ECE290 Fall 2012
Lecture 18

Dr. Zbigniew Kalbarczyk

Today

* Introduction to Control Unit
e Binary Multiplier Example
* Hardwire Control Unit for Binary Multiplier

Today

* Introduction to Control Unit
e Binary Multiplier Example
* Hardwire Control Unit for Binary Multiplier

Components of a Simple Computer

* Focus on MEMORY
designing a
controlunitofa _ r-s—

CPU in a simple \ |

computer

CONTROL UNIT - DATAPATH

INPUT/OUTPUT

A Control Unit

* A control unit generates control input and control
output signals that

— activate micro-operations within data path to perform
specified processing tasks

— determine its own next state

Requirements on Control Units

* In programmable systems (use control memory and
control program), a control unit consists of
— Program counter (PC) and its decision logic
— Logic to interpret instructions fetched from RAM or ROM

* In non-programmable systems (use gates +
connections), a control unit determines
— the operations to be performed and

— the sequence of operations;
based on inputs and the status bits from data path.

Design Exercise: A Control Unit for Multiplication

* Multiplication of Unsigned Numbers

— If O<r<2™and O<s<2"then 2n bits suffice to hold the
product of two n-bit binary number multiplication

— Example: Multiplicand s=111; Multiplier r=110

1 1 1

X 1 1 0

0 0 0

1 1 1 0

1 1 1 0 0

1 0 1 0 1 0

Design Considerations

e Needed: 2n bit adder

— Multiplicand: register B of size=n

— Multiplier: register Q of size=n
— Products: register A of size=2n

e Can we accomplish the same with n bit adder?

* Design Ildea:

— Repeatedly add s (multiplicand) to partial product

— Keep shifting partial products to right so addition of s always
occur in same place

Multiplication Execution with A, B and Q
Registers

Register A m_ ReglsterQ =multiplier

‘ p2 rl rO

1 0

___ Add and then shift right
_____l-_

\pz pl

10 1 1

— Add and then shift right

pl

0 0

___ Add and then shf i
1 jo J1+Jo 1 Jo |1
C p2 pl p0 r2 rl ro

0 1

0 1 0 ‘

ldea in Practice

1. Load multiplier into Q register. As bits shift into Q
from left, examine successive bits of multiplier at
Q[O0] (rightmost bit)

2. Set C <- 0 so that O shifts into leftmost bit of A
register when no addition

3. Use counter P to count down fromn-1to 0
4. Define Z=1 when current value of P is 0...0

Data Path Components for Binary Multiplier

N/ ADDRESS OUT

MD SELECT
—_—

DATAIN
n
y

1 0
1 MUX D

DATA OUT

RW
(READ/WRITE|

DA (DATA

ADDRESS) s,
__—y) f

"y
DATA
——| WRITE
+> DATA
ADDRESS
m
2" xn
REGISTER FILE
+> A B
ADDRESS ADDRESS 47L
m m
A B
CONSTANT IN
n 1 ny
MD SELECT 1 0
» MUX B
/.
BUS A 1
" BUS B
v 7
FS : A <
/
4
[V M—
C — FUNCTION UNIT
N G———t
7 ey
F

MF SELECT x

BUSD
1 D (DATA)
n
LOAD ENABLE
n
n
Multiplexer
Multiplexer L SL
IR
- c C; ENB
| R2 1 2
C; C, ENB
R3
Decoder
= 4
s Dy
ENB
B -
BA [nY n
(A ADDRESS) (B ADDRESS) BUSA BUS B
AA & BA
SOURCE
ADDRESS
n n
5 v |
G SELECT A 5 =
H SELECT
¢ _—
v -
< ARITHMETIC/ 3
% LOGIC UNIT (ALU) SHIFTER
— .
. — Ir >
N i
e —
i n
z . RO A
. DETECT
Multiplexer
S of

Binary Multiplier: Data Path

* Block Diagram of

n-1

|

INPUT

MULTIPLICAND{

Data Path Includes

COUNTER P

REGISTER B

— Register File 1 |1 |1 |
— Function Unit M’””l/ .
_ Buses Cou | PARALLEL |‘
gaddal, o [0 [0
0 fo Ja Ja Jfr [0 [1
0 v SHIFT SHIFT
—p C —" REGISTER A REGISTER Q

Example: Step 1 of executing

111 x 110 (n=3)

Multiplicand=111; Multiplier = 110
Add and then shift right

v

! -
ﬁﬂl.i-l.l

v

PRODUCT
OUTPUT

Binary Multiplier: Data Path & Control Unit

* Block Diagram of Control i
Unit Includes MULTIPLIANDY N\

REGISTER B

r*
PARALLEL
ADDER

— Status Bits (Z =1 if P=0)

— Go signal (Go=1 to start
multiplication)

— Q0]

'MULﬂPUER

* Q[0]=1 ~ add B register & |

updated A & C registers; o

. N REGISTERA 4 REGISTER Q

 Q[0]=0~ A & Cregisters do

not change n

' !
4 CONTROL s v
REASEE PRODUCT

OUTPUT

Algorithmic State Machines

* Algorithmic State Machine (ASM) Chart

— asequence of events
— the timing relationship between the states
— Three basic elements
e state box, decision box, conditional output box

— State box
Binary
Name code IDLE 000
Register operation R« 0
or output RUN

| |

State box Example of state box

Algorithmic State Machines (2)

 Decision box

— Condition; single variable or Boolean expression

D1

' Decision box

Algorithmic State Machines (3)

e Conditional output box

IDLE

From decision box

Register operation
or output PC <0

l |

Conditional output box Example of decision and condition output box

Binary Multiplier Described by ASM Chart

* Assume:
— Multiplicand is in register B and
— Multiplier is in register Q

— Loading of B and Q is not handled by the control unit
explicitly

— Result will be a concatenation of registers C, A and Q

ASM Chart for
Binary
Multiplier

INPUT

n-1
n

1 MULTIPLICAND ¢

REGISTER B
COUNTER P
n
[tog, 2]
v
Cout PARALLEL «
DETECTIF 0 ADDER
n I}l/
¥ ¢ MULTIPLIER
0 SHIFT _ SHIFT
REGISTER A ”| REGISTER Q
G (Go)
Z
Q[o]
v v
CONTROL s < 4
IGNAL
- - PRODUCT
OUTPUT

IDLE l

to start
multiplication: G=1

_—
~—

Initialization
C<0,A<0,P<-n1) /9l jes
2
MULO
0 1 A <-A+B
C <-Cout
MULA1 v
C<0,Cl|A]|Q<-srC|lA]Q
P <-P1

Concatenate registers

(a composite register)
0 1

Z=1iff P counter=0
(P is checked before it
is decrement)

Hardwire Control Design

Two parts of the design:
* Control of micro-operations

— Table of control signals defined in terms of states and
Inputs

e Sequencing of the control unit and micro-
operations

— Table of transition of states

* The logic for these two parts can be shared

| Register A-

Control of Micro-operations for Binary Multiplier

‘ Micro-operatio

n Boolean Exp

| Control Sig
Name

IDLE * G
'MULO * Q[0
‘MULL
'LoadB
MUL1 + IDL

Initialize
Load_AC

| Shift_dec
'Load_B

| Clear C
Load_AC

| Load_Q
Shift_dec
| Initialize

| Shift _dec

| LoadQ

(@)

N

(@)
o
(e
|

Sequencing the Control Unit and Micro-
operations

IDLE 1 00

MULO 01

Sequencing Part of ASM
Chart for the Binary l
MUL1 10

Multiplier:

 All conditional

output boxes are
removed

* Any decision box not 0
affecting next state
is removed

Hardwire Control: Implementation

1. Sequence register and decoder

— Use sequence register and decoder to generate a
sequence of control signals from a control unit

Hardwire Control: Sequence Register and Decoder

Method

Methodl: using sequence register and decoder:

= W N

Assign binary state to each ASM state
Keep binary state in sequence register
Use decoder to create a signal for each state

Desigh combinational logic to generate control
signhal and next state

eeeeeee

MO |\

Method 1: From ASM to Control Signals

e Starting Point:
— Two inputs: G, Z (plus Q[0])

— Three states: IDLE, MULO, MUL1
(treated as Boolean variables)

* Needed:
— 2 Flip-Flops for the sequence register

— 2-to-4 line decoder (three states =>
only 3 out 4 decoder outputs will be
used)

— State Table

State Table for Sequence Register and Decoder

* Derive relationships between inputs & current states
to generate signals to get to next states

D SET Q D SET Q D SET Q D SET Q S,

> > > > Sz Dy
CLR a CLR a CLR a CLR a ENB

Name | M1 MO G Z M1+ MO+ || IDLE MULO MUL1
IDLE O 0 0 X 0 0 1 0 0

0 0 1 X 0 1 1 0 0
MULO O 1 X X 1 0 0 1 0
MUL1 1 0 X 0 0 1 0 0 1

1 0 X 1 0 0 0 0 1
------ 1 1 X X X X X X X

IDLE=1 ~ | am not doing multiplication

Boolean Relationships

 Boolean Expressions for State Transitions
MO(t+1) = IDLE-G+MUL1.-Z

M 1(t +1) — MULO DI\S;Tla | .
* Boolean Expressions for Control Signals ControllUnit

Control Signal Name Boolean Expression
- G (Go)

Initialize IDLE * G
Load_AC MULO * Q[0]
Shift_dec MUL1
Clear C MUL1 + IDLE * G SIGNALS
Load B LoadB
_Load Q LoadQ

Method1: Control Unit for Binary Multiplier

--.
-

|

Y

MO

DSETQ

CLR 5

DECODER

M1

DSETQ

aRz5

ENB

=CLEAR_C

1DLE
u
| WULO

Q[O! llllllllllllllllll I (]

UL = SHIFT_DEC

u
N
L]

.msrgg.qmendﬂg.m_jﬁo

Control Unit

