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|.I Reinforcement Learning |.2 Formulation

Agent interacts with an environment
At each time t:
e Receives sensor signal s¢
e Executes action a;
e Transition:
® new sensor signal sy
® reward 7y

Reinforcement Learning is a machine learning paradigm
concerned with the problem of learning how to interact with
an environment to maximize reward.

Goal: find policy 7 that maximizes expected return (sum
of discounted future rewards):

R= f: ’Ytrt:|

max E
s
t=0

|.3 Markov Decision Processes

Common, very useful formalism of the RL problem:

|.2 Formulation

This formulation is general enough to encompass a wide
variety of learned control problems.

< S? A7 77 R? T >
S': set of states
A : set of actions
v : discount factor

R:reward function
R(s,a,s") is the reward received taking action a from state s

and transitioning to state s'.

T :transition function
T'(s'|s, a) is the probability of transitioning to state s’ after
taking action a in states.




|.3 Markov Decision Processes

Example:

bg

States: set of grid locations
Actions: up, down, left, right
Transition function: move in direction of action with p=0.9
Reward function:-| for every step, 1000 for finding the goal

|.3 Markov Decision Processes

Example:
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States: (91,0'1,92,0'2) (real-valued vector)
Actions: +1,-1,0 units of torque added to elbow
Transition function: physics!

Reward function:-| for every step

|.3 Markov Decision Processes
The Markov Property

T(St41]5¢, Aty Sp—15 41, o, 81,01) = T(S¢41]5¢, a4)

Transitions depend only on the current state and action.
(The agent’s history is unimportant.)

|.3 Markov Decision Processes

This allows us to define our target, a policy:
TS — A

A policy maps states to actions.

Given the Markov Property, the optimal policy maximizes:

SQ_S:|
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R(s)=> 7'n

t=0

max Vs, E
™

|.3 Markov Decision Processes

Reinforcement Learning setting:
® One or both of T, R unknown.
e Agent does not know how the world works.
® When both are known, we have a planning problem.

Exploration vs. Exploitation:
® Learn more about the environment, or execute best existing
policy?

|.4 Solution Methods

Broadly two families of learning algorithms for RL problems:
¢ Value Function Methods
¢ Policy Search Methods

Orthogonal question: model-based vs. model-free:
e Learn a model, use it to find policy.
e Learn a policy directly.




2.VALUE FUNCTIONS

2.1 Value Functions

Recall that we seek a policy that maximizes:

R(s) = Z'ytrt S0 = s}
t=0

This means that we wish to find a policy that maximizes the
return from every state.

max Vs, E
™

Given a policy, we can estimate of R(s) for every state.
* This is a value function.
* It can be used to improve our policy.

2.1 Value Functions

We define a value function as follows:

77,50—5}

This is the value of state s under policy 7.

oo

Va(s)=E [Z vy

t=0

2.1 Value Functions

2.1 Value Functions

Similarly, we define a state-action value function as follows:

Qr(s,a) =E [Z vy

t=0

T,80 = S, a0 —a:|

This is the value of executing ain state s, under policy .

Note that:

Generally:
¢ To learn a policy, we need Q.
¢ We can use V if we have T.
e Theory is similar, Vis clearer to write.

2.2 Policy Iteration

Recall that we seek the policy that maximizes V,(s), Vs.
Therefore we know that, for the optimal policy 7™

Vs (8) > Vi (s), V7, s
Qﬂ'* (Saa) 2 QW(S,G),VW7S,CL

This means that any change to 7 that increase () anywhere
obtains a better policy.




2.2 Policy Iteration

This leads to a general policy improvement framework:
I. Start with a policy ™
—
3. Improve 7
a.m(s) = max Q(s,a),Vs

Repeat

This is known as policy iteration.
It is guaranteed to converge to the optimal policy.

Steps 2 and 3 can be interleaved as rapidly as you like.
Usually, perform 3a every time step.

2.3 Value Function Learning

Learning proceeds by gathering samples of Q(s, a).

Methods differ by:
® How you get the samples.
® How you use them to update ().
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2.4 Learning: Monte Carlo

Simplest thing you can do: sample R(s).

N

O

Do this repeatedly, average values:

_ Ri(s) + Ra(s) + ... + Rn(s)

Q(s,a)
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2.4 Learning: Monte Carlo

This is rather slow.

e Must wait until the goal has been reached to update.

e If there is no goal (continuing task), you must decide
when to cut off.
e High variance.
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2.5 Learning: Temporal Difference

Where can we get more (immediate) samples?

Idea: there is an important relationship between temporally
successive states.

R(St) =Tt + ’)/R(St+1)

Hence, ideally and in expectation:
re + ’}/V(St+1) — V(St) =0

Viis correct if this holds in expectation for all states.
When it does not, it is known as a temporal difference error.
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2.5 Learning: Temporal Difference

What does this look like?

&

C)

v
Ty

V(st) & re + vV (st41)
Q(s¢,a¢) — re +¥Q(St41, ap41)
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2.5 Learning: Temporal Difference

Sarsa: very simple algorithm

I. Initialize Q(s, a)
2. For n episodes
e observe transition (s, a,7,s’,a’)
e compute TD error § =7 +vQ(s',a’) — Q(s,a)
e update Q: Q(s,a) = Q(s,a) + ad
e select and execute action based on Q
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2.5 Learning: Temporal Difference
In Sarsa, we use a sample transition:
(87 a7 T7 8/7 al)

This results in a sample backup.

If we had T, we could replace this sample with the full
expectation:

6 =Er7[r+~Q(s',a")] — Q(s,a)

This is known as a full backup.
Resulting algorithm: dynamic programming.
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2.5 Learning: Temporal Difference

Dynamic programming finds an optimal policy in time
polynomial in |.S|and |A].

(Bear in mind that there are |A||S| possible policies.)
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2.6 Learning: Complex Backups
TD and MC two extremes of obtaining samples of Q:

r+4V r+qV r 4V

.....
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2.6 Learning: Complex Backups

We can generalize this to the idea of an n-step rollout:

RE?) =7+ Yre+1 + "/QT'H_Q + ...+ 77L_17’t+n_] + "/nV(SH_n)

Each tells us something about the value function.
® We can combine all n-step rollouts.
e This is known as a complex backup.
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2.6 Learning: Complex Backups

AN
o

Weighted sum:

RM = 1o +~V(sy)
R®) =g +yr1 + 97V (s2)

weights

. n—1
R™ ="' + 4"V (sn)
=0

Estimator:

R) = (1=\) > A"R(Y

n=0
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2.6 Learning: Complex Backups

This is called the A-return.
® At A=0 we get TD, at A=1 we get MC.
* Intermediate values of A usually best.
® TD(A) family of algorithms
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2.7 Value Function Approximation

What if the states are real-valued?
e Cannot use table to represent Q.
e States may never repeat: must generalize.
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2.7 Value Function Approximation

How do we represent general function of state variables?
Many choices:
® Most popular is linear value function approximation.

e Use set of basis functions @1, .-, &m
e Define linear function of them:

V() =3 wii(x)
=1

Learning task is to find vector of weights w to best
approximate V.
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2.7 Value Function Approximation

One choice of basis functions:
® Just use state variables directly: [1, z, y]

Another:
¢ Polynomials in state variables.
e Eg, [1,2,y,xy, 22 y?, oy?, 22yx?y?]
e This is like a Taylor expansion.

Another:
® Fourier terms on state variables.
e Eg,[1,cos(mx), cos(my), cos(m|x + y])]
¢ This is like a Fourier Series expansion.
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2.7 Value Function Approximation

Algorithms generalize to linear case:
e Tabular case is linear case with indicator basis functions.

Two broad families of methods:

I. Incremental, online methods (e.g., Sarsa)
® Process each sample as it comes in, discard
e cf, stochastic gradient descent
e Slow (samples) but fast (time, memory)

2. Batch methods (e.g., LSTD)
¢ Store sufficient statistics, perform batch least-squares
e cf, linear least-squares
¢ Fast (samples) but slow (time, memory)
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2.7 Value Function Approximation

8no Acrobot

Episode: 1
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2.7 Value Function Approximation

TD-Gammon:Tesauro (circa 1992-1995)
e At or near best human level
¢ Learn to play Backgammon through self-play
e 1.5 million games

¢ Neural network function approximator

(]

TDN)

Changed the way the best human players played.
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3.POLICY SEARCH
(briefly)
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3.1 Policy Search

Sometimes policies are simpler than value functions:
® Parametrized program (s, a|6)

Sometimes we wish to search in space of restricted policies.

In such cases it makes sense to search directly in policy-space
rather than trying to learn a value function.
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3.2 Policy Gradient

Can apply any generic optimization method for 6.
One particular approach: policy gradient.
e Compute and ascend OR/00

e This is the gradient of return w.r.t policy parameters

Policy gradient theorem:

o ey oY T 7 (5.0) — bs)

Therefore, one way is to learn Q and then ascend gradient.
Q need only be defined using basis functions computed from 6.
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3.2 Policy Gradient

The majority of successful robot applications use policy search /
policy gradient methods.
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3.2 Policy Gradient

Example:
Kohl and Stone, ICRA 2004.
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3.2 Policy Gradient

Learning Dynamic Arm Motions
for Postural Recovery

Scott Kuindersma, Rod Grupen, Andy Barto
University of Massachusetts Amherst

Humanoids 2011
Bled, Slovenia
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4.1 Reinforcement Learning

Machine Learning for control.

Very active area of current research, applications in:
Robotics

Operations Research

Computer Games

Theoretical Neuroscience

Al
e The primary function of the brain is control.

Way, way lots of work remains.
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4. SUMMARY
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