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Components of a Simple Computer

* Focus on MEMORY
designing a
controlunitofa _ r-s—
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computer
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A Control Unit

* A control unit generates control input and control
output signals that

— activate micro-operations within data path to perform
specified processing tasks

— determine its own next state



Requirements on Control Units

* In programmable systems (use control memory and
control program), a control unit consists of
— Program counter (PC) and its decision logic
— Logic to interpret instructions fetched from RAM or ROM

* In non-programmable systems (use gates +
connections), a control unit determines
— the operations to be performed and

— the sequence of operations;
based on inputs and the status bits from data path.



Design Exercise: A Control Unit for Multiplication

* Multiplication of Unsigned Numbers

— If O<r<2™and O<s<2"then 2n bits suffice to hold the
product of two n-bit binary number multiplication

— Example: Multiplicand s=111; Multiplier r=110

1 1 1

X 1 1 0

0 0 0

1 1 1 0

1 1 1 0 0

1 0 1 0 1 0



Design Considerations

e Needed: 2n bit adder

— Multiplicand: register B of size=n

— Multiplier: register Q of size=n
— Products: register A of size=2n

e Can we accomplish the same with n bit adder?

* Design Ildea:

— Repeatedly add s (multiplicand) to partial product

— Keep shifting partial products to right so addition of s always
occur in same place



Multiplication Execution with A, B and Q
Registers
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ldea in Practice

1. Load multiplier into Q register. As bits shift into Q
from left, examine successive bits of multiplier at
Q[O0] (rightmost bit)

2. Set C <- 0 so that O shifts into leftmost bit of A
register when no addition

3. Use counter P to count down fromn-1to 0
4. Define Z=1 when current value of P is 0...0



Data Path Components for Binary Multiplier
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Binary Multiplier: Data Path

* Block Diagram of
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Binary Multiplier: Data Path & Control Unit
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Algorithmic State Machines

* Algorithmic State Machine (ASM) Chart

— asequence of events
— the timing relationship between the states
— Three basic elements
e state box, decision box, conditional output box

— State box
Binary
Name code IDLE 000
Register operation R« 0
or output RUN

| |

State box Example of state box



Algorithmic State Machines (2)

 Decision box

— Condition; single variable or Boolean expression

D1

' Decision box



Algorithmic State Machines (3)

e Conditional output box

IDLE

From decision box

Register operation
or output PC <0

l |

Conditional output box Example of decision and condition output box




Binary Multiplier Described by ASM Chart

* Assume:
— Multiplicand is in register B and
— Multiplier is in register Q

— Loading of B and Q is not handled by the control unit
explicitly

— Result will be a concatenation of registers C, A and Q



ASM Chart for
Binary
Multiplier
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Hardwire Control Design

Two parts of the design:
* Control of micro-operations

— Table of control signals defined in terms of states and
Inputs

e Sequencing of the control unit and micro-
operations

— Table of transition of states

* The logic for these two parts can be shared



| Register A-

Control of Micro-operations for Binary Multiplier
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| Control Sig
Name

IDLE * G
'MULO * Q[0
‘MULL
'LoadB
MUL1 + IDL

Initialize
Load_AC

| Shift_dec
'Load_B

| Clear C
Load_AC
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Sequencing the Control Unit and Micro-
operations

IDLE 1 00

MULO 01

Sequencing Part of ASM
Chart for the Binary l
MUL1 10

Multiplier:

 All conditional

output boxes are
removed

* Any decision box not 0
affecting next state
is removed




Hardwire Control: Implementation

1. Sequence register and decoder

— Use sequence register and decoder to generate a
sequence of control signals from a control unit



Hardwire Control: Sequence Register and Decoder

Method

Methodl: using sequence register and decoder:

= W N

Assign binary state to each ASM state
Keep binary state in sequence register
Use decoder to create a signal for each state

Desigh combinational logic to generate control
signhal and next state

eeeeeee

MO |\




Method 1: From ASM to Control Signals

e Starting Point:
— Two inputs: G, Z (plus Q[0])

— Three states: IDLE, MULO, MUL1
(treated as Boolean variables)

* Needed:
— 2 Flip-Flops for the sequence register

— 2-to-4 line decoder (three states =>
only 3 out 4 decoder outputs will be
used)

— State Table




State Table for Sequence Register and Decoder

* Derive relationships between inputs & current states
to generate signals to get to next states

D SET Q D SET Q D SET Q D SET Q S,

> > > > Sz Dy
CLR a CLR a CLR a CLR a ENB

Name | M1 MO G Z M1+ MO+ || IDLE MULO MUL1
IDLE O 0 0 X 0 0 1 0 0

0 0 1 X 0 1 1 0 0
MULO O 1 X X 1 0 0 1 0
MUL1 1 0 X 0 0 1 0 0 1

1 0 X 1 0 0 0 0 1
------ 1 1 X X X X X X X

IDLE=1 ~ | am not doing multiplication



Boolean Relationships

 Boolean Expressions for State Transitions
MO(t+1) = IDLE-G+MUL1.-Z

M 1(t +1) — MULO DI\S;Tla | .
* Boolean Expressions for Control Signals ControllUnit

Control Signal Name Boolean Expression
- G (Go)

Initialize IDLE * G
Load_AC MULO * Q[0]
Shift_dec MUL1
Clear C MUL1 + IDLE * G SIGNALS
Load B LoadB
_Load Q LoadQ




Method1: Control Unit for Binary Multiplier
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