
ECE290 Fall 2012
Lecture 24

Dr. Zbigniew Kalbarczyk

Outline

• LC-3 Interrupt Driven I/O

• Interrupt and exception handling

I/O: Connecting To Outside World

• So far we have learned how to

– Compute with values in registers

– Load data from memory to registers

– Store data from register to memory

• Where does data in memory come from?

– Input

• How does data get of the system for humans to use?

– Output

I/O Transfer Control

• Polling

– CPU keeps checking status register until new data arrive or
device ready for next data

– “Are we there yet?”, “Are we there yet?”, …

• Interrupts

– Device sends a special signal to CPU when new data arrive or
device is ready for next data

– CPU can be performing other tasks instead of polling device

– “wake me when we get there”

Interrupt-Driven I/O

• External devices can:

– Force currently executing program to stop

– Have the processor satisfy the device’s needs

– Resume the stopped program if nothing had happened

• Why Interrupt-Driven I/O?

– Polling consumes a lot of cycles, especially for rare events –
these cycles can be used for more computation

– e.g., process previous inputs while collecting current inputs

Interrupts: Functional Requirements

• What capabilities do we need?

– Stop the running program on any
instruction

–Vector to some other piece of code

–Resume right where we left off

Interrupts vs. Exceptions

• Interrupts are asynchronous and due to some
outside influences beyond the currently running
program

– Examples: I/O, timer interrupt, etc.

• Exceptions are synchronous and caused by the
currently running program

– Examples: illegal instructions, protection violation, etc.

Next, let us focus on interrupts

General Interrupt Handling

• At the software level, handling an interrupt is like calling a
subroutine, only that the software state at the time of the call is
less structured
• there is no user control over when interrupts occur in comparison with

subroutine calls in program

• Save PC so system knows where to return when interrupt
service is done

• Save all registers so that they can be used, and restore them
when interrupt service is done

• Save the condition codes (NZP) because they are set and tested
in different instructions

LC3 Interrupt Handling

• Not all interrupts are created equal (PL0-PL7)

– LC3 maintains an interrupt priority (PSR[10:8])

– Devices wanting to interrupt have a 3-bit priority

• When interrupt happens

– Device asserts the interrupt request signal (INT) and presents
an 8-bit interrupt vector (INTV)
• INTV is used to construct a memory address that contains the location

of the interrupt handler in a jump table

– Process interrupts in supervisory mode (PSR[15]=0)
• Processing in supervisory mode uses a different stack pointer

(Supervisory Stack Pointer SSP) than in user mode

LC3 Interrupt Handling (cont.)

• When interrupt happens (cont.)

– Information saved onto supervisory stack before interrupts
are processed
• USP (User Stack Pointer)

• PSR[15] (supervisory mode), PSR[10:8] (current priority mode),
PSR[2:0] (condition code NZP)

• PC - 1 (decrement PC because PC points to instruction past the one
subverted)

Where Are Interrupt Registers and Control
Signals ?

We need

– Interrupt vector register (INTV)

–Priority register

–Processor status register (PSR)

–Memory for pointers (user stack, supervisor
stack)

– Temporary storage for PC and PSR

–Circuits to generate and handle interrupt
signals

Adding Interrupt Handling to CPU

I/O-driven Interrupt

LC3 Interrupt Table

• Each device is associated with an 8-bit vector to index an
interrupt vector table

• Interrupt vector table is in memory
– Between x0100 and x01FF

– Each contains beginning address of service routine for handling
interrupt

• Exception service routines (x0100-x017F)
– Handle exception events that prevent program from executing

correctly

• Interrupt service routines (x0180-x01FF)
– Handle service events external to running program

I/O Interrupt Handling

• Only interrupt from keyboard in LC3

– Priority level PL4 (out of 8 levels)

– 8-bit interrupt vector (INTV=x80 located at x0180)

• Assumptions of the I/O interrupt

– A program is running at priority level less than 4

– Interrupt Enable is set (MIO.EN=1) for Keyboard Status
Register (KBSR) when key is pressed

Procedure for I/O Interrupt Handling

• If program is running at priority < PL4 AND MIO.EN=1
AND someone strikes a key on a keyboard then

– Set Supervisory mode (PSR[15]=0)

– Set Priority to PL4 (PSR[10:8] = 100)

– R6  Supervisory Stack Pointer (SSP)

– Push Processor Status Register (PSR) and PC of interrupted
program to Supervisor Stack

– Expand 8-bit interrupt vector (x80) from keyboard to x0180
(address to interrupt table)

– Load PC with address at x0180

LC3 State Machine: Interrupt Support

EXCEPTIONS INTERRUPTS

Checking for Interrupts

• Best to check for interrupts before a new instruction is
executed

• State 18 is the only state in which the processor checks
for interrupts (before ‘begin fetch’ phase)

At State 18: Based on

INT, should the next

state be 33 or 49?

State 18: Micro-sequencer Control

1

2 (1) 0

if INT then

Address of next state COND COND COND INT





0 1

IRD=0

IRD=0 ; No

COND=101 ; Test for interrupts J[4]

J=100001 ; Default next state = 33

J=110001 ; Otherwise, next state = 49

Interrupt Micro-Instruction

In State 18, Check for INT

• If INT=0 (no interrupt) go to State 33

– Next state (NS) = 100001 (33)

• If INT=1 go to State 49 (110001)

48 47 46 45 44 43 42 41 40 39 38 0

0 1 0 1 1 1 0 0 0 1

IRD COND J CONTROL SIGNALS

Control Address 49

If INT=1 then NS = 110001 (49)

Next, what to do in State 49?

Processing an Interrupt

• Load PSR (with privilege mode,
priority level, and condition code
of interrupt program) to MDR, in
preparation for pushing into
Supervisory Stack

• Record Priority Level and INTV
provided by interrupting device

Processing an Interrupt

• Test old PSR[15]

– If old PSR[15] == 1 then system was in User
mode and hence save USP (R6) in
Saved_USP, load R6 with Saved_SSP, go to
state 37

– If old PSR[15] ==0 then system was in
supervisory mode already

• Save PSR, old PC to Supervisory Stack

• Load PC with address of interrupt
service routine

Return from Interrupt (RTI)

• Restore PSR and PC

• If PSR[15] == 0 then RTI continues

– Restore PC first

– Restore PSR next

– Micro-sequencer control
• IRD=0; No

• COND= ???; Test PSR[15], J[3]

• Default 51/else 59

• State 59: Restore SP to Saved_USP if
returning to user mode

State 34: Micro-sequencer Control

[15] 1

2 (1) (0) ' [15]

if PSR then

Address of next state COND COND COND PSR





0 1

IRD=0

IRD=0 ; No

COND=100 ; Test for PSR[15], J[3]

J=110011 ; Default next state = 51

J=111011 ; Otherwise, next state = 59

Return from Interrupt (RTI) – cont.

• If PSR[15] == 1 (Privilege
Mode Exception)

– Handle condition as an
privileged mode violation

– Load Interrupt Vector with
starting address of Privilege
mode violation

– Go to State 45 to handle
interrupt as if by INT (see
previous slides)

LC3 Data Path for Supporting Interrupts

LC-3: Micro-Architecture

49 control signals

during each clock

cycle!

Generate: 14 Control Bits

for interrupt handling and

25 for the other operations

(together 39 control bits)

