ECE290 Fall 2012 Lecture 22

Dr. Zbigniew Kalbarczyk

Today

- LC-3 Micro-sequencer (the control store)
- LC-3 Micro-programmed control memory
- LC-3 Micro-instruction format
- LC -3 Micro-sequencer (the circuitry)
- LC -3 Micro-sequencer control
- Determining next state

From the

 Control Signals for one microinstruction of ADD instruction

One Microinstruction

- Microinstruction:
 - − DR ← SR1 +SR2; Load NZP
 - This does not include fetch, decode, and other execution phase microinstructions needed to perform ADD instruction!!!

LC-3: Micro-Architecture

Instructions vs Microinstructions

- Instruction: assembly or binary representation of an instruction
 - Each instruction corresponds to one or more microinstructions needed to go through fetch, decode and execute phases
- Each microinstruction consists of bits corresponding to
 - Next state information (check the state diagram arrows between states)
 - Control word (control signals we just went through)

LC-3 Micro-instructions

- Microinstruction
 - Next state information
 - Control word

Instructions are in Main Memory

Microinstructions are in control store: Control ROM Memory

Control Store for LC3 Architecture

Control Store

- 64 rows ~ states of the LC3 state machine
- 49 columns ~ 10 sequence control (signals from the current microinstruction) and 39 data path control

•39 control signals = 25 operation execution + 14 interrupt execution

THE CONTROL STORE: MICRO-SEQUENCING

ADDR	48	-								39	38 control signals ()
	0	0	1	0	0	1	0	0	1	0		BR1
	0											
2	0	0	0	0	0	1	1	0	0	1	$MAR \leftarrow PC + sext (off 9)$	LD1
			1	T	1	T	1			1		_
18	0	1	0	1	1	0	0	0	0	1		fetch1
				1		1					1	
22	0	0	0	0	0	1	0	0	1	0		BR2
	0											
	0											
25	0	0	0	1	0	1	1	0	0	1	MDR← M[MAR]	LD2
	0											
27	0	0	0	0	0	1	0	0	1	0	$DR \leftarrow MDR$, set CC	LD3
									_	_		
32	1	X	x	x	x	х	x	X	x	X		decode
33	0	0	0	1	1	0	0	0	0	1		fetch2
	0											
35	0											fetch3
			i		i		i	i				
	0											

Overview: Instruction Versus Micro-instruction

Review: Status Signals from Data Path to Control

- **IR[15:11]** are the opcode bits
- PSR[15] is the bit [15] of the Processor Status Register, which indicates whether the current program is executing with supervisor or user privileges.
- **BEN** is to indicate whether or not a BR (conditional branch) should be taken.
- INT is to indicate that some external device of higher priority than the executing process requests service.
- **R** is to indicate the end of a memory operation.
- (J,COND, IRD) to provide signals from the current microinstruction

LC3: Control Structure

LC3 Micro-Instruction Format

- Each Micro-instruction has the default next state location encoded in J[5:0]
- This next state location can be modified depending on the values of IRD and COND[2:0]

ADDRESS OF NEXT INSTRUCTION

LC3 Micro-Instruction Format: IRD=1

- If IRD = 1
 - This is the control vector for state 32
 - The next address will be 00 concatenated with IR[15:12] (00 || IR[15:12])

ADDRESS OF NEXT INSTRUCTION = 32

LC3 Micro-Instruction Format: IRD=0

- If IRD = 0
 - Get the branch address J[5:0] of micro-instruction from the control word
 - Use COND[2:0] and signals R, BEN, INT, IR[11] and PSR[15] to modify the branch address

ADDRESS OF NEXT INSTRUCTION

- Every state requires at least one clock cycle
- State waiting for memory operations to complete may require more clock cycles

Example: Execute Phase of LD

- State 2: MAR ← PC + sext(offset9)
- From State 2: always go to State 25 (011001)

ADDRESS OF NEXT INSTRUCTION

Example: Execute Phase of LD

- State 25: MDR \leftarrow M[MAR]
- If R=0 (memory not ready) go to State 25

– Next state (NS) = 011001 (25)

• If R=1 go to State 27 (011010)

Control Address 25

	48	47	46	45	44	43	42	41	40	39	38	0
	0	0	0	1	0	1	1	0	0	1		
IRD COND J CONTROL SIGNA If R=1 then NS = 011011 Control Address 27									S			
	48	47	46	45	44	43	42	41	40	39	38	0
	0	0	0	0	0	1	0	0	1	0		
IRD COND					•		J				CONTROL SIGNAL	.S

Micro-sequencer Control

Other Examples

Current Addr	If R=0, go to	If R=1, go to	State Diagram
16	16 (10000) ↑	0100 <mark>1</mark> 0 18	$M[MAR] \leftarrow MDR \qquad R \qquad R$
28	28 (11100)	0111 <mark>1</mark> 0 30	$ \begin{array}{c} $
24	24 (11000) ↑	0110 <mark>1</mark> 0 26	$\frac{1}{R} MDR \leftarrow M[MAR] R$
29	29 (11101) 1	0111 <mark>1</mark> 1 31	MDR←M[MAR] R

Exercise

 For the word stored at address 33 in the control ROM, give the most leftmost 10 bits – the microsequencing (next state) bits

Control Address 33

Micro-sequence Control

COND	TEST BIT COMPUTED	CONDITION TESTED	BRANCH
000	NO TEST	UNCONDITIONAL	NO CHANGE
001	R	MEMORY READ COMPLETED	J[1]=1
010	BEN	SUCESFUL CONDITIONAL BRANCH	J[2]=1
011	IR[11]	ADDRESSING MODE	J[0]=1
100	PSR[15]	PRIVILEGED MODE	J[3]=1
101	INT	INTERRUPT MODE	J[4]=1

BR Instruction

- BEN: Branch Enable flip-flop
 - BEN = 1 if branch condition in BR instruction matches values of NZP
 - BEN = 0 otherwise

BR Instruction (cont.)

In State 32 (instruction decode)
 BEN ← IR[11] N + IR[10] Z + IR[9] P

Execute Phase of BRnz

• Example: BRnz has N=Z=1, P=0

- Branches to PC + sext(offset9) if 1 N + 1 Z + 0 P = N + Z

- State 0
 - If BEN = 0 go to State 18 = 010010 (begin fetch)
 - If BEN = 1 go to State 22 = 010110 (22=18+4)

Control Address 18

	48	47	46	45	44	43	42	41	40	39	38	0
	0	0	1	0	0	1	0	0	1	0		
IF	IRD COND						J	1			CONTROL SIGNAL	S

J[5]=0 J[4]=1 J[3]=0 J[2]=0+BEN J[1]=1 J[0]=0

Execute Phase of BRnz (cont.)

- State 22
 - $PC \leftarrow PC + sext(offset9)$
 - Go to State 18 (begin fetch)

Control Address 22

	48	47	46	45	44	43	42	41	40	39	38	0
	0	0	0	0	0	1	0	0	1	0		
IRD COND					J					CONTROL SIGNALS		
Control Address 18												
	48	47	46	45	44	43	42	41	40	39	38	0
	0	1	0	1	1	0	0	0	0	1		
IRD COND							J				CONTROL SIGNAL	S