z

Pr(X,Z; θ) .

MIT 6.867 Fall 2012 36

This is difficult because: Note that fitting a
Gaussian mixture
model is a related prob-
lem, in which the tran-
sition probabilities are
equal to π given any
state, and the observa-
tion are real valued and
distributed as a Gaus-
sian given the state.

• Summing over all possible Z is out of the question (exponential in the length of the
sequence)

• The distribution doesn’t factor over the Xi.

EM to the rescue! As before, we

• Start with an initial model θold

• E step: Given θold, we need to find both individual marginals on the hidden variables

γt = Pr(Zt | X; θold)

and pairwise marginals
ξt = Pr(Zt−1,Zt | X; θold) .

We will write γtk = Pr(ztk = 1; θold) and ξtjk = Pr(zt−1,j = 1, ztk = 1; θold). We can
do this efficiently with forward/backward (sum-product) as shown in the previous
section.

• M step: We need to find

θnew = arg max
θ

K∑
k=1

γ1k logπk +

n∑
t=2

K∑
j=1

K∑
k=1

ξtjk logAjk +

n∑
j=1

K∑
k=1

Ω∑
l=1

γtkxtl logBlk .

Solve a slightly hairy Lagrange multiplier problem to get

πk =
γ1k∑K
j=1 γ1j

Ajk =

∑n
t=2 ξtjk∑K

l=1
∑n
t=2 ξtjl

Blk =

∑n
t=1 γtkxtl∑N
t=1 γtk

What do we know about this EM?

• Sensitive to initial values: any 0 value in any of the initial parameters can never be
changed to a non-zero value.

• Goes to a local optimum.

• Can be modified easily to incorporate multiple sequences.

• Easily extended to any observation distribution you want.

• Scaling: be careful about loss of precision; normally need to do this all in log space,
and use the log-sum-exp trick when necessary.

