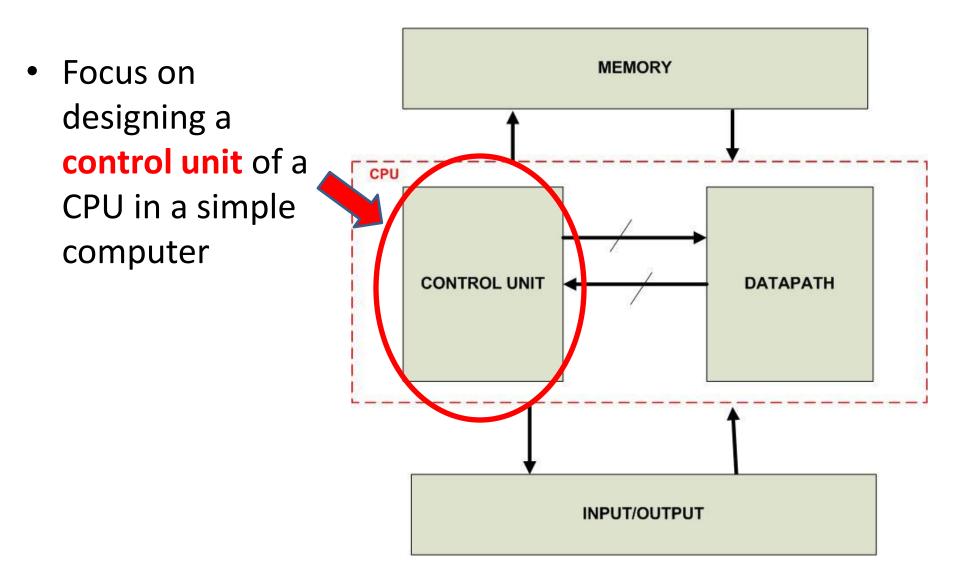
ECE290 Fall 2012 Lecture 18

Dr. Zbigniew Kalbarczyk


Today

- Introduction to Control Unit
- Binary Multiplier Example
- Hardwire Control Unit for Binary Multiplier

Today

- Introduction to Control Unit
- Binary Multiplier Example
- Hardwire Control Unit for Binary Multiplier

Components of a Simple Computer

A Control Unit

- A control unit generates control input and control output signals that
 - activate micro-operations within data path to perform specified processing tasks
 - determine its own next state

Requirements on Control Units

- In programmable systems (use control memory and control program), a control unit consists of
 - Program counter (PC) and its decision logic
 - Logic to interpret instructions fetched from RAM or ROM
- In non-programmable systems (use gates + connections), a control unit determines
 - the operations to be performed and
 - the sequence of operations;
 based on inputs and the status bits from data path.

Design Exercise: A Control Unit for Multiplication

- Multiplication of Unsigned Numbers
 - If 0<r<2ⁿ and 0<s<2ⁿ then 2n bits suffice to hold the product of two n-bit binary number multiplication
 - Example: Multiplicand s=111; Multiplier r=110

			1	1	1
		Х	1	1	0
			0	0	0
		1	1	1	0
	1	1	1	0	0
1	0	1	0	1	0

Design Considerations

• Needed: 2n bit adder

- Multiplicand: register B of size=n
- Multiplier: register Q of size=n
- Products: register A of size=2n
- Can we accomplish the same with <u>n bit adder</u>?
- Design Idea:
 - Repeatedly add s (multiplicand) to partial product
 - Keep shifting partial products to right so addition of s always occur in same place

Multiplication Execution with A, B and Q Registers

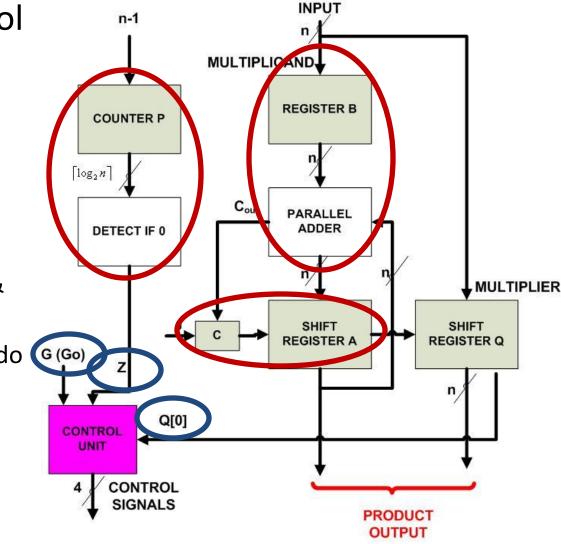
Init	Register A	=product		Register Q	=multiplier	
С	p2	p1	p0	r2	r1	rO
0	0	0	0	1	1	0
	0	0	0	Add and then shift right		
0	0	0	0	1	1	0
С	p2	p1	p0	r2	r1	rO
0	0	0	0	0	1	1
	1	1	1	Add and then shift right		
0	1	1	1	0	1	1
С	p2	p1	p0	r2	r1	r0
0	0	1	1	1	0	1
	1	1	1	Add and then shift right		
1	0	1	0	1	0	1
C	p2	p1	p0	r2	r1	rO
0	1	0	1	0	1	0

Idea in Practice

- 1. Load multiplier into Q register. As bits shift into Q from left, examine successive bits of multiplier at Q[0] (rightmost bit)
- 2. Set C <- 0 so that 0 shifts into leftmost bit of A register when no addition
- 3. Use counter P to count down from n-1 to 0
- 4. Define Z=1 when current value of P is 0...0

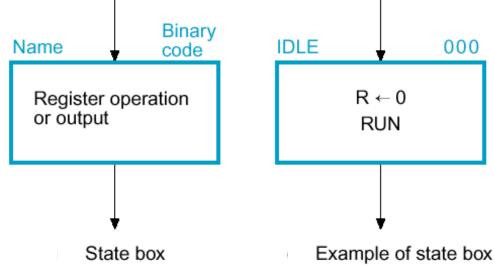
Data Path Components for Binary Multiplier

Binary Multiplier: Data Path


- Block Diagram of Data Path Includes
 - Register File
 - Function Unit
 - Buses

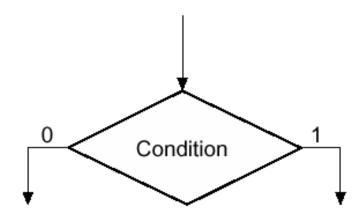
INPUT n-1 1 MULTIPLICAND **REGISTER B** COUNTER P 1 1 $\lceil \log_2 n \rceil$. Cout PARALLEL DETECT IF 0 0 0 0 0 0 1 0 0 1 SHIFT SHIFT **REGISTER A REGISTER Q** 1 0 0 1 1 1 PRODUCT OUTPUT

Example: Step 1 of executing 111 x 110 (n=3) Multiplicand=111; Multiplier = 110 Add and then shift right


Binary Multiplier: Data Path & Control Unit

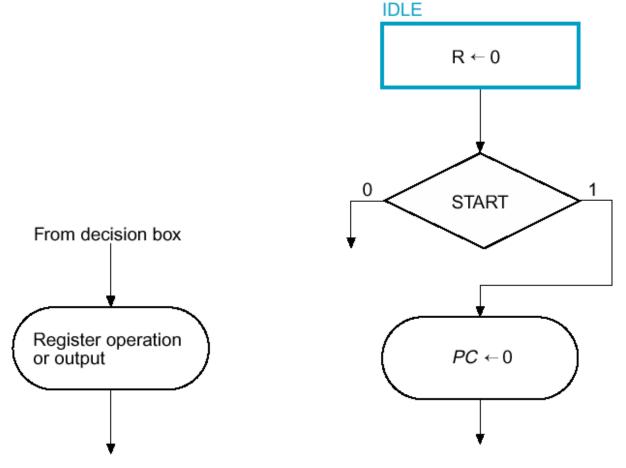
- Block Diagram of Control Unit Includes
 - Status Bits (Z =1 if P=0)
 - Go signal (Go=1 to start multiplication)
 - Q[0]
 - Q[0]=1 ~ add B register & updated A & C registers;
 - Q[0]=0 ~ A & C registers do G (Go) not change

Algorithmic State Machines


- Algorithmic State Machine (ASM) Chart
 - a sequence of events
 - the timing relationship between the states
 - Three basic elements
 - state box, decision box, conditional output box
 - State box

Algorithmic State Machines (2)

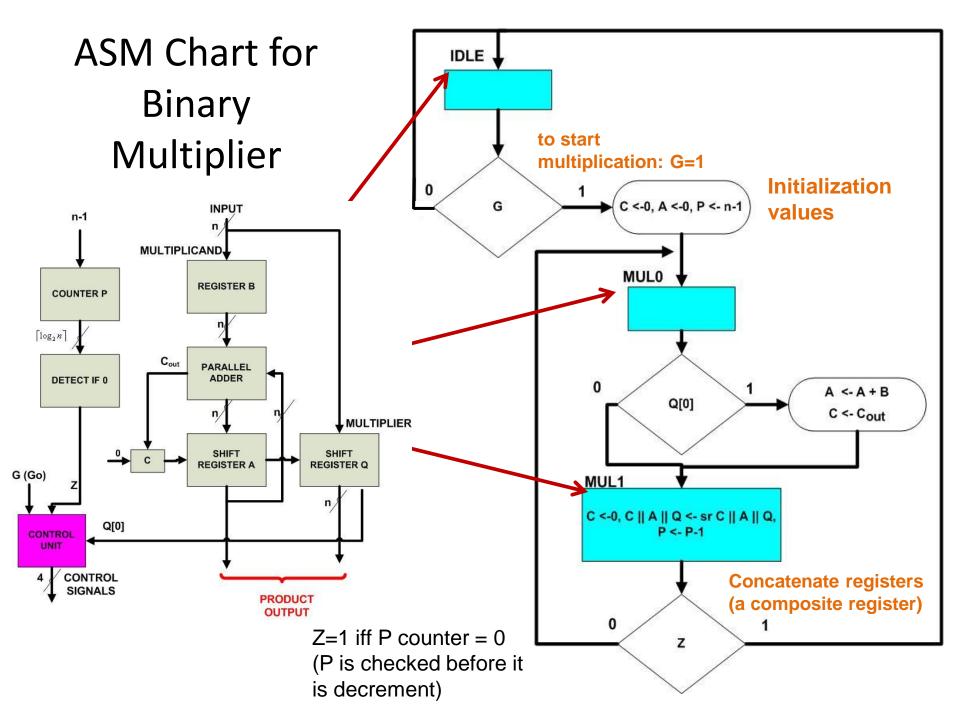
Decision box


- Condition; single variable or Boolean expression

Decision box

Algorithmic State Machines (3)

Conditional output box



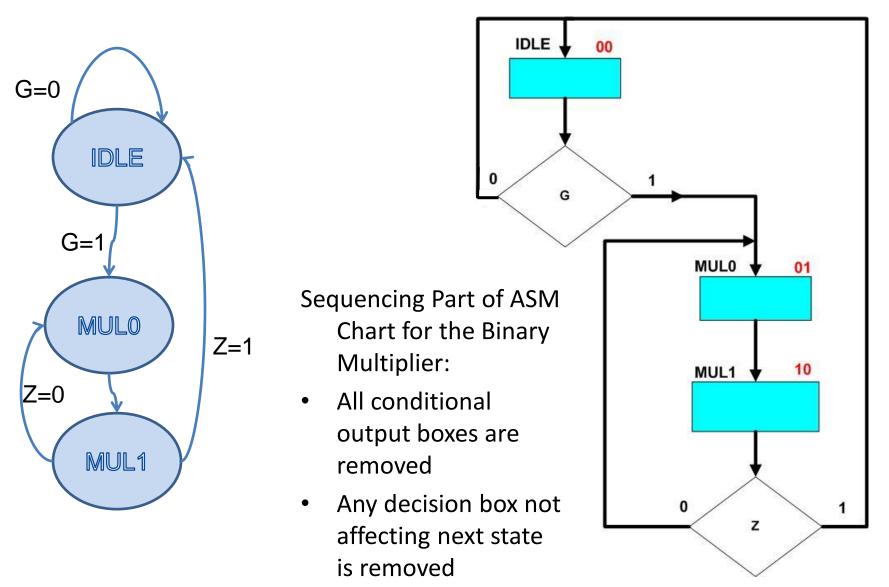
Conditional output box

Example of decision and condition output box

Binary Multiplier Described by ASM Chart

- Assume:
 - Multiplicand is in register B and
 - Multiplier is in register Q
 - Loading of B and Q is not handled by the control unit explicitly
 - Result will be a concatenation of registers C, A and Q

Hardwire Control Design


Two parts of the design:

- Control of micro-operations
 - Table of control signals defined in terms of states and inputs
- Sequencing of the control unit and microoperations
 - Table of transition of states
- The logic for these two parts can be shared

Control of Micro-operations for Binary Multiplier

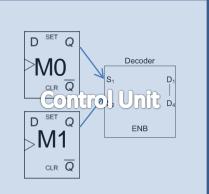
	Micro-operations	Control Signal Name	Boolean Expression
Register A	A <-0	Initialize	IDLE * G
	A <- A + B	Load_AC	MUL0 * Q[0]
	Shift right (C A Q)	Shift_dec	MUL1
Register B	B <- IN	Load_B	LoadB
Register C	C <- 0	Clear_C	MUL1 + IDLE * G
	C <- C _{OUT}	Load_AC	
Register Q	Q <- IN	Load_Q	LoadQ
	Shift right (C A Q)	Shift_dec	
Register P	P <- n-1	Initialize	
	P <- P -1	Shift _dec	

Sequencing the Control Unit and Microoperations

Hardwire Control: Implementation

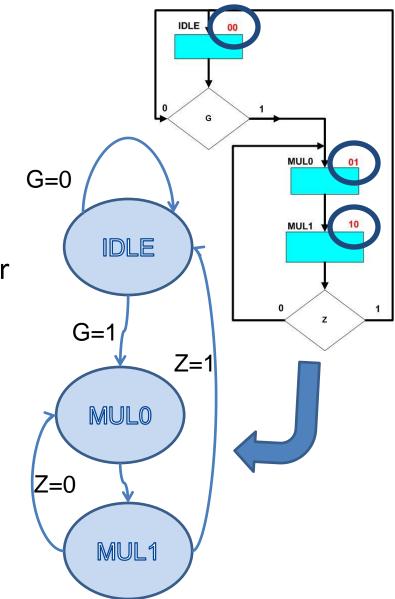
1. Sequence register and decoder

Use sequence register and decoder to generate a sequence of control signals from a control unit

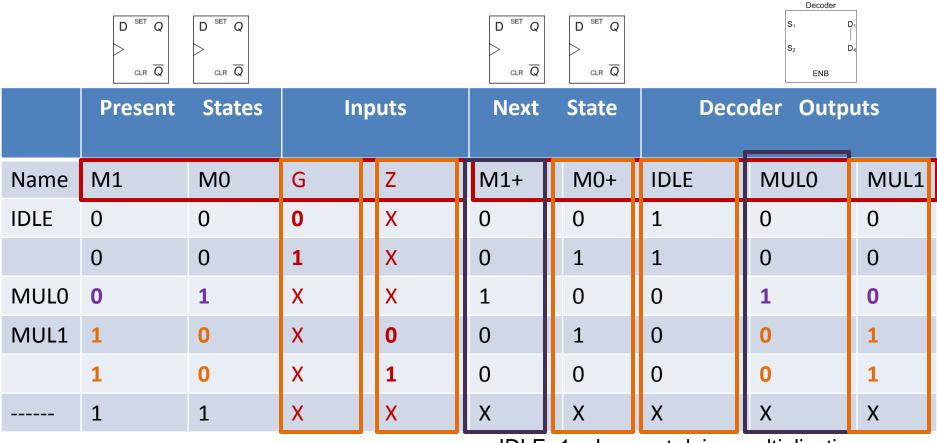

2. One flip-flop per state

Use flip-flops in such a way that at any time only one flip-flop contains 1 and the rest contain 0

Hardwire Control: Sequence Register and Decoder Method

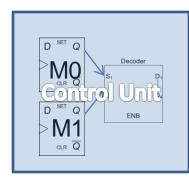

Method1: using sequence register and decoder:

- 1. Assign binary state to each ASM state
- 2. Keep binary state in sequence register
- 3. Use decoder to create a signal for each state
- 4. Design combinational logic to generate control signal and next state

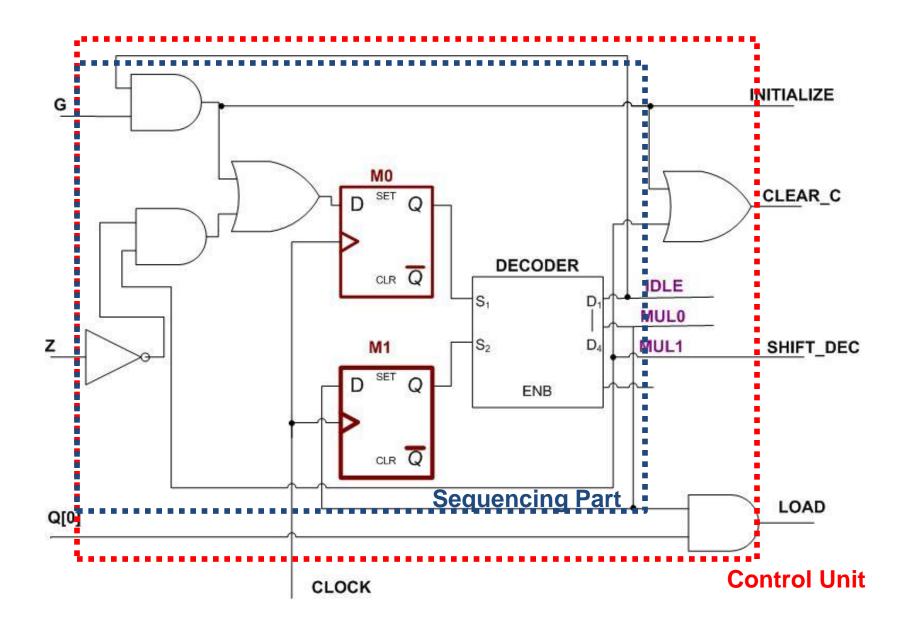

Method 1: From ASM to Control Signals

- Starting Point:
 - Two inputs: G, Z (plus Q[0])
 - Three states: IDLE, MUL0, MUL1 (treated as Boolean variables)
- Needed:
 - 2 Flip-Flops for the sequence register
 - 2-to-4 line decoder (three states => only 3 out 4 decoder outputs will be used)
 - State Table

State Table for Sequence Register and Decoder


 Derive relationships between inputs & current states to generate signals to get to next states

IDLE=1 ~ I am not doing multiplication


Boolean Relationships

- Boolean Expressions for State Transitions $M 0(t+1) = IDLE \cdot G + MUL1 \cdot \overline{Z}$ M 1(t+1) = MUL0
- Boolean Expressions for Control Signals

Control Signal Name	Boolean Expression	G (Go)
Initialize	IDLE * G	
Load_AC	MUL0 * Q[0]	CONTROL Q[0]
Shift_dec	MUL1	
Clear_C	MUL1 + IDLE * G	
Load_B	LoadB	· · · · · · · · · · · · · · · · · · ·
Load Q	LoadQ	

Method1: Control Unit for Binary Multiplier

