
ECE290 Fall 2012
Lecture 18

Dr. Zbigniew Kalbarczyk

Today

• Introduction to Control Unit

• Binary Multiplier Example

• Hardwire Control Unit for Binary Multiplier

Today

• Introduction to Control Unit

• Binary Multiplier Example

• Hardwire Control Unit for Binary Multiplier

Components of a Simple Computer

• Focus on
designing a
control unit of a
CPU in a simple
computer

A Control Unit

• A control unit generates control input and control
output signals that

– activate micro-operations within data path to perform
specified processing tasks

– determine its own next state

Requirements on Control Units

• In programmable systems (use control memory and
control program), a control unit consists of

– Program counter (PC) and its decision logic

– Logic to interpret instructions fetched from RAM or ROM

• In non-programmable systems (use gates +
connections), a control unit determines

– the operations to be performed and

– the sequence of operations;
based on inputs and the status bits from data path.

Design Exercise: A Control Unit for Multiplication

• Multiplication of Unsigned Numbers

– If 0<r<2n and 0<s<2n then 2n bits suffice to hold the
product of two n-bit binary number multiplication

– Example: Multiplicand s=111; Multiplier r=110

1 1 1

X 1 1 0

0 0 0

1 1 1 0

1 1 1 0 0

1 0 1 0 1 0

Design Considerations

• Needed: 2n bit adder

– Multiplicand: register B of size=n

– Multiplier: register Q of size=n

– Products: register A of size=2n

• Can we accomplish the same with n bit adder?

• Design Idea:

– Repeatedly add s (multiplicand) to partial product

– Keep shifting partial products to right so addition of s always
occur in same place

Multiplication Execution with A, B and Q
Registers

Register A =product Register Q =multiplier

C p2 p1 p0 r2 r1 r0

0 0 0 0 1 1 0

Register A =product Register Q =multiplier

C p2 p1 p0 r2 r1 r0

0 0 0 0 0 1 1

Register A =product Register Q =multiplier

C p2 p1 p0 r2 r1 r0

0 0 1 1 1 0 1

Add and then shift right 0 0 0

Register A =product Register Q =multiplier

C p2 p1 p0 r2 r1 r0

0 1 0 1 0 1 0

Add and then shift right 1 1 1

Add and then shift right 1 1 1

After Step 1

After Step 2

After Step 3

Init

0 0 0 0 1 1 0

0 1 1 1 0 1 1

1 0 1 0 1 0 1

Idea in Practice

• 1. Load multiplier into Q register. As bits shift into Q
from left, examine successive bits of multiplier at
Q[0] (rightmost bit)

• 2. Set C <- 0 so that 0 shifts into leftmost bit of A
register when no addition

• 3. Use counter P to count down from n-1 to 0

• 4. Define Z=1 when current value of P is 0…0

Data Path Components for Binary Multiplier

Binary Multiplier: Data Path

• Block Diagram of
Data Path Includes

– Register File

– Function Unit

– Buses

Example: Step 1 of executing

111 x 110 (n=3)

Multiplicand=111; Multiplier = 110

Add and then shift right

1 1 0

0 0 0

0 0 0 0

0 0 0 1 1 0

0 0 0 0 0 1 1

1 1 1

0

0 0 0 0 1 1

0 0 0

1 0 1

0 1 1 1 0 1

0 0 0 1 1 1

0 0 0 1 1 1

0 1 1

Binary Multiplier: Data Path & Control Unit

• Block Diagram of Control
Unit Includes

– Status Bits (Z =1 if P=0)

– Go signal (Go=1 to start
multiplication)

– Q[0]
• Q[0]=1 ~ add B register &

updated A & C registers;

• Q[0]=0 ~ A & C registers do
not change

•

Algorithmic State Machines

• Algorithmic State Machine (ASM) Chart
– a sequence of events

– the timing relationship between the states

– Three basic elements

• state box, decision box, conditional output box

– State box

Algorithmic State Machines (2)

• Decision box

– Condition; single variable or Boolean expression

Algorithmic State Machines (3)

• Conditional output box

Binary Multiplier Described by ASM Chart

• Assume:

– Multiplicand is in register B and

– Multiplier is in register Q

– Loading of B and Q is not handled by the control unit
explicitly

– Result will be a concatenation of registers C, A and Q

ASM Chart for
Binary

Multiplier

States

Initialization

values

Concatenate registers

(a composite register)

Z=1 iff P counter = 0

(P is checked before it

is decrement)

to start

multiplication: G=1

Hardwire Control Design

Two parts of the design:

• Control of micro-operations

– Table of control signals defined in terms of states and
inputs

• Sequencing of the control unit and micro-
operations

– Table of transition of states

• The logic for these two parts can be shared

Control of Micro-operations for Binary Multiplier

Micro-operations Control Signal
Name

Boolean Expression

Register A A <-0 Initialize IDLE * G

A <- A + B Load_AC MUL0 * Q[0]

Shift right (C||A||Q) Shift_dec MUL1

Register B B <- IN Load_B LoadB

Register C C <- 0 Clear_C MUL1 + IDLE * G

C <- COUT Load_AC ----

Register Q Q <- IN Load_Q LoadQ

Shift right (C||A||Q) Shift_dec ----

Register P P <- n-1 Initialize ----

P <- P -1 Shift _dec ----

Sequencing the Control Unit and Micro-
operations

G=0

G=1

Z=0

Z=1

Sequencing Part of ASM
Chart for the Binary
Multiplier:

• All conditional
output boxes are
removed

• Any decision box not
affecting next state
is removed

Hardwire Control: Implementation

1. Sequence register and decoder

– Use sequence register and decoder to generate a
sequence of control signals from a control unit

2. One flip-flop per state

– Use flip-flops in such a way that at any time only one
flip-flop contains 1 and the rest contain 0

Hardwire Control: Sequence Register and Decoder
Method

Method1: using sequence register and decoder:

1. Assign binary state to each ASM state

2. Keep binary state in sequence register

3. Use decoder to create a signal for each state

4. Design combinational logic to generate control
signal and next state

M0

M1

Method 1: From ASM to Control Signals

• Starting Point:

– Two inputs: G, Z (plus Q[0])

– Three states: IDLE, MUL0, MUL1
(treated as Boolean variables)

• Needed:

– 2 Flip-Flops for the sequence register

– 2-to-4 line decoder (three states =>
only 3 out 4 decoder outputs will be
used)

– State Table

G=0

G=1

Z=0

Z=1

State Table for Sequence Register and Decoder

• Derive relationships between inputs & current states
to generate signals to get to next states

Present States Inputs Next State Decoder Outputs

Name M1 M0 G Z M1+ M0+ IDLE MUL0 MUL1

IDLE 0 0 0 X 0 0 1 0 0

0 0 1 X 0 1 1 0 0

MUL0 0 1 X X 1 0 0 1 0

MUL1 1 0 X 0 0 1 0 0 1

1 0 X 1 0 0 0 0 1

------ 1 1 X X X X X X X

IDLE=1 ~ I am not doing multiplication

Boolean Relationships

• Boolean Expressions for State Transitions

• Boolean Expressions for Control Signals

Control Signal Name Boolean Expression

Initialize IDLE * G

Load_AC MUL0 * Q[0]

Shift_dec MUL1

Clear_C MUL1 + IDLE * G

Load_B LoadB

Load_Q LoadQ

0(1) 1

1(1) 0

M t IDLE G MUL Z

M t MUL

    

 
M0

M1

Method1: Control Unit for Binary Multiplier

Control Unit

Sequencing Part

