
ECE290 Fall 2012
Lecture 20

Dr. Zbigniew Kalbarczyk

Today
• Central Processing Unit

– LC-3 Architecture

– A program example

• Assembly instructions

• Binary instructions

Components of a Simple Computer

• Before: Focus on
designing a control
unit of a CPU in a
simple computer

• Now: Focus on
understanding a
control unit of a CPU
in a sophisticated
computer

Before: Binary Multiplier:
Data Path & Control Unit

Control Signal
Name

Boolean
Expression

Initialize IDLE * G

Load_AC MUL0 * Q[0]

Shift_dec MUL1

Clear_C MUL1 + IDLE * G

Now: Little Computer (LC) - 3

• The LC-3 serves as a transition from a single purpose
(binary multiplier) to a multi-purpose real CPU

• The LC-3 has all the important characteristics of
microprocessors

– The Intel 8080 (in the first IBM PC ~ 1981)

– The Motorola 68000 (in the Macintosh ~ 1984)

– The Pentium IV (in PCs ~ 2003)

– …………………..

Interfacing LC-3

We study the process of translating a

sequence of instructions to control words

LC-3: Major Components

49 control signals

during each clock

cycle!

Signals from Data Path to Control

• IR[15:11] are the opcode bits

• PSR[15] is the bit [15] of the Processor Status
Register, which indicates whether the current
program is executing with supervisor or user
privileges.

• BEN is to indicate whether or not a BR (conditional
branch) should be taken.

• INT is to indicate that some external device of higher
priority than the executing process requests service.

• R is to indicate the end of a memory operation.

LC-3: Memory Description

• Memory Unit:

– 216 x 16 RAM (64K x 2Bytes = 128KB)
• Memory Address Register (MAR): 16 bits (64K)

• Memory Data Register (MDR): 16 bits (one word)

• Memory Units in Existing Processors
• Intel’s PENTIUM IV ~ MDR= 32 bits

• Sun’s Sparc-V9 & Intel’s Itanium ~ MDR= 64 bits

• Pagers, VCRs, cell phones ~ MDR = 8bits

LC-3: CPU Description

• CPU:

– Data Path: Register File
• General purpose registers R0-R7

– Each register has 16 bits

– Data Path: ALU
• One arithmetic operation (ADD)

• Two logical operations (bitwise AND and
bitwise complement)

• Compare with Sun’s Sparc-V9

– 32 registers (64 bits ~ word)

LC-3: CPU Description

• CPU

– Control Unit:
• Program Counter (PC) – 16 bit address of

next instruction

• Instruction register (IR) – 16 bit word
from memory interpreted as instruction

• Condition codes NZP – each N or Z or P
indicates whether the result was negative
(100), zero (010) or positive (001)

Note: Some registers (e.g., PC, MAR) are not directly addressable by the end

user but are used by instructions

LC-3: Instruction Set Architecture (ISA)

• LC-3 ISA is the complete specification of the interface
between programs and the underlying computer
architecture

• ISA is the information required to write machine
language program

LC-3 ISA: Instruction Set

• Instruction Set:

– a set of instructions the LC-3 can execute

• Instruction Format:

– binary representation of instructions (2 bytes ~ word)

• Instruction List: (There are 16 opcodes)

– Operations
• Operate: ADD, AND, NOT

• Data movement: LD, LDI, LDR, LEA, ST, STI, STR

• Control: BR, JMP, JSR, JSRR, RET, RTI, TRAP

– Data types: 16 bit 2’s complement numbers

LC-3 ISA: Addressing Modes

• Where are the operands?

– register, memory, immediate

• How is location of an operand specified?

– Non-memory addresses
• Register,

• Immediate (literal)

– Memory addresses
• Program counter relative,

• Base + offset,

• Indirect

Notation:

DR .. Destination register

SR …Source register (one of R0-R7) to specify source operand address

Imm5 … A 5 bit immediate value in [-16,15]

BaseR …R0-R7

offset6 … BaseR + offset6 (range [-32,31]

PCoffset9 …PC+[-256,255]

PCoffset11…PC+[-1024, 1023]

SEXT(A) …sign-extend A to 16 bits (A: 101 -> 1111 1111 1111 1101)

ZEXT(A) …zero-extend A to to 16 bits (A: 101 -> 0000 0000 0000 0101)

Setcc() … indicates the condition codes N, Z and P are set based on the value in DR

LC-3 ISA: List of Instructions as Control Words

• Operations

– Operate: ADD, AND, NOT

– Data movement: LD, LDI, LDR, LEA, ST, STI, STR

– Control: BR, JMP, JSR, JSRR, RET, RTI, TRAP

LC-3: Using Operate Instructions

• How do we execute other operations than ADD, AND and
NOT?

• Copy: R1  R2
– Strategy: R1  R2 + 0 (immediate)

• Clear: R1  0
– Strategy: R1  R1 AND 0 (immediate)

• Subtract: R1  R2 – R3
– Strategy 1: R1  NOT R3; R1  R1 +1; R1  R2 + R1

• R1 <- R2 and 2’s complement of R3

– Strategy 2: if 2nd operand VAL is small then R1  R2 + VAL
(immediate)

LC-3: Using Operate Instructions

• OR: R1  R2 OR R3

– Strategy:

Register Operation Boolean Operation

R4  NOT R2 R4 = R2’

R5  NOT R3 R5 = R3’

R1  R4 AND R5 R1 = R2’ AND R3’

R1  NOT R1 R1 = (R2’ AND R3’)’ = R2 OR R3

Used Only AND and NOT Operations!

LC-3: AND Instructions

• OPCODE = 0101

• If bit[5] is zero

– DR  SR1 AND SR2 ~ ‘register value’

• Else

– DR  SR1 AND SEXT(imm5) ~ ‘immediate’

• Setcc() (means set N, Z and P based on the value
in DR)

Example: R2  R5 AND R7

• DR=R2

• SR1=R5

• SR2 = R7

0000000000010001

0000000001000001

 ALU

A B

16 16

AND

R2

R0

R1

R3

R4

R5

R6

R7

0000000000000001

0 1 0 1 0 1 0 1 0 1 0 0 0 1 1 1 IR

Example: R2  R5 AND SEXT(-2)

• DR=R2

• SR1=R5

• SEXT(imm5)=SEXT(-2)

 0000000000000110

 ALU

A B

16

AND

R2

R0

R1

R3

R4

R5

R6

R7

0000000000000110

1 0

0101 010 101 1 11110 IR

AND R2 R5 -2

SEXT

5

16

1111111111111110

Bit[5]
16

Example

• Initial Values

– R4 = x4444, R6 = x0876

• LC-3 Instruction:

– Address = x3101, Instruction: ADD R4, R6, #(-5)

• Give binary encoding of the LC-3 instruction:

– (ADD, DR, SR1, 1, imm5) = 0001 100 110 1 11011

• Give the value of R4 after execution of the instruction:

– (x0876 + (-5)) = x0871

LC-3 Architecture (Abbreviated)

• Blue lines – control
signals

• Black lines - data

• Example:

– AND operation
• R2  R5 AND

SEXT(3)

IR[11:9]=010

IR[8:6]=101

IR[5]=1

IR[2:0]=011

ALUK=01

A Program Example

• Sum the numbers from 3 down to 1

• Store the result in memory location whose address is
contained in R7

Address Opcode Operands Comments

3000 AND R1, R1, #0 % CLEAR R1

3001 ADD R2, R1, #3 % LOAD 3 INTO R2

3002 ADD R1, R1, R2 % ADD CURRENT #
TO RUNNING SUM

3003 ADD R2, R2, #-1 %DECREMENT # TO
BE ADDED

3004 BRp #-3 % IF R2>0 THEN
REPEAT

3005 STR R1, R7, #0 %STORE RESULT IN
M[R7+0]

A Program Example: Register Status
• R1 – running sum, R2 - # to be added,

• R7 – ptr to memory

Address Opcode Operands R1 R2 Comments

3000 AND R1, R1, #0 0 X % CLEAR R1

3001 ADD R2, R1, #3 0 3 % LOAD 3 INTO R2

3002 ADD R1, R1, R2 3/5/6 3/2/1 % ADD CURRENT # TO
RUNNING SUM (R1)

3003 ADD R2, R2, #-1 3/5/6 2/1/0 %DECREMENT # TO BE
ADDED

3004 BRp #-3 3/5/6 2/1/0 % IF R2>0 THEN REPEAT

3005 STR R1, R7, #0 6 0 %STORE RESULT IN M[R7+0]

From Assembly Instructions to Binary
Instructions

Address Assembly
Instruction

Register Transfer
Language

Binary Instruction

3000 AND R1, R1, #0 PC  PC+1;
R1  0

0101 001 001 1 00000

3001 ADD R2, R1, #3 PC  PC+1;
R2  R1 + #3

0001 010 001 1 00011

3002 ADD R1, R1, R2 PC  PC+1;
R1  R1 + R2

0001 001 001 0 00010

3003 ADD R2, R2, #-1 PC  PC+1;
R2  R2 -1

0001 010 010 1 11111

3004 BRp #-3 (PC  PC+1)
PC  PC + SEXT(-3)

0000 001 111 1 11101

3005 STR R1, R7, #0 PC  PC+1;
M[R7+0] <- R1

0111 001 111 0 00000

