Last update: September 6, 2012

PROBLEM SOLVING BY SEARCHING

CMSC 421: CHAPTER 3, SECTIONS 1-4

CMSC 421: Chapter 3, Sections 1-4 1

Motivation and Outline

> Lots of Al problem-solving requires trial-and-error search
Chapter 3 describes some algorithms for this

e Types of problems and agents
e Problem formulation
e [ixample problems

e Dasic search algorithms

CMSC 421: Chapter 3, Sections 1-4 2

Problem types

Deterministic, fully observable = classical search problem
e agent knows exactly which state it starts in, what each action does

e 1o exogenous events (or else they're encoded into the actions’ effects)

> Solution is a sequence, can predict future states exactly

¢ Example: Vacuum World with no exogenous events

¢ Rooms won'’t spontaneously get dirty again

o Initial state: |A Q B

S0 00
090 02

e (Goal: have both rooms clean
e Solution: [Suck, Right, Suck]

CMSC 421: Chapter 3, Sections 1-4

Problem types

Non-observable:
e Agent may have no idea where it is
e Solution (if any) must be a sequence that is conformant

¢ Guaranteed to work under all conditions

¢ Example: 1 = 2 A
e Vacuum World, no exogenous %8 | =R ol B
events, and no sensors 3 [4 -
e Initial state: could be any, o %R
agent has no way to know which 5 [6 -
e Goal: both rooms clean oFR R
e Assume it’s OK to hit the wall 7 [. 0
e Solution: |Right, Suck, Left, Suck]

CMSC 421: Chapter 3, Sections 1-4 4

Problem types

Nondeterministic and/or partially observable:
e percepts provide new information about current state
e solution is a contingent plan or a policy

e often interleave search, execution

{» Example: 1 | =) 2 =)
e Vacuum World, no exogenous ol e il R
events, and local sensing: 3 [=) 4 =A)
¢ which room the agent’s in ZR %R
¢ whether that room is dirty 5 [=4 6 =)
e Initial state: any of {5,06,7,8} %8 o
e (oal: have both rooms clean 7 | .= 8 =
e Solution: |Right,if dirt then Suck]

CMSC 421: Chapter 3, Sections 1-4 5

Problem types
> Unknown state space = exploration problem
< Example:

e Vacuum agent with local sensing

¢ Initially, agent sees current location,

but doesn’t know what other rooms there are, or what’s in them

CMSC 421: Chapter 3, Sections 1-4

6

Problem-solving agents

& Online problem solving: gather knowledge as you go
e Necessary for exploration problems

e (Can be useful in nondeterministic and partially observable problems

& Offline problem solving: develop the entire solution at the start,
before you ever start to execute it

e c.g. the Vacuum World examples on the last three slides

> Focus of this chapter: offline problem solving for
classical search problems (i.e., deterministic, fully observable)

CMSC 421: Chapter 3, Sections 1-4

Example: Romania

Currently in Arad, Romania; flight leaves tomorrow from Bucharest

states = cities; actions = drive between cities; goal = be in Bucharest

"] Oradea
Neamt
= 87
75 _
] lasi
q“‘
o 92
Sibiu - g5 Fagaras
118 :
JVaslui
80
Timisoara lenlcu Vilcea
142
- - 211
111] Lugoj Pitesti
70 . 08 |
_ 85 R— Hirsova
JIMehadia 101 S Urziceni
|I_J 86
& 190 138 Bucharest
Dobreta
- e 90
raiova Eforie

C1Giurgiu

CMSC 421: Chapter 3, Sections 1-4

Selecting a

Real world is absurdly complex

e state space is an abstraction

Abstract state = set of real states

e E.g. in-Arad includes many
locations

Abstract action = complex

combination of real actions

e [l.g. coto-Zerind may include
routes, detours, rest stops, etc.

e For guaranteed realizability,
it must get you to Zerind

state space

Neamt

99 Fagaras

Dobreta]

no matter where you are in Arad

Abstract solution = sequence of abstract actions
[t represents a set of real paths that are solutions in the real world

CMSC 421: Chapter 3, Sections 1-4 9

Formulation of classical search problems

> A search problem includes:
Neamt
e nitial state sy, e.g., at-Arad

e set of actions, e.g.,
A = {goto-Zerind, . . .}

o state-transition function v(s,a) 18
e.g., y(at-Arad, goto-Zerind)
= at-Zerind
e goal test: either explicit, e.g.,
set of goal states = {at-Bucharest}
or implicit, e.g., NoDirt(s)

99 Fagaras

Dobreta []

e path cost
¢ additive, e.g., sum of distances, number of actions, etc.

o ¢(s,a) is the step cost, assumed to be > 0

& solution: sequence of actions from the initial state to a goal state

CMSC 421: Chapter 3, Sections 1-4 10

Example: vacuum world, no exogenous events

el T D U T [0
LCAQ - deR

-

states: dirt and robot locations (ignore dirt amounts, etc.)
actions: Left, Right, Suck, NoOp

goal test: no dirt

path cost: 1 per action (0 for NoOp)

CMSC 421: Chapter 3, Sections 1-4 11

Example: sliding-tile puzzles

n x n frame, n° — 1 movable tiles. Slide the tiles to change their positions.

n = 3: the 8&puzzle n = 4: the 15-puzzle
70l 21|l & 1l 2/l 3 1 | i ﬂ 1 ﬂ /
5 6 4 ||| 51| 6 1E :
8 ||| 3| 1 71 8
a starting state goal state a starting state goal state

e states: integer locations of tiles (ignore intermediate positions)
e actions: move tiles left, right, up, down (ignore unjamming etc.)
e goal test = goal state (shown)

e step cost = 1 per move, so path cost = number of moves

¢ In this family of puzzles, finding optimal solutions is NP-hard

e Much easier if we don’t care whether the solution is optimal

CMSC 421: Chapter 3, Sections 1-4

12

<S> <5

Example: robotic assembly

|
Y

AR

states: real-valued coordinates of robot joint angles,
and parts of the object to be assembled

actions: continuous motions of robot joints
goal test: complete assembly

path cost: time to execute

CMSC 421: Chapter 3, Sections 1-4

13

Tree search example

Currently in Arad, Romania; flight leaves tomorrow from Bucharest

states = cities; acttons = drive between cities; goal = be in Bucharest

"] Oradea
Neamt
= 87
75 _
] lasi
q“‘
o 92
Sibiu - g5 Fagaras
118 :
JVaslui
80
Timisoara lenlcu Vilcea
142
- - 211
111] Lugoj Pitesti
70 . 08 |
_ 85 R— Hirsova
JIMehadia 101 S Urziceni
|I_J 86
& 190 138 Bucharest
Dobreta
- e 90
raiova Eforie

C1Giurgiu

CMSC 421: Chapter 3, Sections 1-4

14

Dobreta []

Tree

search example

Neamt

[JVaslui

FJHirsova

Eforie

CMSC 421: Chapter 3, Sections 1-4

15

Tree search example

Neamt

[JVaslui

FJHirsova

Dobreta []
Eforie

CMSC 421: Chapter 3, Sections 1-4

16

Tree search example

Neamt

[JVaslui

FJHirsova

Dobreta []
Eforie

CMSC 421: Chapter 3, Sections 1-4

17

Implementation: states vs. nodes

 Node: a data structure that’s part of a search tree. Includes

® a state

® a parent .
parent, action

e children (if the node has been expanded)

e a depth

State || 5 ||| 4 Node depth =6
e a path cost _
g==6
6 ||l 1l 8
- a‘e
7 Il 3 |l| 2 st

 State: representation of a physical configuration

e doesn’t have parents, children, depth, or path cost

& Erpanding a node x:

e For each of z’s children, create a new node and fill in the fields

CMSC 421: Chapter 3, Sections 1-4 18

Eager vs. cautious tree search

function EAGER-TREE-SEARCH(problem) # my version
frontier <— list that contains a node for problem’s initial state
loop

if frontier is empty then return Failure

choose and remove a node z from frontier

for each node 1y in 2’s expansion
if STATE[1] is a goal then return the corresponding solution
else add y to frontier

function CAUTIOUS-TREE-SEARCH(problem) — # like TREE-SEARCH in the book
frontier < list that contains a node for problem’s initial state
loop
if frontier is empty then return Failure
choose and remove a node z from frontier
if = contains a goal state then return the corresponding solution
else expand r and add the new nodes to frontier

> Similarities and differences?

CMSC 421: Chapter 3, Sections 1-4

19

Eager vs. cautious tree search

function EAGER-TREE-SEARCH(problem) # my version
frontier <— list that contains a node for problem’s initial state
loop

if frontier is empty then return Failure

choose and remove a node z from frontier

for each node 1y in 2’s expansion
if STATE[1] is a goal then return the corresponding solution
else add y to frontier

function CAUTIOUS-TREE-SEARCH(problem) — # like TREE-SEARCH in the book
frontier < list that contains a node for problem’s initial state
loop
if frontier is empty then return Failure
choose and remove a node z from frontier
if = contains a goal state then return the corresponding solution
else expand r and add the new nodes to frontier

> EAGER returns solution immediately — generates fewer nodes

¢ CAUTIOUS waits until node is chosen — necessary to find optimal solution

CMSC 421: Chapter 3, Sections 1-4 20

Search strategies

& A search strategy is defined by picking the order of node expansion
& Ways to evaluate a strategy:

e completeness: does it always find a solution if one exists?
o optimality: does it always find a least-cost solution?
e time complexity: number of nodes generated /expanded

e space complexrity: maximum number of nodes in memory

¢ Time and space complexity are measured in terms of
e /) = maximum branching factor of the search tree
o We'll assume b is finite
e (= depth of the least-cost solution (or oo if there’s no solution)

e 1 = maximum depth of the state space (may be o)

CMSC 421: Chapter 3, Sections 1-4 21

Uninformed search strategies

& Uninformed strategies
¢ use only the information available in the problem definition
e DBreadth-first search
e Depth-first search
e Uniform-cost search
e Limited-depth search

e [terative deepening search

CMSC 421: Chapter 3, Sections 1-4 22

Breadth-first search

> Expand shallowest unexpanded node

¢ Implementation:
frontier is a FIFO queue, i.e., new successors go at end

>®

CMSC 421: Chapter 3, Sections 1-4 23

Breadth-first search

> Expand shallowest unexpanded node

¢ Implementation:
frontier is a FIFO queue, i.e., new successors go at end

(A)
>(E) ©

CMSC 421: Chapter 3, Sections 1-4 24

Breadth-first search

> Expand shallowest unexpanded node

¢ Implementation:
frontier is a FIFO queue, i.e., new successors go at end

CMSC 421: Chapter 3, Sections 1-4 25

Breadth-first search

> Expand shallowest unexpanded node

¢ Implementation:
frontier is a FIFO queue, i.e., new successors go at end

>O ® ©® G

CMSC 421: Chapter 3, Sections 1-4 26

Properties of breadth-first search

& Complete?

e /) = maximum branching factor of the search tree
e (= depth of the least-cost solution

e /m = maximum depth of the state space (may be co)

CMSC 421: Chapter 3, Sections 1-4 27

Properties of breadth-first search

& Complete? Yes
& Time?

e /) = maximum branching factor of the search tree
e (= depth of the least-cost solution

e /m = maximum depth of the state space (may be co)

CMSC 421: Chapter 3, Sections 1-4 28

Properties of breadth-first search

& Complete? Yes
O Time? 1+b+ b2+ 0% +
& Space?

bbb — 1) = O(bY)

e /) = maximum branching factor of the search tree

e (= depth of the least-cost solution
e 1 = maximum depth of the state space (may be co)

CMSC 421: Chapter 3, Sections 1-4 29

Properties of breadth-first search

& Complete? Yes
O Time? 1+b+b*+0°+...+b0+b(b?—1) = O(b)

O Space? O(b?) (keeps every node in memory)

e If we run for 12 hours and generate nodes at 200 MB /sec,
the space requirement is 8.64 TB

& Optimal solutions?

e /) = maximum branching factor of the search tree
e (= depth of the least-cost solution

e /m = maximum depth of the state space (may be co)

CMSC 421: Chapter 3, Sections 1-4 30

Properties of breadth-first search

& Complete? Yes
O Time? 1+b+b*+0°+...+b0+b(b?—1) = O(b)
O Space? O(b?) (keeps every node in memory)

e If we run for 12 hours and generate nodes at 200 MB /sec,
the space requirement is 8.64 TB

& Optimal solutions?

e Yes if cost = k per step where k is constant; otherwise no

e /) = maximum branching factor of the search tree
e (= depth of the least-cost solution

e /m = maximum depth of the state space (may be co)

CMSC 421: Chapter 3, Sections 1-4 31

Breadth-first search

function EAGER-TREE-SEARCH(problem) # my version
frontier <— list that contains a node for problem’s initial state
loop

if frontier is empty then return Failure

choose and remove a node z from frontier

for each node 7 in 2’s expansion
if STATE[1] is a goal then return the corresponding solution
else add y to frontier

function CAUTIOUS-TREE-SEARCH(problem) # like TREE-SEARCH in the book
frontier <— list that contains a node for problem’s initial state
loop
if frontier is empty then return Failure
choose and remove a node z from frontier
if © contains a goal state then return the corresponding solution
else expand r and add the new nodes to frontier

<> Which is better for breadth-first search?

CMSC 421: Chapter 3, Sections 1-4

32

Comparison
& Every edge has cost 10, except for the following two:
o (G, N) and (G, O) both cost 5
e M is a goal node of cost 30
e NN is a goal node of cost 25

> For breadth-first search
e What solutions do EAGER and CAUTIOUS return?

e How many nodes do they generate?

CMSC 421: Chapter 3, Sections 1-4 33

Depth-first search

{ Expand deepest unexpanded node

> Implementation:
frontier = LIFO queue, 1.e., put successors at front

LON

e N
”BY 9
\ / N\
/Dj ?E) /Fj 7@)

/|_D /D /‘D /K) /|_) /|\/D /|\D /O)

CMSC 421: Chapter 3, Sections 1-4 34

Depth-first search

{ Expand deepest unexpanded node

> Implementation:
frontier = LIFO queue, 1.e., put successors at front

(A
> @ @
N\ N\
/Dj VE) /Fj VG)
/H) /0 /\D /K> /|_> KI\/D /|\D /O>

CMSC 421: Chapter 3, Sections 1-4 35

Depth-first search

{ Expand deepest unexpanded node

¢ Implementation:
frontier = LIFO queue, 1.e., put successors at front

CMSC 421: Chapter 3, Sections 1-4 36

Depth-first search

{ Expand deepest unexpanded node

¢ Implementation:
frontier = LIFO queue, 1.e., put successors at front

CMSC 421: Chapter 3, Sections 1-4 37

Depth-first search

{ Expand deepest unexpanded node

¢ Implementation:
frontier = LIFO queue, 1.e., put successors at front

CMSC 421: Chapter 3, Sections 1-4 38

Depth-first search

{ Expand deepest unexpanded node

¢ Implementation:
frontier = LIFO queue, 1.e., put successors at front

CMSC 421: Chapter 3, Sections 1-4 39

Depth-first search

{ Expand deepest unexpanded node

¢ Implementation:
frontier = LIFO queue, 1.e., put successors at front

CMSC 421: Chapter 3, Sections 1-4 40

Depth-first search

{ Expand deepest unexpanded node

¢ Implementation:
frontier = LIFO queue, 1.e., put successors at front

CMSC 421: Chapter 3, Sections 1-4 41

Depth-first search

{ Expand deepest unexpanded node

¢ Implementation:
frontier = LIFO queue, 1.e., put successors at front

40

CMSC 421: Chapter 3, Sections 1-4 42

Properties of depth-first search

& Complete?

e /) = maximum branching factor of the search tree
e (= depth of the least-cost solution

e /m = maximum depth of the state space (may be co)

CMSC 421: Chapter 3, Sections 1-4 43

Properties of depth-first search

& Complete?

e No in infinite-depth spaces

e Yes in finite spaces, if we do loop-checking:

¢ Don’t generate states that are already on the current path
& Time?

e /) = maximum branching factor of the search tree

e (= depth of the least-cost solution

e /m = maximum depth of the state space (may be co)

CMSC 421: Chapter 3, Sections 1-4 44

Properties of depth-first search

& Complete?
e No in infinite-depth spaces

e Yes in finite spaces, if we do loop-checking:

¢ Don’t generate states that are already on the current path

& Time? O(b™): terrible if m is much larger than d

e but if solutions are dense, may be much faster than breadth-first

& Space?

e /) = maximum branching factor of the search tree
e (= depth of the least-cost solution

e /m = maximum depth of the state space (may be co)

CMSC 421: Chapter 3, Sections 1-4 45

Properties of depth-first search

& Complete?
e No in infinite-depth spaces

e Yes in finite spaces, if we do loop-checking:

¢ Don’t generate states that are already on the current path

& Time? O(b™): terrible if m is much larger than d

e but if solutions are dense, may be much faster than breadth-first
& Space? O(bm), i.e., linear space

& Optimal solutions?

e /) = maximum branching factor of the search tree
e (= depth of the least-cost solution

e /m = maximum depth of the state space (may be co)

CMSC 421: Chapter 3, Sections 1-4 46

Properties of depth-first search

& Complete?
e No in infinite-depth spaces

e Yes in finite spaces, if we do loop-checking:

¢ Don’t generate states that are already on the current path

& Time? O(b™): terrible if m is much larger than d

e but if solutions are dense, may be much faster than breadth-first
& Space? O(bm), i.e., linear space

& Optimal solutions? Not unless it’s lucky

e /) = maximum branching factor of the search tree
e (= depth of the least-cost solution

e /m = maximum depth of the state space (may be co)

CMSC 421: Chapter 3, Sections 1-4 47

Eager vs. cautious tree search

function EAGER-TREE-SEARCH(problem) # my version
frontier <— list that contains a node for problem’s initial state
loop

if frontier is empty then return Failure

choose and remove a node z from frontier

for each node 1y in 2’s expansion
if STATE[1] is a goal then return the corresponding solution
else add y to frontier

function CAUTIOUS-TREE-SEARCH(problem) — # like TREE-SEARCH in the book
frontier < list that contains a node for problem’s initial state
loop
if frontier is empty then return Failure
choose and remove a node z from frontier
if = contains a goal state then return the corresponding solution
else expand r and add the new nodes to frontier

¢ Which is better for depth-first search?

CMSC 421: Chapter 3, Sections 1-4

48

Comparison
& Every edge has cost 10, except for the following two:
o (G, N) and (G, O) both cost 5
e M is a goal node; path cost = 30
e NV is a goal node; path cost = 25

> For breadth-first search
e What solutions do EAGER and CAUTIOUS tree search return?

e How many nodes do they generate?

CMSC 421: Chapter 3, Sections 1-4 49

Eager vs. cautious tree search

function EAGER-TREE-SEARCH(problem) # my version
frontier <— list that contains a node for problem’s initial state
loop

if frontier is empty then return Failure

choose and remove a node z from frontier

for each node 1y in 2’s expansion
if STATE[1] is a goal then return the corresponding solution
else add y to frontier

function CAUTIOUS-TREE-SEARCH(problem) — # like TREE-SEARCH in the book
frontier < list that contains a node for problem’s initial state
loop
if frontier is empty then return Failure
choose and remove a node z from frontier
if = contains a goal state then return the corresponding solution
else expand r and add the new nodes to frontier

¢ Where would we put loop-checking?

CMSC 421: Chapter 3, Sections 1-4

50

Uniform-cost search

> Expand least-cost unexpanded node

$ Implementation: frontier = queue ordered by path cost, lowest first
Equivalent to breadth-first if step costs all equal

& Complete?

e /) = maximum branching factor of the search tree
e (= depth of the least-cost solution

e /m = maximum depth of the state space (may be co)

CMSC 421: Chapter 3, Sections 1-4 51

Uniform-cost search

> Expand least-cost unexpanded node

$ Implementation: frontier = queue ordered by path cost, lowest first
Equivalent to breadth-first if step costs all equal

& Complete? Yes, if 4 ¢ > 0 such that step cost > ¢
& Time?

e /) = maximum branching factor of the search tree
e (= depth of the least-cost solution

e /m = maximum depth of the state space (may be co)

CMSC 421: Chapter 3, Sections 1-4 52

Uniform-cost search

> Expand least-cost unexpanded node

$ Implementation: frontier = queue ordered by path cost, lowest first
Equivalent to breadth-first if step costs all equal

& Complete? Yes, if 4 ¢ > 0 such that step cost > ¢
& Time? |{nodes with g < C*}| = O(b/“"/<1), where

e (" = cost of the optimal solution

& Space?

e /) = maximum branching factor of the search tree
e (= depth of the least-cost solution

e /m = maximum depth of the state space (may be co)

CMSC 421: Chapter 3, Sections 1-4 53

Uniform-cost search

> Expand least-cost unexpanded node

$ Implementation: frontier = queue ordered by path cost, lowest first
Equivalent to breadth-first if step costs all equal

& Complete? Yes, if 4 ¢ > 0 such that step cost > ¢
& Time? |{nodes with g < C*}| = O(b/“"/<1), where

e (" = cost of the optimal solution

& Space? |{nodes with g < C*}| = O(blC /el

& Optimal solutions?

e /) = maximum branching factor of the search tree
e (= depth of the least-cost solution

e /m = maximum depth of the state space (may be co)

CMSC 421: Chapter 3, Sections 1-4 54

Uniform-cost search

> Expand least-cost unexpanded node

$ Implementation: frontier = queue ordered by path cost, lowest first
Equivalent to breadth-first if step costs all equal

& Complete? Yes, if 4 ¢ > 0 such that step cost > ¢
& Time? |{nodes with g < C*}| = O(b/“"/<1), where

e (" = cost of the optimal solution

& Space? |{nodes with g < C*}| = O(blC /el

& Optimal solutions? Yes, if we use CAUTIOUS-TREE-SEARCH

e /) = maximum branching factor of the search tree
e (= depth of the least-cost solution

e /m = maximum depth of the state space (may be co)

CMSC 421: Chapter 3, Sections 1-4 55

Eager vs. cautious tree search

function EAGER-TREE-SEARCH(problem) # my version
frontier <— list that contains a node for problem’s initial state
loop

if frontier is empty then return Failure

choose and remove a node z from frontier

for each node 1y in 2’s expansion
if STATE[1] is a goal then return the corresponding solution
else add y to frontier

function CAUTIOUS-TREE-SEARCH(problem) — # like TREE-SEARCH in the book
frontier < list that contains a node for problem’s initial state
loop
if frontier is empty then return Failure
choose and remove a node z from frontier
if = contains a goal state then return the corresponding solution
else expand r and add the new nodes to frontier

<> Which is better for uniform-cost search?

CMSC 421: Chapter 3, Sections 1-4

56

Comparison
& Every edge has cost 10, except for the following two:
o (G, N) and (G, O) both cost 5
e M is a goal node of cost 30
e NN is a goal node of cost 25

> For uniform-cost search
e What solutions do EAGER and CAUTIOUS return?

e How many nodes do they generate?

CMSC 421: Chapter 3, Sections 1-4 57

Limited-depth search

> Depth-first search, backtrack at each node of depth = limit
unless it’s a solution

> Recursive implementation:

function LIMITED-DEPTH-SEARCH(node, problem, limit)
if node contains a goal state then return the corresponding solution
else if [imit = 0 then return Cutoft
else
notfound <— Failure /* what to return if we don’t find a solution */
for each y in EXPAND(node) do
result <= LIMITED-DEPTH-SEARCH(y, problem, limit — 1)
if result is a solution then return result
else if result = Cutoff then notfound < Cutoff
return notfound

CMSC 421: Chapter 3, Sections 1-4

58

Iterative deepening search

function ITERATIVE-DEEPENING-SEARCH(problem)
node <— node for problem’s initial state
for limit <— 0 to co do
result <— LIMITED-DEPTH-SEARCH(node, problem, limit)
if result # Cutoftf then return result

¢ Limited-depth search to depth 0,
> Limited-depth search to depth 1,
> Limited-depth search to depth 2,

> Stop when you find a solution

CMSC 421: Chapter 3, Sections 1-4 59

function ITERATIVE-DEEPENING-SEARCH(problem)
node <— node for problem’s initial state
for [imit <+ 0 to oo do
result <— LIMITED-DEPTH-SEARCH(node, problem, limit)
if result # Cutoff then return result

Limit=0 >® @

N pd N

CMSC 421: Chapter 3, Sections 1-4 60

function ITERATIVE-DEEPENING-SEARCH(problem)
node <— node for problem’s initial state
for [imit <+ 0 to oo do
result <— LIMITED-DEPTH-SEARCH(node, problem, limit)
if result # Cutoff then return result

Limit=1 LON (A (A ./.\‘
o »@® © NG

CMSC 421: Chapter 3, Sections 1-4 61

function ITERATIVE-DEEPENING-SEARCH(problem)
node <— node for problem’s initial state
for [imit <+ 0 to oo do

if result # Cutoff then return result

result <— LIMITED-DEPTH-SEARCH(node, problem, limit)

CMSC 421: Chapter 3, Sections 1-4

62

function ITERATIVE-DEEPENING-SEARCH(problem)
node <— node for problem’s initial state
for [imit <+ 0 to oo do
result <— LIMITED-DEPTH-SEARCH(node, problem, limit)
if result # Cutoff then return result

Limit=3 ;@\ (A
// \\
(8) Q) >(B) ©
/ \} / \> / \>/ / \> .
(e (| N
o ®» D ONERCEENG RO RC | \
/ \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \

e e r 0 e)\ I e e e e 0 e N\ I e N r r 0 e N\ I e - 0 e \ g e
HOHDOLMNO BHMHOBLMMNO HHOHKDMN OO KL MN O

7/ N\
® 9
//\/ //>
CECRORC

/ \}/
)
GEERC)
L
ORORORE

/\
D) M) N)
CECEOES

CMSC 421: Chapter 3, Sections 1-4 63

Properties of iterative deepening search

e /) = maximum branching factor of the search tree
e (= depth of the least-cost solution

e /m = maximum depth of the state space (may be co)

& Complete?

CMSC 421: Chapter 3, Sections 1-4 64

Properties of iterative deepening search

e /) = maximum branching factor of the search tree
e (= depth of the least-cost solution

e /m = maximum depth of the state space (may be co)
& Complete? Yes
& Time?

CMSC 421: Chapter 3, Sections 1-4 65

Properties of iterative deepening search

e /) = maximum branching factor of the search tree

e (= depth of the least-cost solution
e 1 = maximum depth of the state space (may be co)

& Complete? Yes
O Time? (d+ 1B +dbt + (d — 1)b* + ... + b4 = O(b?)
& Space?

CMSC 421: Chapter 3, Sections 1-4 66

Properties of iterative deepening search

e /) = maximum branching factor of the search tree
e (= depth of the least-cost solution

e /m = maximum depth of the state space (may be co)
& Complete? Yes
O Time? (d+ 1B +dbt + (d — 1)b* + ... + b4 = O(b?)
& Space? O(ba

& Optimal solutions?

CMSC 421: Chapter 3, Sections 1-4 67

Properties of iterative deepening search

e /) = maximum branching factor of the search tree
e (= depth of the least-cost solution

e /m = maximum depth of the state space (may be co)
& Complete? Yes
O Time? (d+ 1B +dbt + (d — 1)b* + ... + b4 = O(b?)
& Space? O(bd)
& Optimal solutions? Yes, if step cost = 1

e (Can be modified to behave like uniform-cost search

CMSC 421: Chapter 3, Sections 1-4 68

Summary of algorithms

b = branching factor

C™* = cost of optimal solution, or oo if there’s no solution

d = depth of shallowest solution, or oo if there’s no solution

e = smallest cost of each edge
[= cutoff depth for limited-depth search
m = depth of deepest node (may be c0)

Criterion Breadth- Uniform- Depth- Depth- [terative
First Cost First Limited Deepening
Complete? Yes Yes?) No Yes, if [> d Yes
Time b bl /el b b b
Space be bl /el bm bl bd
Optimal? Yes) Yes No No Yes)

()'if step costs are equal
@) if ¢ > 0

CMSC 421: Chapter 3, Sections 1-4 69

Repeated states

> Failure to detect repeated states can turn a linear problem into an exponen-
tial one!

CMSC 421: Chapter 3, Sections 1-4 70

Graph search

function GRAPH-SEARCH(problem)

frontier <— list that contains a node for problem’s initial state
explored <— empty set
loop
if frontier is empty then return Failure
choose and remove a node z from frontier
if STATE|7] is a goal then return the corresponding solution
if STATE[7] is not in explored then
add STATE[7] to explored
expand = and add the new nodes to frontier

» Search strategy is implemented by the INSERTALL function
e breadth-first: insert new nodes at end of queue
e depth-first: insert new nodes at front of queue

e uniform-cost: keep queue ordered by cost

CMSC 421: Chapter 3, Sections 1-4

71

<S> <5

Summary

Problem formulation usually requires abstracting away real-world
details to define a state space that can feasibly be explored

Variety of uninformed search strategies

[terative deepening search uses only linear space

e When b > 2, same big-O time as other uninformed algorithms

Graph search can take exponentially less time than tree search

e when the number of paths to a node is exponential in its depth

Graph search can take exponentially more space than tree search

e when the search space is treelike

CMSC 421: Chapter 3, Sections 1-4

72

Homework 1
> Due in one week

> b5 problems, 10 points per problem, 50 points total
o 2.10
e 3.6(ab)
e 3.9(ac)
o 3.15
o 3.18

CMSC 421: Chapter 3, Sections 1-4 73

Python resources

¢ Documentation: http://docs.python.org
e Important: in the left-hand column, click on Python 3.2 (stable)

& If you don’t know Python already, read the Tutorial

& To find out how a function or method works, use these:
¢ Library Reference
¢ General Index
e These are less useful
¢ Quick search and Search page produce too many irrelevant results

¢ Language reference talks about syntax, not what the functions do

& If you know Python 2 but not Python 3, this might be useful:
e http://wiki.python.org/moin/Python2orPython3

CMSC 421: Chapter 3, Sections 1-4

74

http://docs.python.org
http://wiki.python.org/moin/Python2orPython3

Eager tree search

class Node():
"""Class for nodes in the search tree

Imnamn

def __init__(self,state,parent,cost): def getpath(y):
self.state = state "
self.parent = parent Return the path from y.state
self.cost = cost back to the initial state

self.children = [] e
path = [y.state]

def expand(x,successors): while y.parent != False:
"""Return a list of node x's children""" y = y.parent
print('{:14} '.format(x.state),end="") path.append(y.state)
Python's sets have avg lookup time 0(1) path.reverse()
path = set(getpath(x)) return path

for (state,cost) in successors(x.state):
if state in path:
print ("{0} x, ".format(state), end="'")
else:
y = Node(state, x, x.cost + cost)
x.children.append(y)
status = y.cost
print ("{0} {1}, ".format(state, status), end="'")
print('")
return x.children

CMSC 421: Chapter 3, Sections 1-4 75

Eager tree search (continued)

def search(state, successors, goal, strategy='bf'):
Do a tree search starting at state.
Look for a state x that satisfies goal(x).
strategy may be either 'bf' (breadth-first) or 'df' (depth-first).

T

frontier = [Node(state,False,®)] # "False" means there's no parent

print('\n{:14} {}'.format('__Node__', '__Expansion__ . . .'))
while frontier != []:
if strategy == 'bf':
x = frontier.pop(@®) # oldest node; this is inefficient
elif strategy == 'df':
x = frontier.pop() # youngest node; does rightmost branch 1st
else:
raise RuntimeError("'" + strategy + "' 1s not a strategy™)

for y in expand(x,successors):
1f goal(y.state):
print('");
return getpath(y)
frontier.append(y)
return False

CMSC 421: Chapter 3, Sections 1-4 76

Romanian map problem

map ={
"Arad': {'Sibiu':140@, 'Timisoara':118, 'Zerind':75},
"Bucharest’: {"'Fagaras':211, "Giurgiu':90, 'Pitesti':101, "Urziceni':85},
"Craiova': {'Dobreta’:120, 'Pitesti':138, 'Rimnicu Vilcea':146},
"Dobreta’: {'Craiova':120, "Mehadia' : 75},
"Eforie’: {"Hirsova':86},
'"Fagaras’: {'Bucharest':211,'Sibiu':99},
"Giurgiu': {'Bucharest':90}%,
"Hirsova': {'Eforie':86, ' 'Urziceni':98},
"Iasi': {"'Neamt':87, 'Vaslui':92},
"Lugoj': {'Mehadia':70@, 'Timisoara':111},
'"Mehadia': {'Dobreta':75, 'Lugoj':70},
"Neamt ': {'Iasi':87},
"Oradea’: {'Sibiu':151, 'Zerind':71},
"Pitesti’: {"'Bucharest':101, 'Craiova':138, 'Rimnicu Vilcea':97},
"Rimnicu Vilcea':{'Craiova’':146, 'Pitesti':97,'Sibiu':80},
"Sibiu': {'Arad':140, 'Fagaras':99, 'Oradea’ :151, 'Rimnicu Vilcea':80},
"Timisoara': {'Arad':118, "Lugoj':111},
"Urziceni': {'Bucharest':85, '"Hirsova':98, 'Vaslui':142},
"Vaslui': {'Iasi':92, ' 'Urziceni':142},
'Zerind': {'Arad':75, 'Oradea’ : 71} }

CMSC 421: Chapter 3, Sections 1-4 o

Romanian map problem (continued)

def neighbors(state):

def

mimrn

Use this as the successors function. It returns state's
neighbors on the map, as a sequence of (state,cost) pairs"""
return map[state].items()

is_bucharest(state):

mimn

Use this as the goal predicate.
It returns True if state = Bucharest, else False

mimrn

return state == 'Bucharest'

CMSC 421: Chapter 3, Sections 1-4 78

