Last update: September 6, 2012

PROBLEM SOLVING BY SEARCHING

CMSC 421: Chapter 3, Sections 1-4

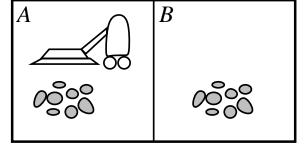
CMSC 421: Chapter 3, Sections 1–4 1

Motivation and Outline

- ♦ Lots of AI problem-solving requires trial-and-error search Chapter 3 describes some algorithms for this
 - Types of problems and agents
 - Problem formulation
 - Example problems
 - Basic search algorithms

Deterministic, fully observable \implies *classical search problem*

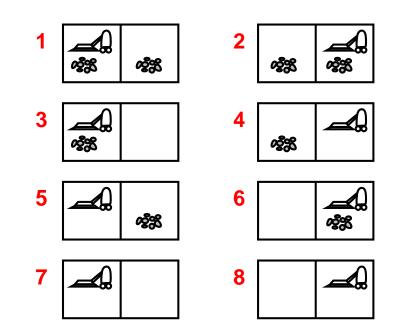
- agent knows exactly which state it starts in, what each action does
- no exogenous events (or else they're encoded into the actions' effects)
- \diamond Solution is a sequence, can predict future states exactly
- Example: Vacuum World with no exogenous events
 Rooms won't spontaneously get dirty again
 - Initial state:



- Goal: have both rooms clean
- Solution: [*Suck*, *Right*, *Suck*]

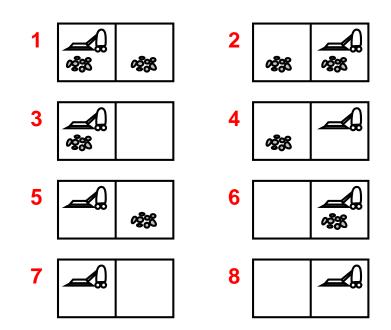
Non-observable:

- Agent may have no idea where it is
- Solution (if any) must be a sequence that is *conformant*
 - $\diamond~$ Guaranteed to work under all conditions
- \diamond Example:
 - Vacuum World, no exogenous events, and no sensors
 - Initial state: could be any, agent has no way to know which
 - Goal: both rooms clean
 - Assume it's OK to hit the wall
 - Solution: [*Right*, *Suck*, *Left*, *Suck*]



Nondeterministic and/or partially observable:

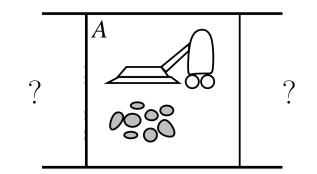
- percepts provide new information about current state
- solution is a *contingent plan* or a *policy*
- often **interleave** search, execution
- \diamond Example:
 - Vacuum World, no exogenous events, and *local sensing*:
 - $\diamond~$ which room the agent's in
 - $\diamond\,$ whether that room is dirty
 - Initial state: any of $\{5, 6, 7, 8\}$
 - Goal: have both rooms clean
 - Solution: [*Right*, **if** *dirt* **then** *Suck*]



 \diamond Unknown state space \Rightarrow exploration problem

\diamond Example:

- Vacuum agent with local sensing
 - ♦ Initially, agent sees current location,
 but doesn't know what other rooms there are, or what's in them



Problem-solving agents

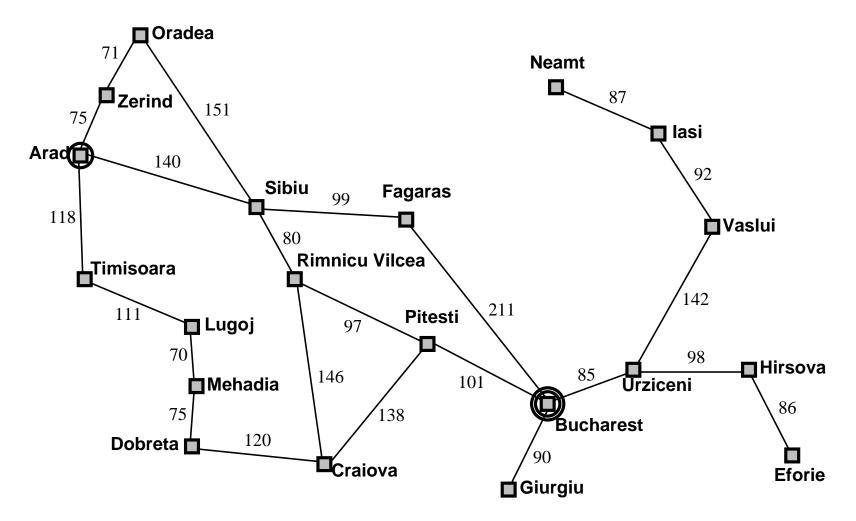
 \diamondsuit *Online* problem solving: gather knowledge as you go

- Necessary for exploration problems
- Can be useful in nondeterministic and partially observable problems
- \diamond *Offline* problem solving: develop the entire solution at the start, before you ever start to execute it
 - e.g., the Vacuum World examples on the last three slides

♦ Focus of this chapter: offline problem solving for classical search problems (i.e., deterministic, fully observable)

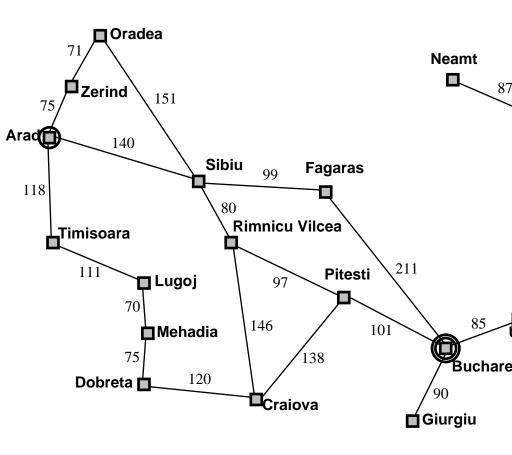
Example: Romania

Currently in Arad, Romania; flight leaves tomorrow from Bucharest states = cities; actions = drive between cities; goal = be in Bucharest

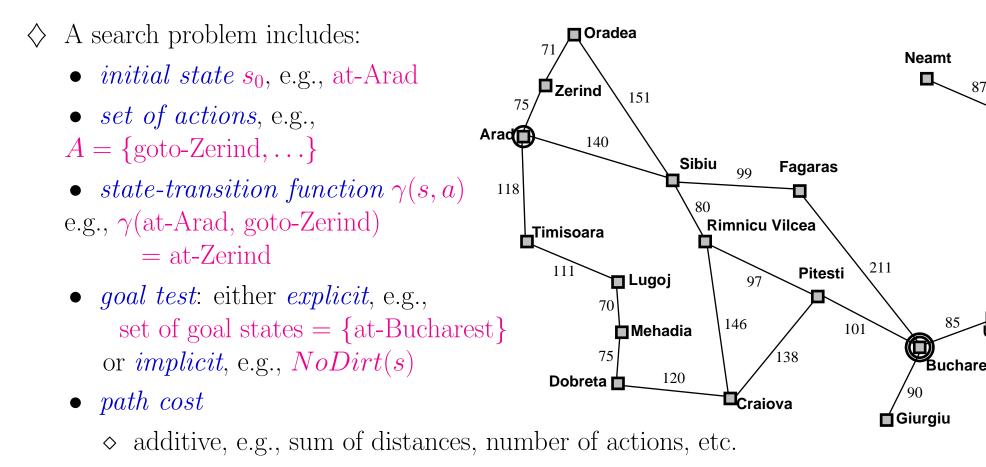


Selecting a state space

- $\diamondsuit~$ Real world is absurdly complex
 - state space is an **abstraction**
- \diamond *Abstract state* = set of real states
 - E.g., in-Arad includes many locations
- \diamond *Abstract action* = complex combination of real actions
 - E.g., goto-Zerind may include routes, detours, rest stops, etc.
 - For guaranteed realizability, it must get you to Zerind no matter where you are in Arad
- \diamond *Abstract solution* = sequence of abstract actions It represents a set of real paths that are solutions in the real world



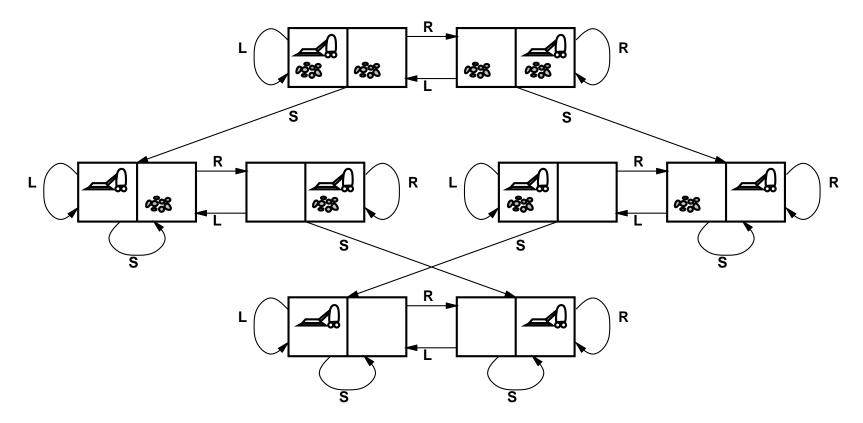
Formulation of classical search problems



♦ c(s, a) is the *step cost*, assumed to be ≥ 0

 \diamond *solution*: sequence of actions from the initial state to a goal state

Example: vacuum world, no exogenous events

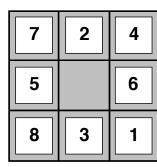


states: dirt and robot locations (ignore dirt amounts, etc.)
actions: Left, Right, Suck, NoOp
goal test: no dirt
path cost: 1 per action (0 for NoOp)

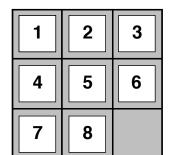
Example: sliding-tile puzzles

 $n \times n$ frame, $n^2 - 1$ movable tiles. Slide the tiles to change their positions.

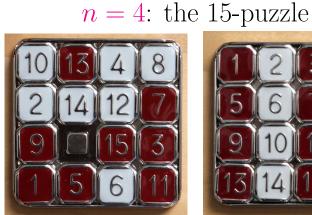
n = 3: the 8-puzzle



a starting state



goal state

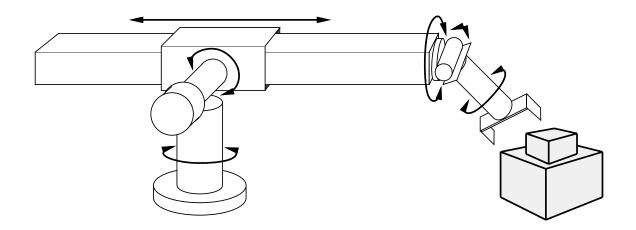


a starting state

goal state

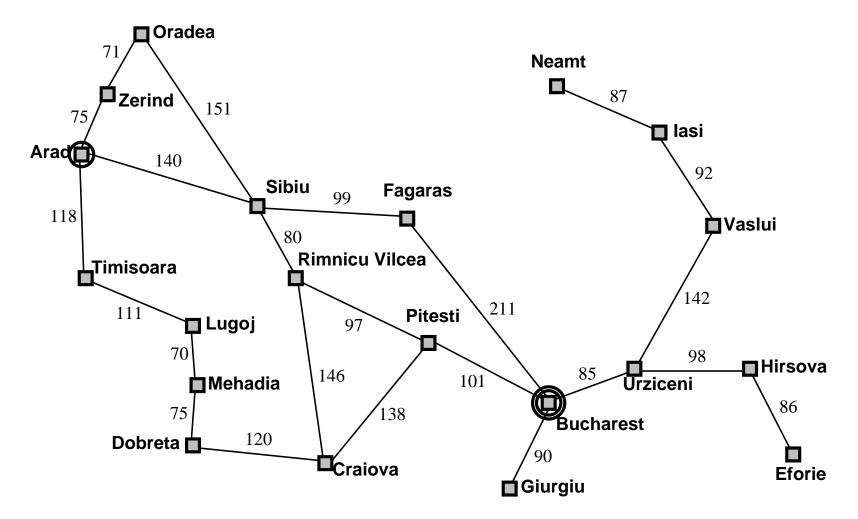
- *states*: integer locations of tiles (ignore intermediate positions)
- *actions*: move tiles left, right, up, down (ignore unjamming etc.)
- $goal \ test = goal \ state \ (shown)$
- $step \ cost = 1$ per move, so $path \ cost =$ number of moves
- In this family of puzzles, finding **optimal** solutions is NP-hard $\langle \rangle$
 - Much easier if we don't care whether the solution is optimal

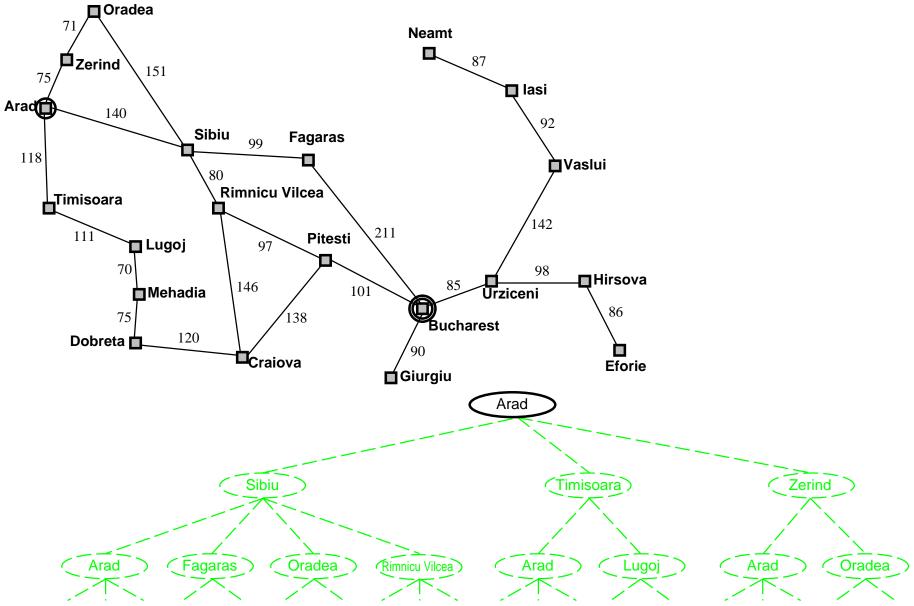
Example: robotic assembly

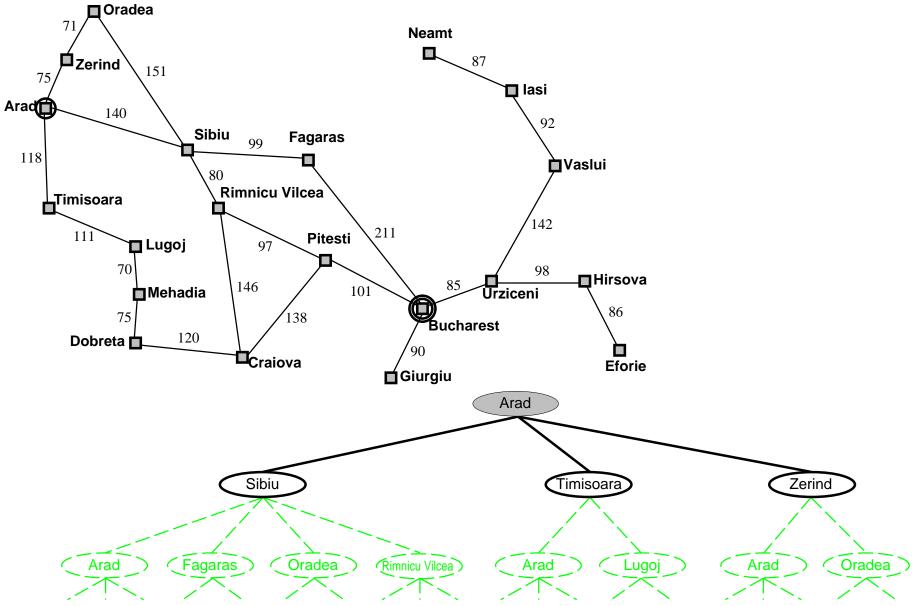


- \diamond *states*: real-valued coordinates of robot joint angles, and parts of the object to be assembled
- \diamond *actions*: continuous motions of robot joints
- \diamond *goal test*: complete assembly
- \diamond *path cost*: time to execute

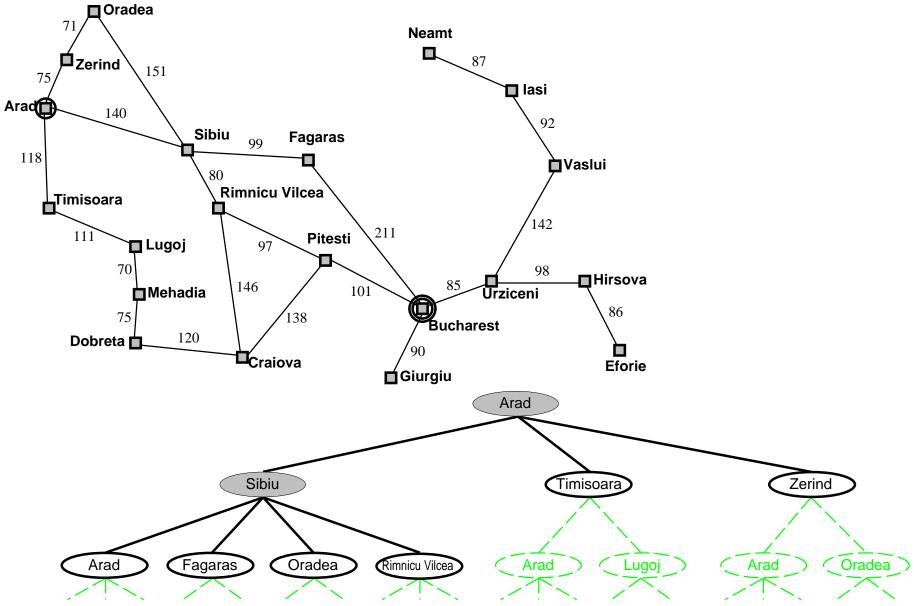
Currently in Arad, Romania; flight leaves tomorrow from Bucharest states = cities; actions = drive between cities; goal = be in Bucharest







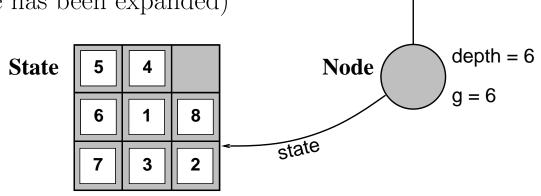
CMSC 421: Chapter 3, Sections 1–4 16



Implementation: states vs. nodes

 \diamondsuit *Node*: a data structure that's part of a search tree. Includes

- a *state*
- a *parent*
- *children* (if the node has been expanded)
- a *depth*
- a *path cost*



- \diamond *State*: representation of a physical configuration
 - doesn't have parents, children, depth, or path cost
- \diamond *Expanding* a node *x*:
 - For each of x's children, create a new node and fill in the fields

parent, action

Eager vs. cautious tree search

```
function EAGER-TREE-SEARCH(problem)
                                                  \# my version
   frontier \leftarrow list that contains a node for problem's initial state
  loop
       if frontier is empty then return Failure
       choose and remove a node x from frontier
       for each node y in x's expansion
           if STATE[y] is a goal then return the corresponding solution
           else add y to frontier
function CAUTIOUS-TREE-SEARCH(problem) \# like TREE-SEARCH in the book
   frontier \leftarrow list that contains a node for problem's initial state
  loop
       if frontier is empty then return Failure
       choose and remove a node x from frontier
       if x contains a goal state then return the corresponding solution
       else expand x and add the new nodes to frontier
```

 \diamond Similarities and differences?

Eager vs. cautious tree search

```
function EAGER-TREE-SEARCH(problem)
                                                   \# my version
   frontier \leftarrow list that contains a node for problem's initial state
  loop
       if frontier is empty then return Failure
       choose and remove a node x from frontier
       for each node y in x's expansion
           if STATE[y] is a goal then return the corresponding solution
           else add y to frontier
function CAUTIOUS-TREE-SEARCH(problem) \# like TREE-SEARCH in the book
   frontier \leftarrow list that contains a node for problem's initial state
  loop
       if frontier is empty then return Failure
       choose and remove a node x from frontier
       if x contains a goal state then return the corresponding solution
       else expand x and add the new nodes to frontier
```

- \diamond EAGER returns solution immediately generates fewer nodes
- \diamond CAUTIOUS waits until node is chosen necessary to find optimal solution

Search strategies

- \diamond A search strategy is defined by picking the **order of node expansion**
- \diamond Ways to evaluate a strategy:
 - *completeness*: does it always find a solution if one exists?
 - *optimality*: does it always find a least-cost solution?
 - *time complexity*: number of nodes generated/expanded
 - *space complexity*: maximum number of nodes in memory
- \diamondsuit Time and space complexity are measured in terms of
 - b = maximum branching factor of the search tree
 - \diamond We'll assume *b* is finite
 - d = depth of the least-cost solution (or ∞ if there's no solution)
 - $m = \text{maximum depth of the state space (may be <math>\infty$)

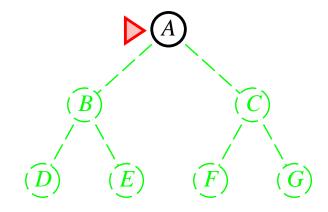
Uninformed search strategies

\diamond *Uninformed* strategies

- $\diamond\,$ use only the information available in the problem definition
- Breadth-first search
- Depth-first search
- Uniform-cost search
- Limited-depth search
- Iterative deepening search

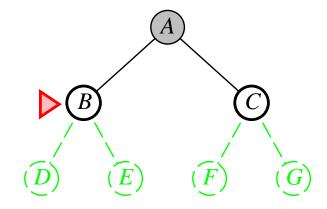
 $\diamondsuit~$ Expand shallowest unexpanded node

\diamond Implementation:

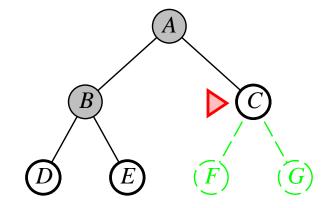


 $\diamondsuit~$ Expand shallowest unexpanded node

\diamond Implementation:

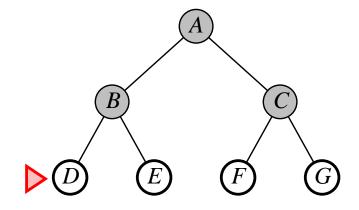


- $\diamondsuit~$ Expand shallowest unexpanded node
- \diamond Implementation:



 $\diamondsuit~$ Expand shallowest unexpanded node

\diamond Implementation:



 \bigcirc Complete?

- b = maximum branching factor of the search tree
- d = depth of the least-cost solution
- $m = \text{maximum depth of the state space (may be } \infty)$

- \Diamond Complete? Yes
- <u>*Time?*</u>

- b = maximum branching factor of the search tree
- d = depth of the least-cost solution
- $m = \text{maximum depth of the state space (may be } \infty)$

- \Diamond Complete? Yes
- $ightharpoonup \underline{Time?} \ 1 + b + b^2 + b^3 + \ldots + b^d + b(b^d 1) = O(b^d)$
- \bigcirc Space?

- b = maximum branching factor of the search tree
- d = depth of the least-cost solution
- $m = \text{maximum depth of the state space (may be <math>\infty$)

- \bigcirc Complete? Yes
- $\ \ \underline{Time?} \ \ 1+b+b^2+b^3+\ldots+b^d+b(b^d-1)=O(b^d) \\$
- \bigcirc *Space?* $O(b^d)$ (keeps every node in memory)
 - If we run for 12 hours and generate nodes at 200 MB/sec, the space requirement is 8.64 TB
- \bigcirc Optimal solutions?

- b = maximum branching factor of the search tree
- d = depth of the least-cost solution
- $m = \text{maximum depth of the state space (may be } \infty)$

- \diamond Complete? Yes
- $\ \ \underline{Time?} \ \ 1+b+b^2+b^3+\ldots+b^d+b(b^d-1)=O(b^d) \\$
- \bigcirc *Space?* $O(b^d)$ (keeps every node in memory)
 - If we run for 12 hours and generate nodes at 200 MB/sec, the space requirement is 8.64 TB
- \bigcirc Optimal solutions?
 - Yes if cost = k per step where k is constant; otherwise no

- b = maximum branching factor of the search tree
- d = depth of the least-cost solution
- $m = \text{maximum depth of the state space (may be } \infty)$

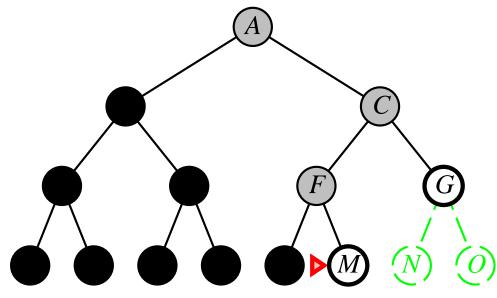
```
function EAGER-TREE-SEARCH(problem)
                                                   \# my version
  frontier \leftarrow list that contains a node for problem's initial state
  loop
       if frontier is empty then return Failure
       choose and remove a node x from frontier
       for each node y in x's expansion
           if STATE[y] is a goal then return the corresponding solution
           else add y to frontier
function CAUTIOUS-TREE-SEARCH(problem) # like TREE-SEARCH in the book
  frontier \leftarrow list that contains a node for problem's initial state
  loop
       if frontier is empty then return Failure
       choose and remove a node x from frontier
       if x contains a goal state then return the corresponding solution
       else expand x and add the new nodes to frontier
```

 \diamondsuit Which is better for breadth-first search?

Comparison

 \diamondsuit Every edge has cost 10, except for the following two:

- $\diamond \ (G,N) \text{ and } (G,O) \text{ both cost } 5$
- M is a goal node of cost 30
- N is a goal node of cost 25



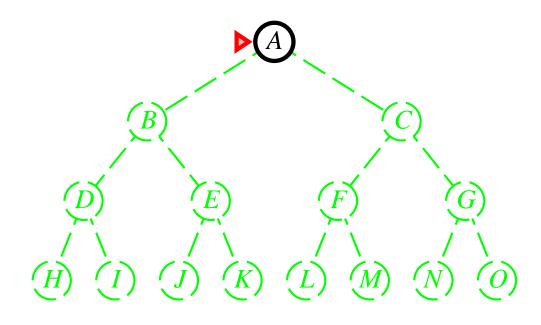
- \diamond For breadth-first search
 - What solutions do EAGER and CAUTIOUS return?
 - How many nodes do they generate?

Depth-first search

 $\diamondsuit~$ Expand deepest unexpanded node

\diamond Implementation:

frontier = LIFO queue, i.e., put successors at front

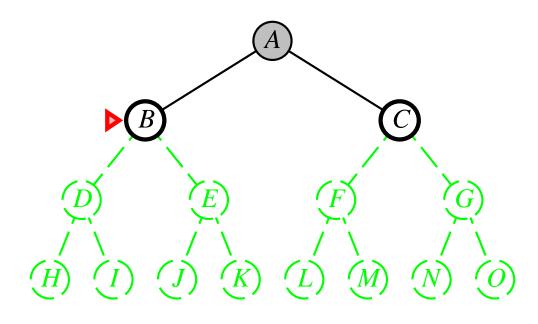


Depth-first search

 $\diamondsuit~$ Expand deepest unexpanded node

\diamond Implementation:

frontier = LIFO queue, i.e., put successors at front

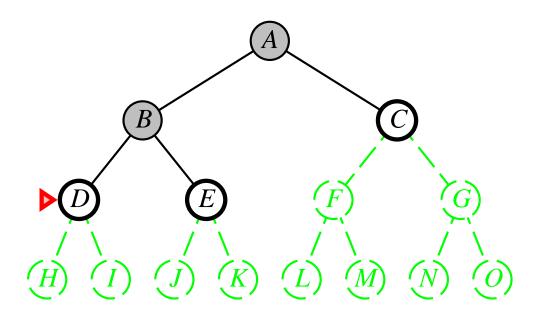


Depth-first search

 $\diamondsuit~$ Expand deepest unexpanded node

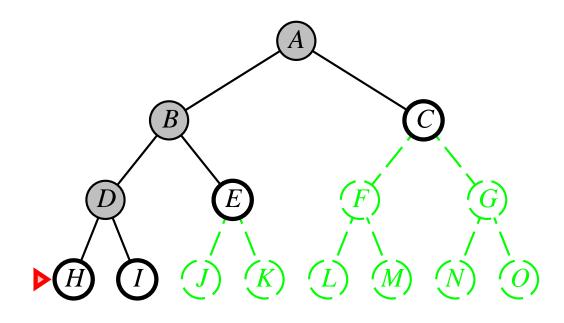
\diamond Implementation:

frontier = LIFO queue, i.e., put successors at front



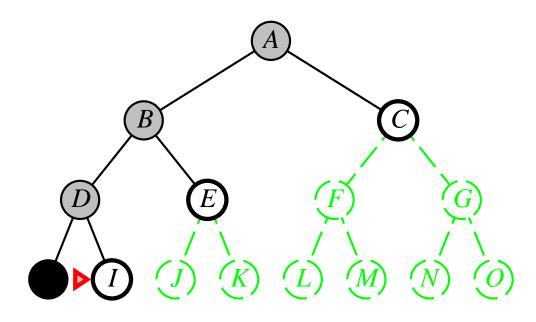
 $\diamondsuit~$ Expand deepest unexpanded node

\diamond Implementation:



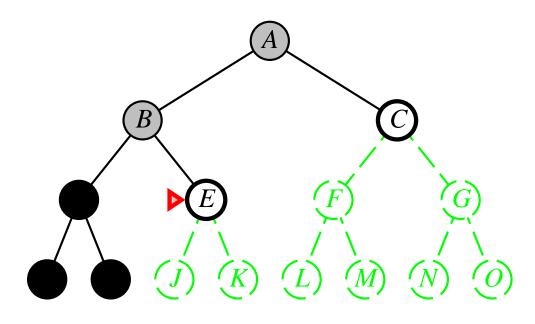
 $\diamondsuit~$ Expand deepest unexpanded node

\diamond Implementation:



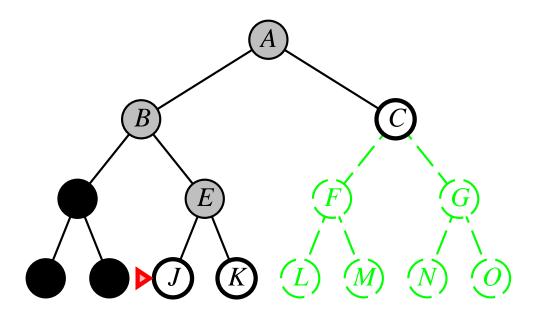
 $\diamondsuit~$ Expand deepest unexpanded node

\diamond Implementation:



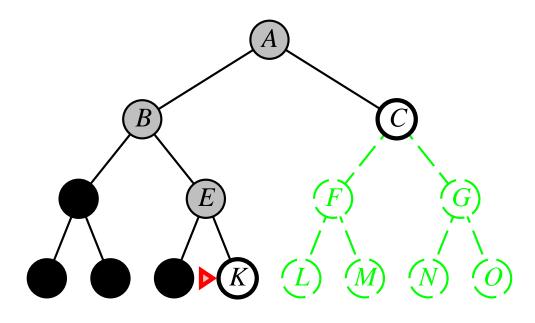
 $\diamondsuit~$ Expand deepest unexpanded node

\diamond Implementation:



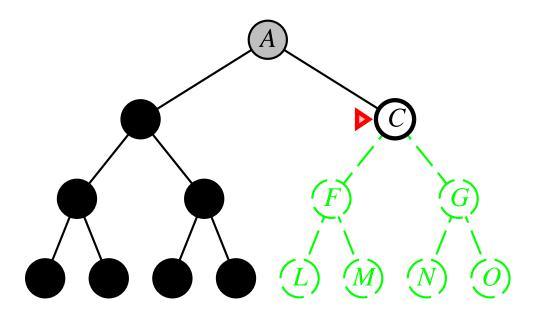
 $\diamondsuit~$ Expand deepest unexpanded node

\diamond Implementation:



 $\diamondsuit~$ Expand deepest unexpanded node

\diamond Implementation:



- b = maximum branching factor of the search tree
- d = depth of the least-cost solution
- $m = \text{maximum depth of the state space (may be } \infty)$

\bigcirc Complete?

- No in infinite-depth spaces
- Yes in finite spaces, if we do loop-checking:
 - ♦ Don't generate states that are already on the current path

 $\underline{\text{Time?}}$

- b = maximum branching factor of the search tree
- d = depth of the least-cost solution
- $m = \text{maximum depth of the state space (may be <math>\infty$)

- No in infinite-depth spaces
- Yes in finite spaces, if we do loop-checking:
 - $\diamond~$ Don't generate states that are already on the current path
- $\bigcirc \underline{Time?} O(b^m)$: terrible if m is much larger than d
 - but if solutions are dense, may be much faster than breadth-first
- $\bigcirc \underline{Space?}$

- b = maximum branching factor of the search tree
- d = depth of the least-cost solution
- $m = \text{maximum depth of the state space (may be } \infty)$

- No in infinite-depth spaces
- Yes in finite spaces, if we do loop-checking:
 - $\diamond~$ Don't generate states that are already on the current path
- $\bigcirc \underline{Time?} O(b^m)$: terrible if m is much larger than d
 - but if solutions are dense, may be much faster than breadth-first
- \Diamond *Space?* O(bm), i.e., linear space
- \Diamond Optimal solutions?

- b = maximum branching factor of the search tree
- d = depth of the least-cost solution
- $m = \text{maximum depth of the state space (may be } \infty)$

- No in infinite-depth spaces
- Yes in finite spaces, if we do loop-checking:
 - $\diamond~$ Don't generate states that are already on the current path
- $\bigcirc \underline{Time?} O(b^m)$: terrible if *m* is much larger than *d*
 - but if solutions are dense, may be much faster than breadth-first
- \bigcirc *Space?* O(bm), i.e., linear space
- \diamond *Optimal solutions?* Not unless it's lucky

- b = maximum branching factor of the search tree
- d = depth of the least-cost solution
- $m = \text{maximum depth of the state space (may be } \infty)$

Eager vs. cautious tree search

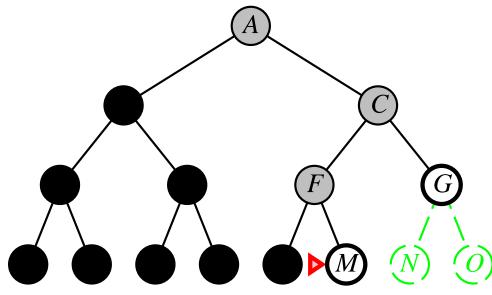
```
function EAGER-TREE-SEARCH(problem)
                                                   \# my version
   frontier \leftarrow list that contains a node for problem's initial state
  loop
       if frontier is empty then return Failure
       choose and remove a node x from frontier
       for each node y in x's expansion
           if STATE[y] is a goal then return the corresponding solution
           else add y to frontier
function CAUTIOUS-TREE-SEARCH (problem) # like TREE-SEARCH in the book
   frontier \leftarrow list that contains a node for problem's initial state
  loop
       if frontier is empty then return Failure
       choose and remove a node x from frontier
       if x contains a goal state then return the corresponding solution
       else expand x and add the new nodes to frontier
```

 \diamond Which is better for depth-first search?

Comparison

 \diamondsuit Every edge has cost 10, except for the following two:

- $\diamond \ (G,N) \text{ and } (G,O) \text{ both cost } 5$
- M is a goal node; path cost = 30
- N is a goal node; path cost = 25



- \diamond For breadth-first search
 - What solutions do EAGER and CAUTIOUS tree search return?
 - How many nodes do they generate?

Eager vs. cautious tree search

```
function EAGER-TREE-SEARCH(problem)
                                                   \# my version
   frontier \leftarrow list that contains a node for problem's initial state
  loop
       if frontier is empty then return Failure
       choose and remove a node x from frontier
       for each node y in x's expansion
           if STATE[y] is a goal then return the corresponding solution
           else add y to frontier
function CAUTIOUS-TREE-SEARCH (problem) # like TREE-SEARCH in the book
   frontier \leftarrow list that contains a node for problem's initial state
  loop
       if frontier is empty then return Failure
       choose and remove a node x from frontier
       if x contains a goal state then return the corresponding solution
       else expand x and add the new nodes to frontier
```

 \diamond Where would we put loop-checking?

- \diamond Expand least-cost unexpanded node
- \diamond **Implementation**: *frontier* = queue ordered by path cost, lowest first Equivalent to breadth-first if step costs all equal
- \bigcirc <u>Complete?</u>

- b = maximum branching factor of the search tree
- d = depth of the least-cost solution
- $m = \text{maximum depth of the state space (may be <math>\infty$)

- \diamond Expand least-cost unexpanded node
- \diamond **Implementation**: *frontier* = queue ordered by path cost, lowest first Equivalent to breadth-first if step costs all equal
- \diamond Complete? Yes, if $\exists \epsilon > 0$ such that step cost $\geq \epsilon$
- $\underline{Time?}$

- b = maximum branching factor of the search tree
- d = depth of the least-cost solution
- $m = \text{maximum depth of the state space (may be } \infty)$

- \diamondsuit Expand least-cost unexpanded node
- \diamond **Implementation**: *frontier* = queue ordered by path cost, lowest first Equivalent to breadth-first if step costs all equal
- \diamond Complete? Yes, if $\exists \epsilon > 0$ such that step cost $\geq \epsilon$
- $\diamondsuit \ \underline{Time?} \ |\{\text{nodes with } g \leq C^*\}| = O(b^{\lceil C^*/\epsilon \rceil}), \text{ where }$
 - $C^* = \text{cost}$ of the optimal solution
- $\bigcirc \underline{Space?}$

- b = maximum branching factor of the search tree
- d = depth of the least-cost solution
- $m = \text{maximum depth of the state space (may be } \infty)$

- \diamond Expand least-cost unexpanded node
- \diamond **Implementation**: *frontier* = queue ordered by path cost, lowest first Equivalent to breadth-first if step costs all equal
- \bigcirc Complete? Yes, if $\exists \epsilon > 0$ such that step cost $\geq \epsilon$
- $\diamondsuit \ \underline{Time?} \ |\{\text{nodes with } g \leq C^*\}| = O(b^{\lceil C^*/\epsilon \rceil}), \text{ where }$
 - $C^* = \text{cost of the optimal solution}$
- $\diamondsuit \ \underline{Space?} \ |\{\text{nodes with } g \leq C^*\}| = O(b^{\lceil C^*/\epsilon \rceil})$
- \Diamond <u>Optimal solutions?</u>

- b = maximum branching factor of the search tree
- d = depth of the least-cost solution
- $m = \text{maximum depth of the state space (may be } \infty)$

- \diamond Expand least-cost unexpanded node
- \diamond **Implementation**: *frontier* = queue ordered by path cost, lowest first Equivalent to breadth-first if step costs all equal
- \diamond Complete? Yes, if $\exists \epsilon > 0$ such that step cost $\geq \epsilon$
- <u>*Time?*</u> $|\{$ nodes with $g \leq C^* \}| = O(b^{\lceil C^*/\epsilon \rceil}),$ where
 - $C^* = \text{cost}$ of the optimal solution
- $\diamondsuit \ \underline{Space?} \ |\{\text{nodes with } g \le C^*\}| = O(b^{\lceil C^*/\epsilon \rceil})$
- ♦ *Optimal solutions?* Yes, if we use CAUTIOUS-TREE-SEARCH

- b = maximum branching factor of the search tree
- d = depth of the least-cost solution
- $m = \text{maximum depth of the state space (may be } \infty)$

Eager vs. cautious tree search

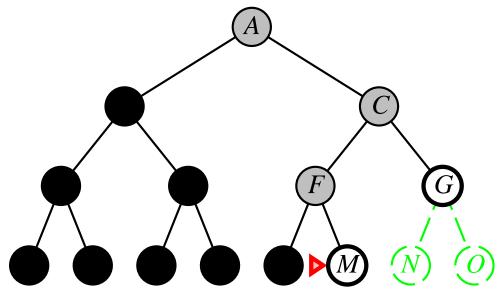
```
function EAGER-TREE-SEARCH(problem)
                                                   \# my version
   frontier \leftarrow list that contains a node for problem's initial state
  loop
       if frontier is empty then return Failure
       choose and remove a node x from frontier
       for each node y in x's expansion
           if STATE[y] is a goal then return the corresponding solution
           else add y to frontier
function CAUTIOUS-TREE-SEARCH (problem) # like TREE-SEARCH in the book
   frontier \leftarrow list that contains a node for problem's initial state
  loop
       if frontier is empty then return Failure
       choose and remove a node x from frontier
       if x contains a goal state then return the corresponding solution
       else expand x and add the new nodes to frontier
```

 \diamond Which is better for uniform-cost search?

Comparison

 \diamondsuit Every edge has cost 10, except for the following two:

- $\diamond \ (G,N) \text{ and } (G,O) \text{ both cost } 5$
- M is a goal node of cost 30
- N is a goal node of cost 25



- \diamond For uniform-cost search
 - What solutions do EAGER and CAUTIOUS return?
 - How many nodes do they generate?

Limited-depth search

- \diamondsuit Depth-first search, backtrack at each node of depth = limit unless it's a solution
- \diamondsuit Recursive implementation:

```
function LIMITED-DEPTH-SEARCH(node, problem, limit)

if node contains a goal state then return the corresponding solution

else if limit = 0 then return Cutoff

else

notfound \leftarrow Failure /* what to return if we don't find a solution */

for each y in EXPAND(node) do

result \leftarrow LIMITED-DEPTH-SEARCH(y, problem, limit - 1)

if result is a solution then return result

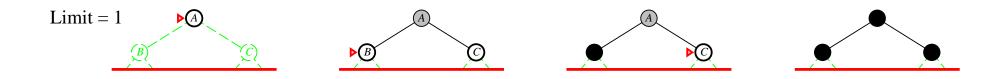
else if result = Cutoff then notfound \leftarrow Cutoff

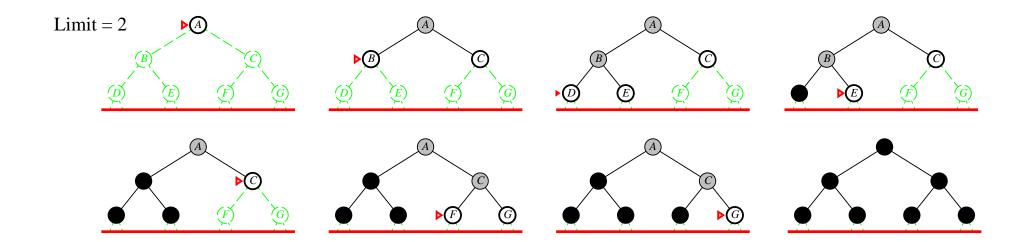
return notfound
```

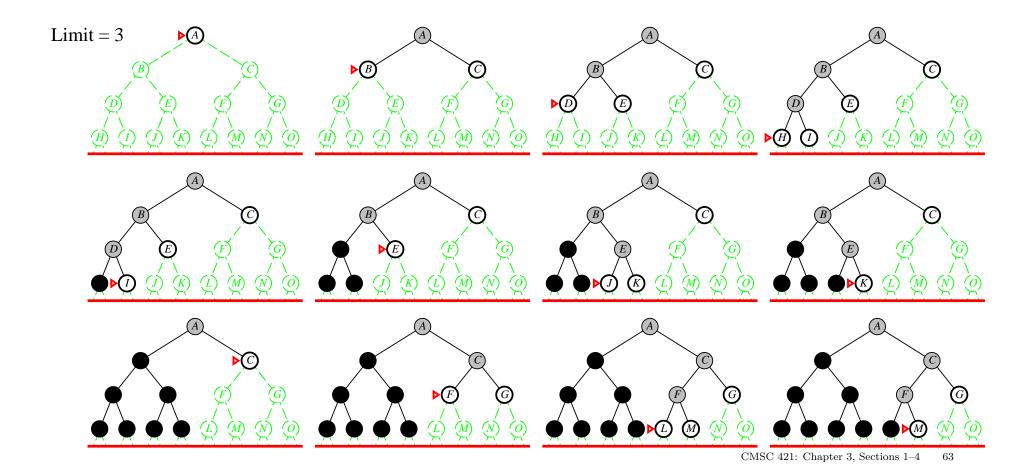
Iterative deepening search

- \diamondsuit Limited-depth search to depth 0,
- \diamondsuit Limited-depth search to depth 1,
- \diamond Limited-depth search to depth 2, ...
- \diamondsuit Stop when you find a solution

Limit = 0







- b = maximum branching factor of the search tree
- d = depth of the least-cost solution
- $m = \text{maximum depth of the state space (may be <math>\infty$)
- \bigcirc <u>Complete?</u>

- b = maximum branching factor of the search tree
- d = depth of the least-cost solution
- $m = \text{maximum depth of the state space (may be <math>\infty$)
- \diamond *Complete?* Yes
- $\underline{Time?}$

- b = maximum branching factor of the search tree
- d = depth of the least-cost solution
- $m = \text{maximum depth of the state space (may be <math>\infty$)
- \bigcirc Complete? Yes
- $\underline{Time?} \ (d+1)b^0 + db^1 + (d-1)b^2 + \ldots + b^d = O(b^d)$
- $\bigcirc \underline{Space?}$

- b = maximum branching factor of the search tree
- d = depth of the least-cost solution
- $m = \text{maximum depth of the state space (may be <math>\infty$)
- \diamond <u>Complete?</u> Yes
- $\ \underline{Time?} \ (d+1)b^0 + db^1 + (d-1)b^2 + \ldots + b^d = O(b^d)$
- $\diamondsuit \ \underline{Space?} \ O(bd)$
- \Diamond Optimal solutions?

- b = maximum branching factor of the search tree
- d = depth of the least-cost solution
- $m = \text{maximum depth of the state space (may be <math>\infty$)
- \bigcirc <u>Complete?</u> Yes
- $\diamondsuit \ \underline{Time?} \ (d+1)b^0 + db^1 + (d-1)b^2 + \ldots + b^d = O(b^d)$
- $\sum Space? O(bd)$
- \Diamond *Optimal solutions?* Yes, if step cost = 1
 - Can be modified to behave like uniform-cost search

Summary of algorithms

b = branching factor

 $C^* = \operatorname{cost}$ of optimal solution, or ∞ if there's no solution

 $d = depth of shallowest solution, or \infty if there's no solution$

 $\epsilon = \text{smallest cost of each edge}$

l =cutoff depth for limited-depth search

 $m = \text{depth of deepest node (may be } \infty)$

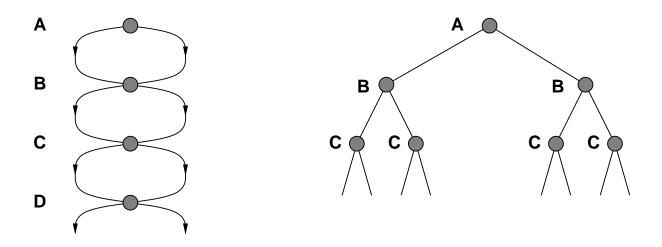
Criterion	Breadth-	Uniform-	Depth-	Depth-	Iterative
	First	Cost	First	Limited	Deepening
Complete?	Yes	$\mathrm{Yes}^{(2)}$	No	Yes, if $l \ge d$	Yes
Time	b^d	$b^{\lceil C^*/\epsilon \rceil}$	b^m	b^l	b^d
Space	b^d	$b^{\lceil C^*/\epsilon \rceil}$	bm	bl	bd
Optimal?	$\mathrm{Yes}^{(1)}$	Yes	No	No	$\mathrm{Yes}^{(1)}$

 $^{(1)}$ if step costs are equal

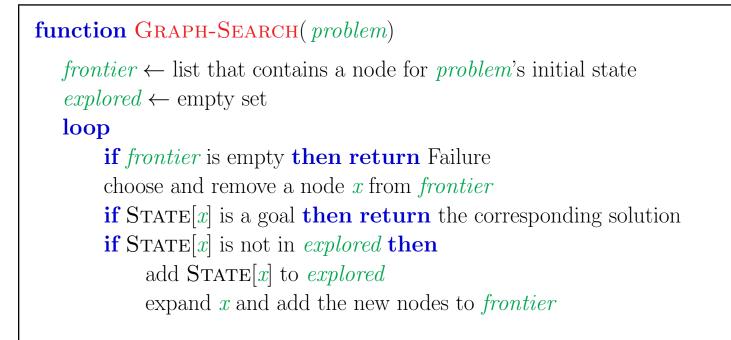
⁽²⁾ if $\epsilon > 0$

Repeated states

 \diamondsuit Failure to detect repeated states can turn a linear problem into an exponential one!



Graph search



 \diamondsuit Search strategy is implemented by the INSERTALL function

- breadth-first: insert new nodes at end of queue
- depth-first: insert new nodes at front of queue
- uniform-cost: keep queue ordered by cost

Summary

- \diamond Problem formulation usually requires abstracting away real-world details to define a state space that can feasibly be explored
- \diamond Variety of uninformed search strategies
- \diamondsuit Iterative deepening search uses only linear space
 - When $b \ge 2$, same big-O time as other uninformed algorithms
- \diamondsuit Graph search can take exponentially less time than tree search
 - when the number of paths to a node is exponential in its depth
- \diamondsuit Graph search can take exponentially more space than tree search
 - when the search space is treelike

Homework 1

- \diamondsuit Due in one week
- $\diamondsuit~5$ problems, 10 points per problem, 50 points total
 - 2.10
 - 3.6(a,b)
 - 3.9(a,c)
 - 3.15
 - 3.18

Python resources

- \diamondsuit Documentation: http://docs.python.org
 - Important: in the left-hand column, click on Python 3.2 (stable)
- \diamondsuit If you don't know Python already, read the Tutorial
- \diamondsuit To find out how a function or method works, use these:
 - ◊ Library Reference
 - $\diamond \ \ \text{General Index}$
 - These are less useful
 - ♦ Quick search and Search page produce too many irrelevant results
 - $\diamond~$ Language reference talks about syntax, not what the functions do
- \diamondsuit If you know Python 2 but not Python 3, this might be useful:
 - http://wiki.python.org/moin/Python2orPython3

Eager tree search

```
class Node():
    """Class for nodes in the search tree"""
    def __init__(self,state,parent,cost):
                                                def getpath(y):
        self.state = state
        self.parent = parent
                                                    Return the path from y.state
        self.cost = cost
                                                    back to the initial state
        self.children = []
                                                    ......
                                                    path = [y.state]
def expand(x,successors):
                                                    while y.parent != False:
    """Return a list of node x's children"""
                                                        y = y.parent
    print('{:14} '.format(x.state),end='')
                                                        path.append(y.state)
    # Python's sets have avg lookup time 0(1)
                                                    path.reverse()
    path = set(getpath(x))
                                                    return path
    for (state,cost) in successors(x.state):
        if state in path:
            print ("{0} x, ".format(state), end='')
        else:
            y = Node(state, x, x.cost + cost)
            x.children.append(y)
            status = y.cost
            print ("{0} {1}, ".format(state, status), end='')
    print('')
    return x.children
```

Eager tree search (continued)

```
def search(state, successors, goal, strategy='bf'):
    11 11 11
    Do a tree search starting at state.
    Look for a state x that satisfies goal(x).
    strategy may be either 'bf' (breadth-first) or 'df' (depth-first).
    ** ** **
    frontier = [Node(state, False, 0)] # "False" means there's no parent
    print('\n{:14} {}'.format('__Node__', '__Expansion__ . . .'))
    while frontier != []:
        if strateay == 'bf':
            x = frontier.pop(0) # oldest node; this is inefficient
        elif strateay == 'df':
            x = frontier.pop() # youngest node; does rightmost branch 1st
        else:
            raise RuntimeError("'" + strategy + "' is not a strategy")
        for y in expand(x, successors):
            if goal(y.state):
                print('');
                return getpath(y)
            frontier.append(y)
    return False
```

Romanian map problem

```
map ={
    'Arad':
                    {'Sibiu':140, 'Timisoara':118, 'Zerind':75},
    'Bucharest':
                    {'Fagaras':211,'Giurgiu':90,'Pitesti':101,'Urziceni':85},
                    {'Dobreta':120,'Pitesti':138,'Rimnicu Vilcea':146},
    'Craiova':
    'Dobreta':
                    {'Craiova':120, 'Mehadia':75},
    'Eforie':
                    {'Hirsova':86}.
    'Fagaras':
                    {'Bucharest':211,'Sibiu':99},
    'Giuraiu':
                    {'Bucharest':90},
    'Hirsova':
                 {'Eforie':86.'Urziceni':98}.
    'Iasi':
                    {'Neamt':87,'Vaslui':92},
                    {'Mehadia':70, 'Timisoara':111},
    'Lugoj':
    'Mehadia':
                    {'Dobreta':75, 'Lugoi':70},
    'Neamt':
                    {'Iasi':87}.
                 {'Sibiu':151,'Zerind':71},
    'Oradea':
    'Pitesti': {'Bucharest':101,'Craiova':138,'Rimnicu Vilcea':97},
    'Rimnicu Vilcea':{'Craiova':146.'Pitesti':97.'Sibiu':80}.
                    {'Arad':140, 'Fagaras':99, 'Oradea':151, 'Rimnicu Vilcea':80},
    'Sibiu':
    'Timisoara': {'Arad':118,'Lugoj':111},
    'Urziceni': {'Bucharest':85,'Hirsova':98,'Vaslui':142},
    'Vaslui':
                    {'Iasi':92,'Urziceni':142}.
    'Zerind':
                    {'Arad':75,'0radea':71}}
```

Romanian map problem (continued)

```
def neighbors(state):
```

0.0.0

Use this as the successors function. It returns state's neighbors on the map, as a sequence of (state,cost) pairs""" return map[state].items()

```
def is_bucharest(state):
```

....

```
Use this as the goal predicate.
It returns True if state = Bucharest, else False
```

```
return state == 'Bucharest'
```