
6.867 Section 6: Nonparametric models

Contents
1 Intro 2

2 Trees 2
2.1 Regression . 3

2.1.1 Building a tree . 3
2.1.2 Pruning . 4

2.2 Classification . 4

3 Bagging 5
3.1 Random Forests . 6

4 Boosting 7
4.1 Adaboost Algorithm . 7
4.2 Additive models . 8
4.3 Margin . 10

5 Nearest-neighbor methods 10
5.1 Regression . 11
5.2 Kernel density estimation . 12
5.3 Classification . 13
5.4 Curse of dimensionality . 13

1

MIT 6.867 Fall 2012 2

1 Intro

We will continue to broaden the class of models that we can fit to our data. Graphical
models allowed us to fit joint distributions that are compact to represent, and efficient for
learning and inference. The complexity was adaptable, in the sense that structure search
could try different dependence models and select one that was expected to be a good model
of future data.

We now turn to models that are not directly interpretable as fitting a fixed-dimension
distribution to data. The name non-parametric methods is misleading: it is really a class of
methods that does not have a fixed parameterization in advance. Some non-parametric
models, such as trees and boosting, which we might call semi-parametric methods, can be
seen as dynamically constructing something that ends up looking like a more traditional
parametric model, but where the actual training data affects exactly what the form of the
model will be. Other non-parametric methods, such as nearest-neighbor and Bayesian non-
parametric methods, rely directly on the data to make predictions and do not compute a
model that summarizes the data.

The semi-parametric methods tend to have the form of a composition of simple models.
We’ll look at:

• Tree models: partition the input space and use different simple predictions on different
regions of the space; this increases the hypothesis space.

• Additive models: train several different classifiers on the whole space and average the
answers; this decreases the variance.

Boosting is a way to construct an additive model that both increases hypothesis space and
decreases variance.

2 Trees

The idea here is that we would like to find a partition of the input space and then fit very
simple models to predict the output in each piece. The partition is described using a (typi-
cally binary) “decision tree,” which recursively splits the space.

These methods differ by:

• The class of possible ways to split the space at each node; these are generally linear
splits, either aligned with the axes of the space, or more general.

• The class of predictors within the partitions; these are often simply constants, but
may be probability distribution or more general classification or regression models.

• The way in which we control the complexity of the hypothesis: it would be within
the capacity of these methods to have a separate partition for each individual training
example.

• The algorithm for making the partitions and fitting the models.

The primary advantage of tree models is that they are understandable by humans. This
is important in application domains, such as medicine, where there are human experts who
think they know what they’re doing and where decisions are critically important.

We’ll concentrate on the CART/ID3 family of algorithms, which were invented inde-
pendently in the statistics and the artificial intelligence communities. They work by greed-
ily constructing a partition, where the splits are axis aligned and by fitting a constant model
in the leaves. The interesting questions are how to select the splits and and how to control
capacity. The regression and classification versions are very similar.

MIT 6.867 Fall 2012 3

2.1 Regression

No model Prediction rule Prob model Dist over models
Regression c

The classifier is made up of

• A partition function, π, mapping elements of the input space into exactly one of M
regions, R1, . . . ,RM.

• A collection ofM output values, Om, one for each region.

If we already knew a division of the space into regions, we would set ŷm, the constant
output for region Rm to be the average of the output values in that region; that is:

Om = average{i|x(i)∈Rm}y
(i) .

Define the error in a region as

Em =
∑

{i|x(i)∈Rm}

(y(i) −Om)2 .

Ideally, we would select the partition to minimize

cM+

M∑
m=1

Em ,

for some regularization constant c. It is enough to search over all partitions of the training
data (not all partitions of the input space) to optimize this, but the problem is NP-complete.

2.1.1 Building a tree

So, we’ll be greedy. We establish a criterion, given a set of data, for finding the best single
split of that data, and then apply it recursively to partition the space. We will select the
partition of the data that minimizes the sum of the mean squared errors of each partition.

Given a data set D, let

• R+
j,s(D) = {x ∈ D | xj > s}

• R−
j,s(D) = {x ∈ D | xj < s}

• ŷ+
j,s = average{i|x(i)∈R+

j,s(D)}y
(i)

• ŷ−
j,s = average{i|x(i)∈R−

j,s(D)}y
(i)

BuildTree(D):

• If |D| 6 k: return Leaf(D)

• Find the variable j and split point s that minimizes:

ER+
j,s(D) + ER+

j,s(D) .

• Return Node(j, s, BuildTree(R+
j,s(D)), BuildTree(R−

j,s(D))

Each call to BuildTree considers O(dn) splits (only need to split between each data
point in each dimension); each requires O(n) work.

MIT 6.867 Fall 2012 4

2.1.2 Pruning

It might be tempting to regularize by stopping for a somewhat large k, or by stopping
when splitting a node does not significantly decrease the error. One problem with short-
sighted stopping criteria is that they might not see the value of a split that is, essentially,
two-dimensional. So, we will tend to build a tree that is much too large, and then prune it
back.

Define cost complexity of a tree T , wherem ranges over its leaves as

Cα(T) =

|T |∑
m=1

Em(T) + α|T | .

For a fixed α, find a T that (approximately) minimizes Cα(T) by “weakest-link” prun-
ing. Create a sequence of trees by successively removing the bottom-level split that mini-
mizes the increase in overall error, until the root is reached. Return the T in the sequence
that minimizes the criterion.

Pick α using cross validation.

2.2 Classification
No model Prediction rule Prob model Dist over models

Classification c

The strategy for building and pruning classification trees is very similar to the one for
regression trees.

The output is now the majority of the output values in the leaf:

Om = majority{i|x(i)∈Rm}y
(i) .

Define the error in a region as the number of data points that do not have the value Om:

Em =
∣∣∣{i | x(i) ∈ Rm and y(i) 6= Om}

∣∣∣ .

Define the empirical probability of an item from class k occurring in regionm as:

P̂mk = P̂(Rm)(k) =

∣∣{i | x(i) ∈ Rm and y(i) = k}
∣∣

Nm

We’ll define the empirical probabilities of feature values, as well, for later use.

P̂mjv = P̂(Rmj)(v) =

∣∣∣{i | x(i) ∈ Rm and x(i)
j = v}

∣∣∣
Nm

Splitting criteria Minimize “impurity” in child nodes. Some measures include:

• Misclassification error:

Qm(T) =
Em

Nm
= 1 − P̂mOm

• Gini index:
Qm(T) =

∑
k

P̂mk(1 − P̂mk)

MIT 6.867 Fall 2012 5

• Entropy:
Qm(T) = H(Rm) = −

∑
k

P̂mk log P̂mk

Choosing the split that minimizes the entropy of the children is equivalent to maxi-
mize the information gain of the test Xj = v, defined by

infoGain(Xj = v,Rm) = H(Rm) −
(
P̂mjvH(R+

j,v) + (1 − P̂mjv)H(R−
j,v)
)

Consider the two-class case. All have value
0.0 when P̂m0 = 0.0
0.5 when P̂m0 = 0.5
0.0 when P̂m0 = 1.0

There used to be endless haggling about which one to use. It seems to be traditional to
use:

• Entropy to select which node to split while growing the tree

• Misclassification error in the pruning criterion

Points about trees There are many variations on this theme:

• Linear regression or other regression or classification method in each leaf

• Non-axis-parallel splits: e.g., run a perceptron for a while to get a split.

What’s good about trees:

• People understand them

• Easy to handle multi-class classification

• Easy to handle different loss functions (just change predictor in the leaves)

What’s bad about trees:

• High variance: small changes in the data can result in very big changes in the hy-
pothesis.

• Usually not the best predictions

Hierarchical mixture of experts Make a “soft” version of trees, in which the splits are
probabilistic (so every point has some degree of membership in every leaf). Can be trained
with a form of EM.

3 Bagging

Bootstrap aggregation is a technique for reducing the variance of a non-linear predictor, or
one that is adaptive to the data.

• Construct B new data sets of size n by sampling them with replacement from D

• Train a predictor on each one: f̂b

MIT 6.867 Fall 2012 6

• Regression case: bagged predictor is

f̂bag(x) =
1
B

B∑
b=1

f̂b(x)

• Classification case: majority bagged predictor: let f̂b(x) be a vector with a single 1 and
K− 1 zeros, so that ŷb(x) = arg maxk f̂b(x)k. Then

f̂bag(x) =
1
B

B∑
b=1

f̂b(x),

which is a vector containing the proportion of classifiers that predicted each class k
for input x; and the predicted output is

ŷbag(x) = arg max
k
f̂bag(x)k .

Alternatively, we can average the class probabilities from the individual classifier,
which gives us an even lower-variance estimate.

In the case of regression and squared error, we can show that expected squared error of
a classifier trained on a single data set of size n is bounded below by the squared error of
a classifier that is an average over classifiers trained on infinitely many data sets of size n
drawn from the population. This suggests that bagging (in which new training sets are drawn
from the data set, not population) will also decrease error.

For classification under 0-1 loss, bagging can improve a good classifier, but it can also
make a bad classifier worse. But, here’s a way to understand its advantage:

From Dietterich, via
Hastie, Tibshirani, and
Friedman.

• Let the Bayes optimal decision at x be Y(x) = 1 in a two-class example.

• Suppose each “committee member” Yb has an error rate eb < e < 0.5

• Let S1(x) =
∑B
b=1 I(Gb(x) = 1) be the number of votes for class 1 given input x

• If the committee members are independent, S1(x) ∼ Bin(B, 1 − e) and so Pr(S1 >

B/2)→ 1 as B gets large.
This is the “Wisdom of
Crowds.”

The main issue with this analysis is that it assumes the committee members are indepen-
dent, which they definitely are not in this case.

Also, when we bag a model, any simple predictability is lost.

3.1 Random Forests

Random forests are collections of trees that are constructed to be de-correlated, so that
using them to vote gives maximal advantage.
For b = 1..B

• Draw a bootstrap sample Db of size n from D

• Grow a tree on data Db by recursively repeating these steps:

– Selectm variables at random from the d variables

– Pick the best variable and split point among them

– Split the node

• return tree Tb

Given the ensemble of trees, vote to make a prediction on a new x.

MIT 6.867 Fall 2012 7

4 Boosting

We will explore a method for making an additive model, but where we explicitly construct
new data sets for training each new member of the ensemble, so that new classifiers attempt
to “make up for” weaknesses of the current committee.

Assume a two-class problem with y ∈ {−1, 1}. The training error rate of a predictor G is

Ê(G) =
1
n

N∑
i=1

I(y(i) 6= G(x(i))) .

Expected error rate is
EX,YI(Y 6= G(X)) .

G is a weak classifier if its expected error is less than 0.5.
Assume we have an algorithm WL that takes in (weighted) data sets (x(i),y(i),w(i))

and produces a weak classifier that attempts to minimize weighted training error rate:

ÊW(G) =

∑n
i=1w

(i)I(y(i) 6= G(x(i)))∑n
i=1w

(i)
=

ww
W

.

I just took this oppor-
tunity to define ww
as weight on wrong pre-
dictions and W as the
total weight. We will
also define weight on
correct predictions as
wc = W − ww.

4.1 Adaboost Algorithm

The boosting algorithm works in a loop: feeding the training data into WL, evaluating
the resulting classifier G1 on the data, reweighting it to place more emphasis that were
classified incorrectly, feeding the reweighted data into WL to getG2, etc. The final classifier
has the form

G(x) = sign

(
M∑
m=1

αmGm(x)

)
.

Here is the Adaboost.M1 algorithm:

1. Initialize data weights w(i)
1 = 1/n

2. Form = 1 . . .M

(a) Gm = WL(D,wm)

(b) Compute Ewm
(Gm)

(c) Compute

αm = log
1 − Êwm

(Gm)

Êwm
(Gm)

(d) For all i,
w

(i)
m+1 = w(i)

m · exp
(
αmI(y

(i) 6= Gm(x(i)))
) Some versions of boost-

ing normalize the
weights after this step.

3. Output

G(x) = sign

(
M∑
m=1

αmGm(x)

)
.

MIT 6.867 Fall 2012 8

Points that are misclassified in round m have their weights increased by exp(αm), in-
creasing their relative influence in the next round. Another way to see the update is

w
(i)
m+1 = w(i)

m ·

{
1−Êwm (Gm)

Êwm (Gm)
if I(y(i) 6= Gm(x(i)))

1 otherwise

This view emphasizes that the w(i) remain positive and that, if the current classifier Gm is
working very poorly (that is, that Êwm

(Gm) is near 0.5), then the weights of the points we

Our premise is that
although WL may be
stupid, it will be able
to find a classifier with
training error rate less
than 0.5.

got wrong is not increased by much. If, on the other hand, Gm is working very well, so αm
is high, then the examples it got wrong will have their weights increased very substantially.

Weak learners You can use any non-ridiculous classifier as a weak learner. A very popu-
lar choice is the class of “decision stumps”: these are decision trees that just make a single
split. It’s a terrible classifier all by itself, but can be boosted into generating very good
performance.

4.2 Additive models

We can see that boosting ends up fitting a classifier of the form

f(x) =

M∑
m=1

βmb(x ; γm) ,

where βm are expansion coefficients and b represents a class of basis functions, parameter-
ized by γm. We could try to fit this form directly to data but it is a very difficult optimiza-
tion problem.

Forward stagewise additive modeling Instead, we will fit the model incrementally, or
“stagewise”. This will be computationally simpler and also end up helping guard against
overfitting. The idea is to iteratively add new classifiers that greedily improve the loss of
the overall classifier, but not to go back revisit the parameters or expansion coefficients of
previous stages.
FSAM algorithm

1. Initialize f0(x) = 0

2. Form = 1 . . .M

(a) Compute new component

(βm,γm) = arg min
β,γ

n∑
i=1

L(y(i), fm−1(x
(i)) + βb(x(i) ; γ))

(b) Add it to the ensemble predictor

fm(x) = fm−1(x) + βmb(x ; γm) .

Return fM

MIT 6.867 Fall 2012 9

Adaboost as FSAM We can see Adaboost.M1 as an instance of FSAM with the exponen-
tial loss function

L(y, f(x)) = exp(−yf(x)) .

At each stage of FSAM, it is necessary to solve the problem

(βm,Gm) = arg min
β,G

n∑
i=1

exp
(
−y(i)

(
fm−1(x

(i)) + βG(x(i))
))

= arg min
β,G

n∑
i=1

w(i)
m exp

(
−y(i)βG(x(i))

)
where

w(i)
m = exp(−y(i)fm−1(x

(i))) .

For any positive β,

Gm = arg min
G

exp(−β)
∑

y(i)=G(x(1))

w(i)
m + exp(β)

∑
y(i) 6=G(x(1))

w(i)
m

= arg min
G

(exp(β) − exp(−β))

n∑
i=1

w(i)
m I(y

(i) 6= G(x(i))) + exp(−β)

n∑
i=1

w(i)
m

= arg min
G

n∑
i=1

w(i)
m I(y

(i) 6= G(x(i)))

= WL(D,wm)

Using a negative β is like flipping the signs on the y(i), and just ask for the classifier to
generate the negation of the correct answers. It doesn’t add any value, so we will not
consider doing so.

Now, given Gm, we can solve for β

βm = arg min
β

exp(−β)
∑

y(i)=Gm(x(1))

w(i)
m + exp(β)

∑
y(i) 6=Gm(x(1))

w(i)
m

βm = arg min
β

exp(−β)wcm + exp(β)wwm

= arg min
β

exp(−β) Wm(1 − Êwm
(Gm)) + exp(β) WmÊwm

(Gm)

where Wm =
∑n
i=1w

(i)
m . Taking the derivative with respect to β and setting to 0, we find

that

βm =
1
2

log
1 − Êwm

(Gm)

Êwm
(Gm)

.

Now
fm(x) = fm−1(x) + βmGm(x) ,

so the next weights are

w
(i)
m+1 = exp(−y(i)fm(x(i)))

= exp(−y(i)(fm−1(x
(i)) + βmGm(x(i))))

= exp(−y(i)fm−1(x
(i))) exp(−y(i)βmGm(x(i))))

= w(i)
m exp(−y(i)βmGm(x(i)))

= w(i)
m exp(βm(2I(Gm(x(i)) 6= y(i)) − 1))

= w(i)
m exp(2βmI(Gm(x(i)) 6= y(i))) exp(−βm)

= w(i)
m exp(αmI(Gm(x(i)) 6= y(i))) exp(−βm)

MIT 6.867 Fall 2012 10

This has the same effect as the adaboost reweighting, even though it multiplies by a fixed
factor of exp(−βm).

So! Adaboost minimizes exponential loss by doing stagewise minimization of weighted
misclassification error. This behavior is very interesting. If we plot error vs iteration, we
find that:

• Misclassification rate on the training set falls to zero and stays there

• Even after training error is 0, the exponential loss continues to decrease.

If we knew the true data distribution, exponential loss would be minimized by picking

f∗(x) = arg min
f(x)

EY|x(exp(−Yf(x))) =
1
2

log
Pr(Y = 1 | x)

Pr(Y = −1 | x)
.

Somewhat sensitive to outliers (mis-labeled points). Can make it more robust using a
different loss function (HTF likes binomial deviance), but then there isn’t a closed form for
the optimization so finding each Gm will require a gradient descent.

Better than bagging.

4.3 Margin

Define the voting margin of a point to be

marginf(x,y) =
yf(x)∑
m |αm|

=
y
∑
m αmGm(x)∑
m |αm|

It is a number in [−1, +1] and is positive iff f correctly classifies the example. It can be
interpreted as a measure of confidence in the prediction and it continues to decrease with
rounds of boosting.

Schapire et al showed that larger margins on the training set result in superior upper
bounds on the generalization error. For any θ > 0, with high probability,

Egen 6 P̂r(marginf(x,y) 6 θ) +O

(√
d

nθ2

)
,

where P̂r is the empirical probability of the event in the data set. Note that the bound is
independent ofM.

5 Nearest-neighbor methods

No model Prediction rule Prob model Dist over models
Regression c

Classification c

Density estimation c

Nearest neighbor methods are some of the simplest and are often very effective. They
make few model assumptions and require little or no “training time”. They can be very
expensive in space and/or time to make predictions.

The idea is just that we remember all the data we have ever seen, and don’t attempt to
try to compute a model of it. Given a query, we answer it “directly” using a computation
on the data.

These methods are of-
ten, confusingly, called
“kernel methods.” The
notion of kernel as a
distance function is
used here as well as
in other “kernelized”
learning algorithms,
but the details of the
algorithms are very dif-
ferent.

MIT 6.867 Fall 2012 11

5.1 Regression

Remember all your data! D = {(x(i),y(i))}.

k-nearest-neighbor (KNN) regression:

f̂(x) =
1
k

∑
{i|x(i)∈Nk(x)}

y(i) ,

where neighborsNk(x) are the k points in D minimizing (typically) Euclidean distance ‖x−

x(i)‖ from x.

Nadaraya-Watson Kernel-weighted average (KWA) : KNN is straightforward, but gives
discontinuous (piecewise constant) regression. If we would prefer for it to be smooth, we
can use

f̂(x) =

∑n
i=1 Kλ(x, x(i))y(i)∑n
i=1 Kλ(x, x(i))

,

where the kernel is defined as

Kλ(x, x ′) = D

(
‖x− x ′‖

λ

)
.

The distance function D can be

• Gaussian:
D(t) =

1√
2π

exp(−t2/2)

• Epanechnikov:

D(t) =

{
3
4 (1 − t2) if |t| 6 1
0 otherwise

Many other choices of kernels. They have to be symmetric (K(u) −K(−u)) and integrate to
1.

Some properties of KWA:

• Fitted function is continuous

• λ is a bandwidth or smoothing parameter; larger λ implies lower variance (it is more
smoothed) but higher bias

• KWA with a fixed window width keeps bias constant but variance depends on local
data density.

• KNN keeps variance constant but bias depends on data density.

KNN adapts the neighborhood size to the data density, which is useful in places where,
for example, data is sparse. We can unify KNN and KWA by seeing them as both using a
kernel

Kλ(x, x ′) = D

(
‖x− x ′‖
hλ(x)

)
.

• For KWA, hλ(x) = λ

• For KNN, hλ(x) = ‖x− x[k]‖where x[k] is the kth closest x(i) to x.

MIT 6.867 Fall 2012 12

Locally weighted regression (LWR) : Locally weighted averages are biased at the bound-
aries. We can improve them by doing regression. Our predictor will use a different α̂ and
β̂ for each predicted point x:

f̂(x) = α̂(x) + β̂(x) · x ,

where

α̂(x), β̂(x) = arg min
α,β

n∑
i=1

Kλ(x, x(i))
[
y(i) − α− β · x(i)

]2
.

Inside the sum, the K term is a local weight and the other term is a squared error. To
minimize this, we let:

• X be the n× d+ 1 data matrix with a column of 1’s added

• W(x) be an n× n diagonal weight matrix, withWii(x) = Kλ(x
(i), x).

• Y be the n× 1 vector of y(i) values.

Then

f̂(x) =

[
1
x

] (
XTW(x)X

)−1
XTW(x)Y

= L(x)Y

Think of L as a weight vector combining the least-squares with the kernel weights. We call
this the equivalent kernel.

We could try to remove bias in curved regions of f by using local polynomial regres-
sion...at risk of increased variance.

General points

• Select kernel width with cross validation. Leave-one-out cross validation is really easy
for NN methods.

• Raw features may need to be standardized (scaled to have a fixed variance), or the
Euclidean metric might not make any sense.

Cylinders in a car com-
pared to number of
pounds weight.

• As number of dimensions increases it is hard to keep both bias and variance low
(need a lot of data in a small neighborhood). More on this later.

5.2 Kernel density estimation

To estimate the density at a query point x, compute

P̂(x) =
num{x(i) | ‖x(i) − x‖2 < λ}

nλ
.

Think of this as putting a rectangular bump of width λ and height 1/λ down, centered at
each x(i). To get a density, divide by the number of bumps.

To make a smoother estimate, use a different kernel. This is known as a Parzen density
estimate:

P̂(x) =
1
nλ

n∑
i=1

Kλ(x, x(i)) .

MIT 6.867 Fall 2012 13

5.3 Classification

Easy to do multiple classes:

f̂(x) = arg max
y

number of times y occurs in {y(i) | x(i) ∈ Nk(x)} .

Good for irregular decision boundaries. Pick k by LOOCV.
Theorem: The asymptotic error rate of 1NN is less than or equal to 2 times the Bayes error
rate.

Bayes error rate is the
error rate of the best
possible predictor.

• Assume query point is equal to some training point (this will be true asymptotically).

• Bayes rule tells us to predict y∗ = arg maxy Pr(y | x), which has error 1 − Pr(y∗ | x)

• 1NN error is
k∑
y=1

Pr(y = k | x)(1 − Pr(y = k | x) .

The first term inside the sum is the probability we got label k for input x; the second
is the probability of getting an error if we use it to make a prediction.

For two classes,

1NN error = Pr(Y = 1 | x)(1 − Pr(Y = 1 | x)) · 2
= (1 − Pr(Y = 0 | x))(1 − Pr(Y = 1 | x)) · 2
6 2(1 − Pr(Y = y∗ | x))

6 2 · Bayes error rate

Useful because it can accommodate distance metrics that respect the underlying invari-
ance properties in the data (e.g., rotation and translation of images).

5.4 Curse of dimensionality

In high dimensions, all the x(i) will be far from each other and x. Lots of cool examples.
If we want to find a sub-hypercube of a unit-dimensional hypercube in d dimensions

that contains 10% of the volume, what would the length of the sides of the subcube be? If
n = 1, then 0.1. If n = 10, then 0.8.

All sample points are close to the boundary:

• LetM data points be uniformly distributed in a d-dimensional unit hypersphere

• Make a query at the origin

• The median distance to the closest data point is(
1 −

1
2

1/M
)1/d

.

• ForM = 5000, d = 10, this value is approximately 0.52!!

• So, if we’re doing regression, we’re mostly extrapolating.

Moral of the story: if your data are uniformly distributed in high dimensions, these
methods are hopeless.

But! If they live in a low-dimensional subspace of that high-dimensional space, it might
turn out okay.

