
Last update: August 30, 2012

INTELLIGENT AGENTS

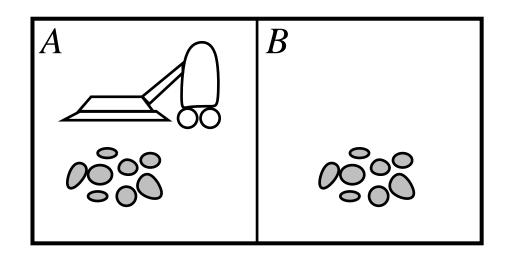
CMSC 421: Chapter 2

CMSC 421: Chapter 2 1

Agents and environments

- ♦ Russell & Norvig's book is based on the notion of *intelligent agents*
 - humans, robots, softbots, thermostats, etc.
- \diamond The *agent function* maps from percept histories to actions:

$$f:\mathcal{P}^*\to\mathcal{A}$$


 \diamond The *agent program* runs on the physical *architecture* to produce f

Outline

Chapter 2 describes some basic concepts relating to agents

- \diamond Agents and environments
- \diamond Rationality
- \diamond The PEAS model of an environment
- \diamond Environment types
- \diamond Agent types

Vacuum-cleaner world

Percepts: location and contents, e.g., [A, Dirty] Actions: Left, Right, Suck, NoOp

A vacuum-cleaner agent

Percept sequence	Action
[A, Clean]	Right
[A, Dirty]	Suck
[B, Clean]	Left
[B, Dirty]	Suck
[A, Clean], [A, Clean]	Right
[A, Clean], [A, Dirty]	Suck
:	:

function REFLEX-VACUUM-AGENT([location,status]) returns an action

if status = Dirty then return Suck
else if location = A then return Right
else if location = B then return Left

What is the **right** function?

Can it be implemented in a small agent program?

Rationality

 \diamond Fixed *performance measure* evaluates the environment sequence

- one point per square cleaned up in time T?
- one point per clean square per time step, minus one per move?
- penalize for > k dirty squares?
- \diamond A rational agent chooses whichever action maximizes the expected value of the performance measure, given the percept sequence to date
 - Rational \neq omniscient
 - percepts may not supply all relevant information
 - Rational \neq clairvoyant
 - action outcomes may not be as expected
 - Hence, rational \neq successful
 - Rational \implies exploration, learning, autonomy

\mathbf{PEAS}

To design a rational agent, we must specify the task environment Consider, e.g., the task of designing an automated taxi:

Performance measure?

Environment?

<u>Actuators?</u>

Sensors?

PEAS

To design a rational agent, we must specify the task environment Consider, e.g., the task of designing an automated taxi:

Performance measure? safety, destination, profits, legality, comfort, ...

<u>Environment?</u> streets/freeways, traffic, pedestrians, weather, ...

<u>Actuators</u>? steering, accelerator, brake, horn, speaker/display, ...

<u>Sensors?</u> video, accelerometers, gauges, engine sensors, keyboard, GPS, ...

Internet shopping agent

Performance measure?

Environment?

<u>Actuators?</u>

Sensors?

Internet shopping agent

<u>Performance measure</u>? price, quality, appropriateness, efficiency
<u>Environment</u>? current and future WWW sites, vendors, shippers
<u>Actuators</u>? display to user, follow URL, fill in form
<u>Sensors</u>? HTML pages (text, graphics, scripts)

	Solitaire	Backgammon	Internet shopping	Taxi
Fully observable?				
<u>Deterministic?</u>				
$\underline{Episodic?}$				
<u>Static?</u>				
<u>Discrete?</u>				
$\underline{Single-agent?}$				

	Solitaire	Backgammon	Internet shopping	Taxi
Fully observable?	No	Yes	No	No
<u>Deterministic?</u>				
Episodic?				
<u>Static?</u>				
<u>Discrete?</u>				
<u>Single-agent?</u>				

	Solitaire	Backgammon	Internet shopping	Taxi
Fully observable?	No	Yes	No	No
<u>Deterministic?</u>	Yes*	No	Partly	No
Episodic?				
<u>Static?</u>				
Discrete?				
$\underline{Single-agent?}$				

*After the cards have been dealt

Episodic: task divided into episodes, each to be considered only by itself *Sequential*: Current decision may affect all future decisions

	Solitaire	Backgammon	Internet shopping	Taxi
Fully observable?	No	Yes	No	No
<u>Deterministic?</u>	Yes*	No	Partly	No
Episodic?	No	No	No	No
<u>Static?</u>				
<u>Discrete?</u>				
$\underline{Single-agent?}$				

*After the cards have been dealt

Static: the world does not change while the agent is thinking

	Solitaire	Backgammon	Internet shopping	Taxi
Fully observable?	No	Yes	No	No
<u>Deterministic?</u>	Yes*	No	Partly	No
Episodic?	No	No	No	No
<u>Static?</u>	Yes	Partly	Partly	No
<u>Discrete?</u>				
$\underline{Single-agent?}$				

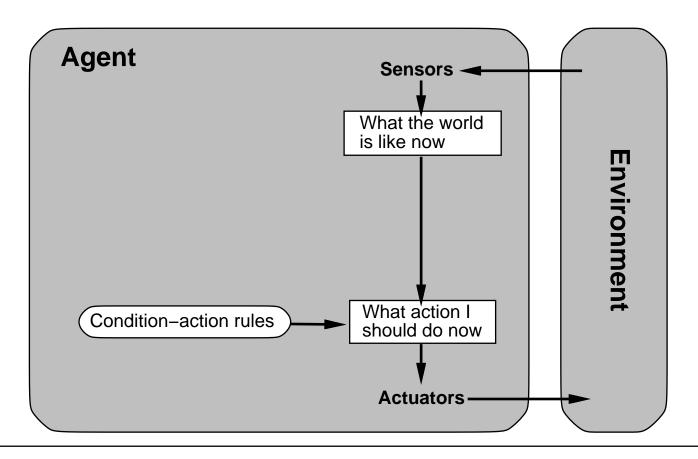
*After the cards have been dealt

	Solitaire	Backgammon	Internet shopping	Taxi
Fully observable?	No	Yes	No	No
<u>Deterministic?</u>	Yes*	No	Partly	No
Episodic?	No	No	No	No
<u>Static?</u>	Yes	Partly	Partly	No
<u>Discrete?</u>	Yes	Yes	Yes	No
$\underline{Single-agent?}$				

*After the cards have been dealt

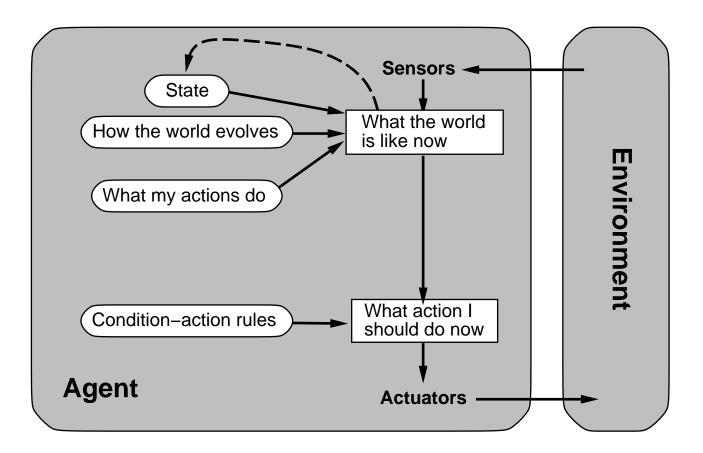
	Solitaire	Backgammon	Internet shopping	Taxi
Fully observable?	No	Yes	No	No
<u>Deterministic?</u>	Yes*	No	Partly	No
Episodic?	No	No	No	No
<u>Static?</u>	Yes	Partly	Partly	No
<u>Discrete?</u>	Yes	Yes	Yes	No
$\underline{Single}-agent?$	Yes	No	No	No

*After the cards have been dealt


The environment type largely determines the agent design

Real world: partially observable, stochastic, sequential, dynamic, continuous, multi-agent

Agent types

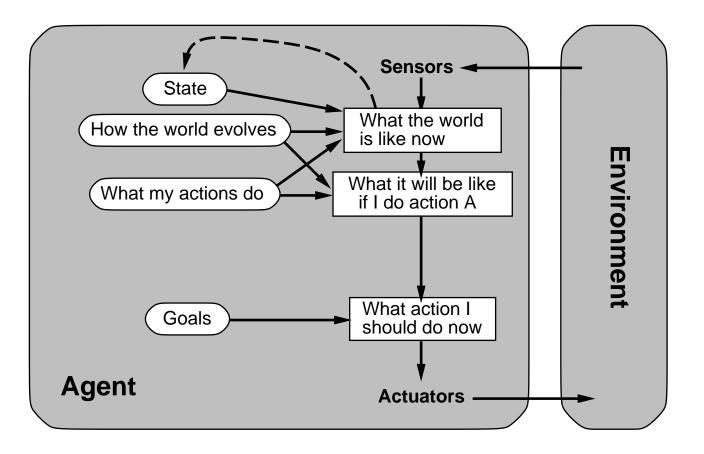

- \diamondsuit Four basic types in order of increasing generality:
 - simple reflex agents
 - reflex agents with state
 - goal-based agents
 - utility-based agents
- \diamondsuit All of these can be turned into learning agents

Simple reflex agent

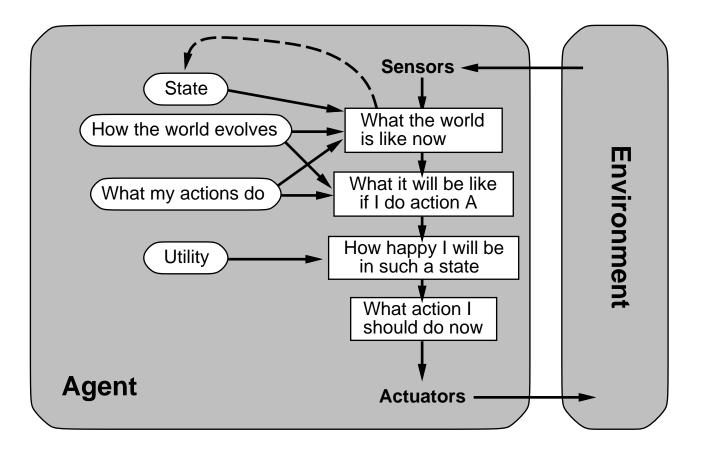
function REFLEX-VACUUM-AGENT([location,status]) returns an action
if status = Dirty then return Suck
else if location = A then return Right
else if location = B then return Left

Reflex agent with state

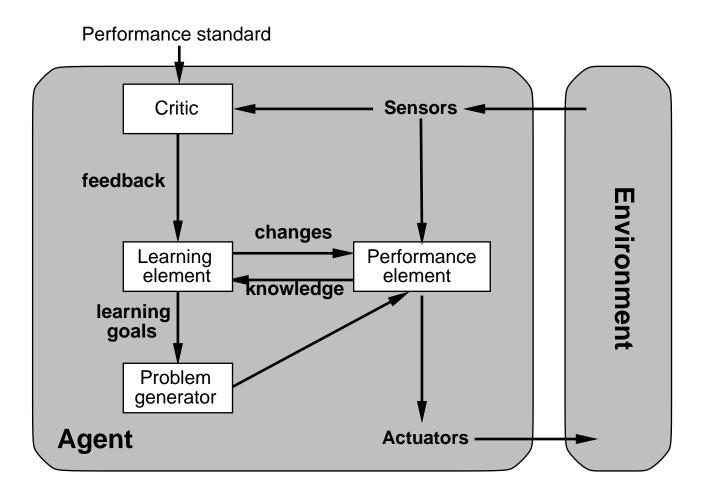
- \diamondsuit E.g., a vacuum-cleaning agent that can't sense what room it's in, but can remember its location
 - next page ...


Example

Vacuum-cleaning agent that remembers its location:


```
function VACUUM-AGENT-WITH-STATE([location]) returns an action
static: location, initially A
if status = Dirty then return Suck
else if location = A then
location \leftarrow B
return Right
else if location = B then
location \leftarrow A
return Left
```

- \diamond The pseudocode assumes the agent always starts out in room A.
 - What if we didn't know this?


Goal-based agent

Utility-based agent

Learning agent

Summary

- \diamond Agents interact with environments through actuators and sensors
- \diamond The *agent function* describes what the agent does in all circumstances
- \diamond The *performance measure* evaluates the environment sequence
- \diamond A *perfectly rational* agent maximizes expected performance
- \diamond *Agent programs* implement (some) agent functions
- $\diamond PEAS$ descriptions define task environments
- \diamond Environments are categorized along several dimensions:
 - $\bullet \ observable, \ deterministic, \ episodic, \ static, \ discrete, \ single-agent$
- \diamondsuit Some basic agent architectures:
 - $\bullet \ \ reflex, \ reflex \ with \ state, \ goal-based, \ utility-based$