
Reinforcement Learning

George Konidaris
gdk@csail.mit.edu

November 27th 2012

1

1. INTRODUCTION

2

1.1 Reinforcement Learning
Reinforcement Learning is a machine learning paradigm

concerned with the problem of learning how to interact with
an environment to maximize reward.

3

1.2 Formulation

Agent interacts with an environment
At each time t:

• Receives sensor signal
• Executes action
• Transition:

• new sensor signal
• reward

st

at

st+1

rt

Goal: find policy that maximizes expected return (sum
of discounted future rewards):

π

max
π

E

[

R =

∞
∑

t=0

γtrt

]

4

1.2 Formulation
This formulation is general enough to encompass a wide
variety of learned control problems.

5

1.3 Markov Decision Processes
Common, very useful formalism of the RL problem:

: set of states
: set of actions
: discount factor

: reward function
 is the reward received taking action from state
 and transitioning to state .

: transition function
 is the probability of transitioning to state after
taking action in state .

S

A

R

R(s, a, s′)

γ

a s

s
′

T

T (s′|s, a) s
′

a s

< S, A, γ, R, T >

6

1.3 Markov Decision Processes
Example:

States: set of grid locations
Actions: up, down, left, right
Transition function: move in direction of action with p=0.9
Reward function: -1 for every step, 1000 for finding the goal

7

1.3 Markov Decision Processes
Example:

States: (real-valued vector)
Actions: +1, -1, 0 units of torque added to elbow
Transition function: physics!
Reward function: -1 for every step

(θ1, θ̇1, θ2, θ̇2)

8

1.3 Markov Decision Processes
The Markov Property

Transitions depend only on the current state and action.
(The agent’s history is unimportant.)

T (st+1|st, at, st−1, at−1, ..., s1, a1) = T (st+1|st, at)

st

at

st+1

9

1.3 Markov Decision Processes
This allows us to define our target, a policy:

A policy maps states to actions.

Given the Markov Property, the optimal policy maximizes:

π : S → A

max
π

∀s, E

[

R(s) =
∞
∑

t=0

γtrt

∣

∣

∣

∣

∣

s0 = s

]

10

1.3 Markov Decision Processes

Reinforcement Learning setting:
• One or both of unknown.
• Agent does not know how the world works.
• When both are known, we have a planning problem.

Exploration vs. Exploitation:
• Learn more about the environment, or execute best existing

policy?

T,R

11

I.4 Solution Methods
Broadly two families of learning algorithms for RL problems:

• Value Function Methods
• Policy Search Methods

Orthogonal question: model-based vs. model-free:
• Learn a model, use it to find policy.
• Learn a policy directly.

12

2. VALUE FUNCTIONS

13

2.1 Value Functions
Recall that we seek a policy that maximizes:

This means that we wish to find a policy that maximizes the
return from every state.

max
π

∀s, E

[

R(s) =
∞
∑

t=0

γtrt

∣

∣

∣

∣

∣

s0 = s

]

Given a policy, we can estimate of for every state.
• This is a value function.
• It can be used to improve our policy.

R(s)

14

2.1 Value Functions
We define a value function as follows:

This is the value of state under policy .

Vπ(s) = E

[

∞
∑

t=0

γtrt

∣

∣

∣

∣

∣

π, s0 = s

]

s π

15

2.1 Value Functions

0

5

10

15

20

0
5

10
15

20
25

30
35

40

0

50

100

150

200

250

300

350

400

450

500

16

2.1 Value Functions
Similarly, we define a state-action value function as follows:

This is the value of executing in state , under policy .

Note that:

Generally:
• To learn a policy, we need .
• We can use if we have .
• Theory is similar, is clearer to write.

Qπ(s, a) = E

[

∞
∑

t=0

γtrt

∣

∣

∣

∣

∣

π, s0 = s, a0 = a

]

πa s

Qπ(s, π(s)) = Vπ(s)

Q

V T

V

17

2.2 Policy Iteration
Recall that we seek the policy that maximizes .

Therefore we know that, for the optimal policy :

This means that any change to that increase anywhere
obtains a better policy.

Vπ(s),∀s

π
∗

Vπ
∗(s) ≥ Vπ(s),∀π, s

Qπ
∗(s, a) ≥ Qπ(s, a),∀π, s, a

π Q

18

2.2 Policy Iteration
This leads to a general policy improvement framework:

1. Start with a policy
2. Learn
3. Improve

a.

π

Qπ

π

π(s) = max
a

Q(s, a),∀s
Repeat

This is known as policy iteration.
It is guaranteed to converge to the optimal policy.

Steps 2 and 3 can be interleaved as rapidly as you like.
Usually, perform 3a every time step.

19

2.3 Value Function Learning
Learning proceeds by gathering samples of .

Methods differ by:
• How you get the samples.
• How you use them to update .

Q(s, a)

Q

20

2.4 Learning: Monte Carlo
Simplest thing you can do: sample .

Do this repeatedly, average values:

R(s)

r
r r r r r r r

Q(s, a) =
R1(s) + R2(s) + ... + Rn(s)

n

21

2.4 Learning: Monte Carlo
This is rather slow.

• Must wait until the goal has been reached to update.
• If there is no goal (continuing task), you must decide

when to cut off.
• High variance.

22

2.5 Learning: Temporal Difference
Where can we get more (immediate) samples?

Idea: there is an important relationship between temporally
successive states.

Hence, ideally and in expectation:

 is correct if this holds in expectation for all states.
When it does not, it is known as a temporal difference error.

R(st) = rt + γR(st+1)

rt + γV (st+1) − V (st) = 0

V

23

2.5 Learning: Temporal Difference
What does this look like?

st st+1
at

rt

V (st) ← rt + γV (st+1)

Q(st, at) ← rt + γQ(st+1, at+1)

24

2.5 Learning: Temporal Difference
Sarsa: very simple algorithm

1. Initialize Q(s, a)
2. For n episodes

• observe transition
• compute TD error
• update Q:
• select and execute action based on Q

(s, a, r, s
′
, a

′)
δ = r + γQ(s′, a′) − Q(s, a)

Q(s, a) = Q(s, a) + αδ

25

2.5 Learning: Temporal Difference
In Sarsa, we use a sample transition:

This results in a sample backup.

If we had T, we could replace this sample with the full
expectation:

This is known as a full backup.
Resulting algorithm: dynamic programming.

(s, a, r, s
′
, a

′)

δ = Eπ,T [r + γQ(s′, a′)] − Q(s, a)

26

2.5 Learning: Temporal Difference
Dynamic programming finds an optimal policy in time
polynomial in and .

(Bear in mind that there are possible policies.)

|S| |A|

|A||S|

27

2.6 Learning: Complex Backups
TD and MC two extremes of obtaining samples of Q:

t=1 t=2 t=3 t=4 t=L

...

r + γV r + γV r + γV

t=1 t=2 t=3 t=4 t=L

...

∑

i

γiri

28

2.6 Learning: Complex Backups
We can generalize this to the idea of an n-step rollout:

Each tells us something about the value function.
• We can combine all n-step rollouts.
• This is known as a complex backup.

29

2.6 Learning: Complex Backups
Weighted sum:

 .
 .
 .

Estimator:

R(1) = r0 + �V (s1)
R(2) = r0 + �r1 + �2V (s2)

R(n) =
n�1X

i=0

�iri + �nV (sn)

1
�

�n

weights

30

2.6 Learning: Complex Backups
This is called the λ-return.

• At λ=0 we get TD, at λ=1 we get MC.
• Intermediate values of λ usually best.
• TD(λ) family of algorithms

31

2.7 Value Function Approximation
What if the states are real-valued?

• Cannot use table to represent Q.
• States may never repeat: must generalize.

0

5

10

15

20

0
5

10
15

20
25

30
35

40

0

50

100

150

200

250

300

350

400

450

500

0 10 20 30 40 50 60 70 80 90020406080100

0

0.5

1

1.5

2

2.5

vs

32

2.7 Value Function Approximation
How do we represent general function of state variables?

Many choices:
• Most popular is linear value function approximation.
• Use set of basis functions
• Define linear function of them:

Learning task is to find vector of weights w to best
approximate V.

V̄ (x) =
m∑

i=1

wiφi(x)

33

2.7 Value Function Approximation
One choice of basis functions:

• Just use state variables directly:

Another:
• Polynomials in state variables.
• E.g.,
• This is like a Taylor expansion.

Another:
• Fourier terms on state variables.
• E.g.,
• This is like a Fourier Series expansion.

[1, x, y, xy, x
2
, y

2
, xy

2
, x

2
yx

2
y
2]

[1, cos(πx), cos(πy), cos(π[x + y])]

[1, x, y]

34

2.7 Value Function Approximation
Algorithms generalize to linear case:

• Tabular case is linear case with indicator basis functions.

Two broad families of methods:

1. Incremental, online methods (e.g., Sarsa)
• Process each sample as it comes in, discard
• cf., stochastic gradient descent
• Slow (samples) but fast (time, memory)

2. Batch methods (e.g., LSTD)
• Store sufficient statistics, perform batch least-squares
• cf., linear least-squares
• Fast (samples) but slow (time, memory)

35

2.7 Value Function Approximation

36

2.7 Value Function Approximation

TD-Gammon: Tesauro (circa 1992-1995)
• At or near best human level
• Learn to play Backgammon through self-play
• 1.5 million games
• Neural network function approximator
• TD(λ)

Changed the way the best human players played.

37

3. POLICY SEARCH
(briefly)

38

3.1 Policy Search
Sometimes policies are simpler than value functions:

• Parametrized program

Sometimes we wish to search in space of restricted policies.

In such cases it makes sense to search directly in policy-space
rather than trying to learn a value function.

π(s, a|θ)

39

3.2 Policy Gradient
Can apply any generic optimization method for .

One particular approach: policy gradient.
• Compute and ascend
• This is the gradient of return w.r.t policy parameters

Policy gradient theorem:

Therefore, one way is to learn Q and then ascend gradient.
Q need only be defined using basis functions computed from .

∂R/∂θ

θ

θ

40

3.2 Policy Gradient
The majority of successful robot applications use policy search /
policy gradient methods.

41

3.2 Policy Gradient
Example:
Kohl and Stone, ICRA 2004.

42

3.2 Policy Gradient

43

4. SUMMARY

44

4.1 Reinforcement Learning
Machine Learning for control.

Very active area of current research, applications in:
• Robotics
• Operations Research
• Computer Games
• Theoretical Neuroscience

AI
• The primary function of the brain is control.

Way, way lots of work remains.

45

