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Problem solving by searching

CMSC 421: Chapter 3, Sections 1–4

CMSC 421: Chapter 3, Sections 1–4 1



Motivation and Outline

♦ Lots of AI problem-solving requires trial-and-error search
Chapter 3 describes some algorithms for this

• Types of problems and agents

• Problem formulation

• Example problems

• Basic search algorithms
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Problem types

Deterministic, fully observable =⇒ classical search problem

• agent knows exactly which state it starts in, what each action does

• no exogenous events (or else they’re encoded into the actions’ effects)

♦ Solution is a sequence, can predict future states exactly

♦ Example: Vacuum World with no exogenous events

� Rooms won’t spontaneously get dirty again

• Initial state: A B

• Goal: have both rooms clean

• Solution: [Suck,Right, Suck]
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Problem types

Non-observable:

• Agent may have no idea where it is

• Solution (if any) must be a sequence that is conformant

� Guaranteed to work under all conditions

♦ Example:

• Vacuum World, no exogenous
events, and no sensors

• Initial state: could be any,
agent has no way to know which

• Goal: both rooms clean

• Assume it’s OK to hit the wall

• Solution: [Right, Suck, Left, Suck]

1 2

3 4

5 6

7 8

CMSC 421: Chapter 3, Sections 1–4 4



Problem types

Nondeterministic and/or partially observable:

• percepts provide new information about current state

• solution is a contingent plan or a policy

• often interleave search, execution

♦ Example:

• Vacuum World, no exogenous
events, and local sensing:

� which room the agent’s in

� whether that room is dirty

• Initial state: any of {5, 6, 7, 8}
• Goal: have both rooms clean

• Solution: [Right, if dirt then Suck]

1 2

3 4

5 6

7 8
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Problem types

♦ Unknown state space ⇒ exploration problem

♦ Example:

• Vacuum agent with local sensing

� Initially, agent sees current location,
but doesn’t know what other rooms there are, or what’s in them

? ?
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Problem-solving agents

♦ Online problem solving: gather knowledge as you go

• Necessary for exploration problems

• Can be useful in nondeterministic and partially observable problems

♦ Offline problem solving: develop the entire solution at the start,
before you ever start to execute it

• e.g., the Vacuum World examples on the last three slides

♦ Focus of this chapter: offline problem solving for
classical search problems (i.e., deterministic, fully observable)
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Example: Romania

Currently in Arad, Romania; flight leaves tomorrow from Bucharest

states = cities; actions = drive between cities; goal = be in Bucharest
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Selecting a state space

♦ Real world is absurdly complex

• state space is an abstraction

♦ Abstract state = set of real states

• E.g., in-Arad includes many
locations

♦ Abstract action = complex
combination of real actions

• E.g., goto-Zerind may include
routes, detours, rest stops, etc.

• For guaranteed realizability,
it must get you to Zerind
no matter where you are in Arad
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♦ Abstract solution = sequence of abstract actions
It represents a set of real paths that are solutions in the real world
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Formulation of classical search problems

♦ A search problem includes:

• initial state s0, e.g., at-Arad

• set of actions, e.g.,
A = {goto-Zerind, . . .}
• state-transition function γ(s, a)
e.g., γ(at-Arad, goto-Zerind)

= at-Zerind

• goal test: either explicit, e.g.,
set of goal states = {at-Bucharest}

or implicit, e.g., NoDirt(s)
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• path cost

� additive, e.g., sum of distances, number of actions, etc.

� c(s, a) is the step cost, assumed to be ≥ 0

♦ solution: sequence of actions from the initial state to a goal state
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Example: vacuum world, no exogenous events
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states: dirt and robot locations (ignore dirt amounts, etc.)
actions: Left, Right, Suck, NoOp
goal test: no dirt
path cost: 1 per action (0 for NoOp)
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Example: sliding-tile puzzles

n× n frame, n2 − 1 movable tiles. Slide the tiles to change their positions.

n = 3: the 8-puzzle n = 4: the 15-puzzle

2
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a starting state goal state a starting state goal state

• states: integer locations of tiles (ignore intermediate positions)

• actions: move tiles left, right, up, down (ignore unjamming etc.)

• goal test = goal state (shown)

• step cost = 1 per move, so path cost = number of moves

♦ In this family of puzzles, finding optimal solutions is NP-hard

• Much easier if we don’t care whether the solution is optimal
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Example: robotic assembly

♦ states: real-valued coordinates of robot joint angles,
and parts of the object to be assembled

♦ actions: continuous motions of robot joints

♦ goal test: complete assembly

♦ path cost: time to execute
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Tree search example

Currently in Arad, Romania; flight leaves tomorrow from Bucharest

states = cities; actions = drive between cities; goal = be in Bucharest
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Tree search example
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Tree search example
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Tree search example
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Implementation: states vs. nodes

♦ Node: a data structure that’s part of a search tree. Includes

• a state

• a parent

• children (if the node has been expanded)

• a depth

• a path cost
1
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State Node depth = 6

g = 6

state

parent, action

♦ State: representation of a physical configuration

• doesn’t have parents, children, depth, or path cost

♦ Expanding a node x:

• For each of x’s children, create a new node and fill in the fields
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Eager vs. cautious tree search

function Eager-Tree-Search(problem) # my version

frontier ← list that contains a node for problem’s initial state

loop

if frontier is empty then return Failure

choose and remove a node x from frontier

for each node y in x’s expansion

if State[y] is a goal then return the corresponding solution

else add y to frontier

function Cautious-Tree-Search(problem) # like Tree-Search in the book

frontier ← list that contains a node for problem’s initial state

loop

if frontier is empty then return Failure

choose and remove a node x from frontier

if x contains a goal state then return the corresponding solution

else expand x and add the new nodes to frontier

♦ Similarities and differences?
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Eager vs. cautious tree search

function Eager-Tree-Search(problem) # my version

frontier ← list that contains a node for problem’s initial state

loop

if frontier is empty then return Failure

choose and remove a node x from frontier

for each node y in x’s expansion

if State[y] is a goal then return the corresponding solution

else add y to frontier

function Cautious-Tree-Search(problem) # like Tree-Search in the book

frontier ← list that contains a node for problem’s initial state

loop

if frontier is empty then return Failure

choose and remove a node x from frontier

if x contains a goal state then return the corresponding solution

else expand x and add the new nodes to frontier

♦ Eager returns solution immediately – generates fewer nodes

♦ Cautious waits until node is chosen – necessary to find optimal solution
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Search strategies

♦ A search strategy is defined by picking the order of node expansion

♦ Ways to evaluate a strategy:

• completeness: does it always find a solution if one exists?

• optimality: does it always find a least-cost solution?

• time complexity: number of nodes generated/expanded

• space complexity: maximum number of nodes in memory

♦ Time and space complexity are measured in terms of

• b = maximum branching factor of the search tree

� We’ll assume b is finite

• d = depth of the least-cost solution (or ∞ if there’s no solution)

• m = maximum depth of the state space (may be ∞)
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Uninformed search strategies

♦ Uninformed strategies

� use only the information available in the problem definition

• Breadth-first search

• Depth-first search

• Uniform-cost search

• Limited-depth search

• Iterative deepening search
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Breadth-first search

♦ Expand shallowest unexpanded node

♦ Implementation:
frontier is a FIFO queue, i.e., new successors go at end

A

B C

D E F G
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Breadth-first search

♦ Expand shallowest unexpanded node

♦ Implementation:
frontier is a FIFO queue, i.e., new successors go at end

A

B C

D E F G

CMSC 421: Chapter 3, Sections 1–4 24



Breadth-first search

♦ Expand shallowest unexpanded node

♦ Implementation:
frontier is a FIFO queue, i.e., new successors go at end
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Breadth-first search

♦ Expand shallowest unexpanded node

♦ Implementation:
frontier is a FIFO queue, i.e., new successors go at end
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D E F G
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Properties of breadth-first search

♦ Complete?

• b = maximum branching factor of the search tree

• d = depth of the least-cost solution

• m = maximum depth of the state space (may be ∞)
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Properties of breadth-first search

♦ Complete? Yes

♦ Time?

• b = maximum branching factor of the search tree

• d = depth of the least-cost solution

• m = maximum depth of the state space (may be ∞)
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Properties of breadth-first search

♦ Complete? Yes

♦ Time? 1 + b + b2 + b3 + . . . + bd + b(bd − 1) = O(bd)

♦ Space?

• b = maximum branching factor of the search tree

• d = depth of the least-cost solution

• m = maximum depth of the state space (may be ∞)
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Properties of breadth-first search

♦ Complete? Yes

♦ Time? 1 + b + b2 + b3 + . . . + bd + b(bd − 1) = O(bd)

♦ Space? O(bd) (keeps every node in memory)

• If we run for 12 hours and generate nodes at 200 MB/sec,
the space requirement is 8.64 TB

♦ Optimal solutions?

• b = maximum branching factor of the search tree

• d = depth of the least-cost solution

• m = maximum depth of the state space (may be ∞)
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Properties of breadth-first search

♦ Complete? Yes

♦ Time? 1 + b + b2 + b3 + . . . + bd + b(bd − 1) = O(bd)

♦ Space? O(bd) (keeps every node in memory)

• If we run for 12 hours and generate nodes at 200 MB/sec,
the space requirement is 8.64 TB

♦ Optimal solutions?

• Yes if cost = k per step where k is constant; otherwise no

• b = maximum branching factor of the search tree

• d = depth of the least-cost solution

• m = maximum depth of the state space (may be ∞)
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Breadth-first search

function Eager-Tree-Search(problem) # my version

frontier ← list that contains a node for problem’s initial state

loop

if frontier is empty then return Failure

choose and remove a node x from frontier

for each node y in x’s expansion

if State[y] is a goal then return the corresponding solution

else add y to frontier

function Cautious-Tree-Search(problem) # like Tree-Search in the book

frontier ← list that contains a node for problem’s initial state

loop

if frontier is empty then return Failure

choose and remove a node x from frontier

if x contains a goal state then return the corresponding solution

else expand x and add the new nodes to frontier

♦ Which is better for breadth-first search?
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Comparison

♦ Every edge has cost 10, except for the following two:

� (G,N) and (G,O) both cost 5

• M is a goal node of cost 30

• N is a goal node of cost 25

A

B C

D E F G

H I J K L M N O

♦ For breadth-first search

• What solutions do Eager and Cautious return?

• How many nodes do they generate?

CMSC 421: Chapter 3, Sections 1–4 33



Depth-first search

♦ Expand deepest unexpanded node

♦ Implementation:
frontier = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O
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Depth-first search

♦ Expand deepest unexpanded node

♦ Implementation:
frontier = LIFO queue, i.e., put successors at front
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Depth-first search

♦ Expand deepest unexpanded node

♦ Implementation:
frontier = LIFO queue, i.e., put successors at front
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Depth-first search

♦ Expand deepest unexpanded node

♦ Implementation:
frontier = LIFO queue, i.e., put successors at front
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Depth-first search

♦ Expand deepest unexpanded node

♦ Implementation:
frontier = LIFO queue, i.e., put successors at front
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Depth-first search

♦ Expand deepest unexpanded node

♦ Implementation:
frontier = LIFO queue, i.e., put successors at front
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Depth-first search

♦ Expand deepest unexpanded node

♦ Implementation:
frontier = LIFO queue, i.e., put successors at front
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Depth-first search

♦ Expand deepest unexpanded node

♦ Implementation:
frontier = LIFO queue, i.e., put successors at front
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Depth-first search

♦ Expand deepest unexpanded node

♦ Implementation:
frontier = LIFO queue, i.e., put successors at front
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H I J K L M N O
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Properties of depth-first search

♦ Complete?

• b = maximum branching factor of the search tree

• d = depth of the least-cost solution

• m = maximum depth of the state space (may be ∞)
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Properties of depth-first search

♦ Complete?

• No in infinite-depth spaces

• Yes in finite spaces, if we do loop-checking:

� Don’t generate states that are already on the current path

♦ Time?

• b = maximum branching factor of the search tree

• d = depth of the least-cost solution

• m = maximum depth of the state space (may be ∞)
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Properties of depth-first search

♦ Complete?

• No in infinite-depth spaces

• Yes in finite spaces, if we do loop-checking:

� Don’t generate states that are already on the current path

♦ Time? O(bm): terrible if m is much larger than d

• but if solutions are dense, may be much faster than breadth-first

♦ Space?

• b = maximum branching factor of the search tree

• d = depth of the least-cost solution

• m = maximum depth of the state space (may be ∞)
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Properties of depth-first search

♦ Complete?

• No in infinite-depth spaces

• Yes in finite spaces, if we do loop-checking:

� Don’t generate states that are already on the current path

♦ Time? O(bm): terrible if m is much larger than d

• but if solutions are dense, may be much faster than breadth-first

♦ Space? O(bm), i.e., linear space

♦ Optimal solutions?

• b = maximum branching factor of the search tree

• d = depth of the least-cost solution

• m = maximum depth of the state space (may be ∞)
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Properties of depth-first search

♦ Complete?

• No in infinite-depth spaces

• Yes in finite spaces, if we do loop-checking:

� Don’t generate states that are already on the current path

♦ Time? O(bm): terrible if m is much larger than d

• but if solutions are dense, may be much faster than breadth-first

♦ Space? O(bm), i.e., linear space

♦ Optimal solutions? Not unless it’s lucky

• b = maximum branching factor of the search tree

• d = depth of the least-cost solution

• m = maximum depth of the state space (may be ∞)
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Eager vs. cautious tree search

function Eager-Tree-Search(problem) # my version

frontier ← list that contains a node for problem’s initial state

loop

if frontier is empty then return Failure

choose and remove a node x from frontier

for each node y in x’s expansion

if State[y] is a goal then return the corresponding solution

else add y to frontier

function Cautious-Tree-Search(problem) # like Tree-Search in the book

frontier ← list that contains a node for problem’s initial state

loop

if frontier is empty then return Failure

choose and remove a node x from frontier

if x contains a goal state then return the corresponding solution

else expand x and add the new nodes to frontier

♦ Which is better for depth-first search?
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Comparison

♦ Every edge has cost 10, except for the following two:

� (G,N) and (G,O) both cost 5

• M is a goal node; path cost = 30

• N is a goal node; path cost = 25

A

B C

D E F G

H I J K L M N O

♦ For breadth-first search

• What solutions do Eager and Cautious tree search return?

• How many nodes do they generate?
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Eager vs. cautious tree search

function Eager-Tree-Search(problem) # my version

frontier ← list that contains a node for problem’s initial state

loop

if frontier is empty then return Failure

choose and remove a node x from frontier

for each node y in x’s expansion

if State[y] is a goal then return the corresponding solution

else add y to frontier

function Cautious-Tree-Search(problem) # like Tree-Search in the book

frontier ← list that contains a node for problem’s initial state

loop

if frontier is empty then return Failure

choose and remove a node x from frontier

if x contains a goal state then return the corresponding solution

else expand x and add the new nodes to frontier

♦ Where would we put loop-checking?
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Uniform-cost search

♦ Expand least-cost unexpanded node

♦ Implementation: frontier = queue ordered by path cost, lowest first
Equivalent to breadth-first if step costs all equal

♦ Complete?

• b = maximum branching factor of the search tree

• d = depth of the least-cost solution

• m = maximum depth of the state space (may be ∞)
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Uniform-cost search

♦ Expand least-cost unexpanded node

♦ Implementation: frontier = queue ordered by path cost, lowest first
Equivalent to breadth-first if step costs all equal

♦ Complete? Yes, if ∃ ε > 0 such that step cost ≥ ε

♦ Time?

• b = maximum branching factor of the search tree

• d = depth of the least-cost solution

• m = maximum depth of the state space (may be ∞)
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Uniform-cost search

♦ Expand least-cost unexpanded node

♦ Implementation: frontier = queue ordered by path cost, lowest first
Equivalent to breadth-first if step costs all equal

♦ Complete? Yes, if ∃ ε > 0 such that step cost ≥ ε

♦ Time? |{nodes with g ≤ C∗}| = O(bdC
∗/εe), where

• C∗ = cost of the optimal solution

♦ Space?

• b = maximum branching factor of the search tree

• d = depth of the least-cost solution

• m = maximum depth of the state space (may be ∞)
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Uniform-cost search

♦ Expand least-cost unexpanded node

♦ Implementation: frontier = queue ordered by path cost, lowest first
Equivalent to breadth-first if step costs all equal

♦ Complete? Yes, if ∃ ε > 0 such that step cost ≥ ε

♦ Time? |{nodes with g ≤ C∗}| = O(bdC
∗/εe), where

• C∗ = cost of the optimal solution

♦ Space? |{nodes with g ≤ C∗}| = O(bdC
∗/εe)

♦ Optimal solutions?

• b = maximum branching factor of the search tree

• d = depth of the least-cost solution

• m = maximum depth of the state space (may be ∞)
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Uniform-cost search

♦ Expand least-cost unexpanded node

♦ Implementation: frontier = queue ordered by path cost, lowest first
Equivalent to breadth-first if step costs all equal

♦ Complete? Yes, if ∃ ε > 0 such that step cost ≥ ε

♦ Time? |{nodes with g ≤ C∗}| = O(bdC
∗/εe), where

• C∗ = cost of the optimal solution

♦ Space? |{nodes with g ≤ C∗}| = O(bdC
∗/εe)

♦ Optimal solutions? Yes, if we use Cautious-Tree-Search

• b = maximum branching factor of the search tree

• d = depth of the least-cost solution

• m = maximum depth of the state space (may be ∞)
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Eager vs. cautious tree search

function Eager-Tree-Search(problem) # my version

frontier ← list that contains a node for problem’s initial state

loop

if frontier is empty then return Failure

choose and remove a node x from frontier

for each node y in x’s expansion

if State[y] is a goal then return the corresponding solution

else add y to frontier

function Cautious-Tree-Search(problem) # like Tree-Search in the book

frontier ← list that contains a node for problem’s initial state

loop

if frontier is empty then return Failure

choose and remove a node x from frontier

if x contains a goal state then return the corresponding solution

else expand x and add the new nodes to frontier

♦ Which is better for uniform-cost search?
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Comparison

♦ Every edge has cost 10, except for the following two:

� (G,N) and (G,O) both cost 5

• M is a goal node of cost 30

• N is a goal node of cost 25

A

B C

D E F G

H I J K L M N O

♦ For uniform-cost search

• What solutions do Eager and Cautious return?

• How many nodes do they generate?
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Limited-depth search

♦ Depth-first search, backtrack at each node of depth = limit
unless it’s a solution

♦ Recursive implementation:

function Limited-Depth-Search(node, problem, limit)

if node contains a goal state then return the corresponding solution

else if limit = 0 then return Cutoff

else

notfound ← Failure /* what to return if we don’t find a solution */

for each y in Expand(node) do

result ← Limited-Depth-Search(y, problem, limit − 1)

if result is a solution then return result

else if result = Cutoff then notfound ← Cutoff

return notfound
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Iterative deepening search

function Iterative-Deepening-Search( problem)

node ← node for problem’s initial state

for limit ← 0 to ∞ do

result ← Limited-Depth-Search(node, problem, limit)

if result 6= Cutoff then return result

♦ Limited-depth search to depth 0,

♦ Limited-depth search to depth 1,

♦ Limited-depth search to depth 2,
. . .

♦ Stop when you find a solution
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function Iterative-Deepening-Search( problem)

node ← node for problem’s initial state

for limit ← 0 to ∞ do

result ← Limited-Depth-Search(node, problem, limit)

if result 6= Cutoff then return result

Limit = 0 A A
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function Iterative-Deepening-Search( problem)

node ← node for problem’s initial state

for limit ← 0 to ∞ do

result ← Limited-Depth-Search(node, problem, limit)

if result 6= Cutoff then return result

Limit = 1 A

B C

A

B C

A

B C

A

B C
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function Iterative-Deepening-Search( problem)

node ← node for problem’s initial state

for limit ← 0 to ∞ do

result ← Limited-Depth-Search(node, problem, limit)

if result 6= Cutoff then return result

Limit = 2 A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G
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function Iterative-Deepening-Search( problem)

node ← node for problem’s initial state

for limit ← 0 to ∞ do

result ← Limited-Depth-Search(node, problem, limit)

if result 6= Cutoff then return result

Limit = 3
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Properties of iterative deepening search

• b = maximum branching factor of the search tree

• d = depth of the least-cost solution

• m = maximum depth of the state space (may be ∞)

♦ Complete?

CMSC 421: Chapter 3, Sections 1–4 64



Properties of iterative deepening search

• b = maximum branching factor of the search tree

• d = depth of the least-cost solution

• m = maximum depth of the state space (may be ∞)

♦ Complete? Yes

♦ Time?
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Properties of iterative deepening search

• b = maximum branching factor of the search tree

• d = depth of the least-cost solution

• m = maximum depth of the state space (may be ∞)

♦ Complete? Yes

♦ Time? (d + 1)b0 + db1 + (d− 1)b2 + . . . + bd = O(bd)

♦ Space?
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Properties of iterative deepening search

• b = maximum branching factor of the search tree

• d = depth of the least-cost solution

• m = maximum depth of the state space (may be ∞)

♦ Complete? Yes

♦ Time? (d + 1)b0 + db1 + (d− 1)b2 + . . . + bd = O(bd)

♦ Space? O(bd)

♦ Optimal solutions?
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Properties of iterative deepening search

• b = maximum branching factor of the search tree

• d = depth of the least-cost solution

• m = maximum depth of the state space (may be ∞)

♦ Complete? Yes

♦ Time? (d + 1)b0 + db1 + (d− 1)b2 + . . . + bd = O(bd)

♦ Space? O(bd)

♦ Optimal solutions? Yes, if step cost = 1

• Can be modified to behave like uniform-cost search
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Summary of algorithms

b = branching factor

C∗ = cost of optimal solution, or ∞ if there’s no solution

d = depth of shallowest solution, or ∞ if there’s no solution

ε = smallest cost of each edge

l = cutoff depth for limited-depth search

m = depth of deepest node (may be ∞)

Criterion Breadth- Uniform- Depth- Depth- Iterative
First Cost First Limited Deepening

Complete? Yes Yes(2) No Yes, if l ≥ d Yes
Time bd bdC

∗/εe bm bl bd

Space bd bdC
∗/εe bm bl bd

Optimal? Yes(1) Yes No No Yes(1)

(1) if step costs are equal
(2) if ε > 0
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Repeated states

♦ Failure to detect repeated states can turn a linear problem into an exponen-
tial one!

A

B

C

D

A

BB

CCCC
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Graph search

function Graph-Search( problem)

frontier ← list that contains a node for problem’s initial state

explored ← empty set

loop

if frontier is empty then return Failure

choose and remove a node x from frontier

if State[x] is a goal then return the corresponding solution

if State[x] is not in explored then

add State[x] to explored

expand x and add the new nodes to frontier

♦ Search strategy is implemented by the InsertAll function

• breadth-first: insert new nodes at end of queue

• depth-first: insert new nodes at front of queue

• uniform-cost: keep queue ordered by cost
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Summary

♦ Problem formulation usually requires abstracting away real-world
details to define a state space that can feasibly be explored

♦ Variety of uninformed search strategies

♦ Iterative deepening search uses only linear space

• When b ≥ 2, same big-O time as other uninformed algorithms

♦ Graph search can take exponentially less time than tree search

• when the number of paths to a node is exponential in its depth

♦ Graph search can take exponentially more space than tree search

• when the search space is treelike
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Homework 1

♦ Due in one week

♦ 5 problems, 10 points per problem, 50 points total

• 2.10

• 3.6(a,b)

• 3.9(a,c)

• 3.15

• 3.18
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Python resources

♦ Documentation: http://docs.python.org

• Important: in the left-hand column, click on Python 3.2 (stable)

♦ If you don’t know Python already, read the Tutorial

♦ To find out how a function or method works, use these:

� Library Reference

� General Index

• These are less useful

� Quick search and Search page produce too many irrelevant results

� Language reference talks about syntax, not what the functions do

♦ If you know Python 2 but not Python 3, this might be useful:

• http://wiki.python.org/moin/Python2orPython3
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Eager tree search
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Eager tree search (continued)
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Romanian map problem
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Romanian map problem (continued)
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