
Last update: September 6, 2012

Problem solving by searching

CMSC 421: Chapter 3, Sections 1–4

CMSC 421: Chapter 3, Sections 1–4 1

Motivation and Outline

♦ Lots of AI problem-solving requires trial-and-error search
Chapter 3 describes some algorithms for this

• Types of problems and agents

• Problem formulation

• Example problems

• Basic search algorithms

CMSC 421: Chapter 3, Sections 1–4 2

Problem types

Deterministic, fully observable =⇒ classical search problem

• agent knows exactly which state it starts in, what each action does

• no exogenous events (or else they’re encoded into the actions’ effects)

♦ Solution is a sequence, can predict future states exactly

♦ Example: Vacuum World with no exogenous events

� Rooms won’t spontaneously get dirty again

• Initial state: A B

• Goal: have both rooms clean

• Solution: [Suck,Right, Suck]

CMSC 421: Chapter 3, Sections 1–4 3

Problem types

Non-observable:

• Agent may have no idea where it is

• Solution (if any) must be a sequence that is conformant

� Guaranteed to work under all conditions

♦ Example:

• Vacuum World, no exogenous
events, and no sensors

• Initial state: could be any,
agent has no way to know which

• Goal: both rooms clean

• Assume it’s OK to hit the wall

• Solution: [Right, Suck, Left, Suck]

1 2

3 4

5 6

7 8

CMSC 421: Chapter 3, Sections 1–4 4

Problem types

Nondeterministic and/or partially observable:

• percepts provide new information about current state

• solution is a contingent plan or a policy

• often interleave search, execution

♦ Example:

• Vacuum World, no exogenous
events, and local sensing:

� which room the agent’s in

� whether that room is dirty

• Initial state: any of {5, 6, 7, 8}
• Goal: have both rooms clean

• Solution: [Right, if dirt then Suck]

1 2

3 4

5 6

7 8

CMSC 421: Chapter 3, Sections 1–4 5

Problem types

♦ Unknown state space ⇒ exploration problem

♦ Example:

• Vacuum agent with local sensing

� Initially, agent sees current location,
but doesn’t know what other rooms there are, or what’s in them

? ?

CMSC 421: Chapter 3, Sections 1–4 6

Problem-solving agents

♦ Online problem solving: gather knowledge as you go

• Necessary for exploration problems

• Can be useful in nondeterministic and partially observable problems

♦ Offline problem solving: develop the entire solution at the start,
before you ever start to execute it

• e.g., the Vacuum World examples on the last three slides

♦ Focus of this chapter: offline problem solving for
classical search problems (i.e., deterministic, fully observable)

CMSC 421: Chapter 3, Sections 1–4 7

Example: Romania

Currently in Arad, Romania; flight leaves tomorrow from Bucharest

states = cities; actions = drive between cities; goal = be in Bucharest

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

CMSC 421: Chapter 3, Sections 1–4 8

Selecting a state space

♦ Real world is absurdly complex

• state space is an abstraction

♦ Abstract state = set of real states

• E.g., in-Arad includes many
locations

♦ Abstract action = complex
combination of real actions

• E.g., goto-Zerind may include
routes, detours, rest stops, etc.

• For guaranteed realizability,
it must get you to Zerind
no matter where you are in Arad

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

♦ Abstract solution = sequence of abstract actions
It represents a set of real paths that are solutions in the real world

CMSC 421: Chapter 3, Sections 1–4 9

Formulation of classical search problems

♦ A search problem includes:

• initial state s0, e.g., at-Arad

• set of actions, e.g.,
A = {goto-Zerind, . . .}
• state-transition function γ(s, a)
e.g., γ(at-Arad, goto-Zerind)

= at-Zerind

• goal test: either explicit, e.g.,
set of goal states = {at-Bucharest}

or implicit, e.g., NoDirt(s)

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

• path cost

� additive, e.g., sum of distances, number of actions, etc.

� c(s, a) is the step cost, assumed to be ≥ 0

♦ solution: sequence of actions from the initial state to a goal state

CMSC 421: Chapter 3, Sections 1–4 10

Example: vacuum world, no exogenous events

R

L

S S

S S

R

L

R

L

R

L

S

SS

S

L

L

LL R

R

R

R

states: dirt and robot locations (ignore dirt amounts, etc.)
actions: Left, Right, Suck, NoOp
goal test: no dirt
path cost: 1 per action (0 for NoOp)

CMSC 421: Chapter 3, Sections 1–4 11

Example: sliding-tile puzzles

n× n frame, n2 − 1 movable tiles. Slide the tiles to change their positions.

n = 3: the 8-puzzle n = 4: the 15-puzzle

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

a starting state goal state a starting state goal state

• states: integer locations of tiles (ignore intermediate positions)

• actions: move tiles left, right, up, down (ignore unjamming etc.)

• goal test = goal state (shown)

• step cost = 1 per move, so path cost = number of moves

♦ In this family of puzzles, finding optimal solutions is NP-hard

• Much easier if we don’t care whether the solution is optimal

CMSC 421: Chapter 3, Sections 1–4 12

Example: robotic assembly

♦ states: real-valued coordinates of robot joint angles,
and parts of the object to be assembled

♦ actions: continuous motions of robot joints

♦ goal test: complete assembly

♦ path cost: time to execute

CMSC 421: Chapter 3, Sections 1–4 13

Tree search example

Currently in Arad, Romania; flight leaves tomorrow from Bucharest

states = cities; actions = drive between cities; goal = be in Bucharest

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

CMSC 421: Chapter 3, Sections 1–4 14

Tree search example

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Rimnicu Vilcea Lugoj

ZerindSibiu

Arad Fagaras Oradea

Timisoara

AradArad Oradea

Arad

CMSC 421: Chapter 3, Sections 1–4 15

Tree search example

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Rimnicu Vilcea LugojArad Fagaras Oradea AradArad Oradea

Zerind

Arad

Sibiu Timisoara

CMSC 421: Chapter 3, Sections 1–4 16

Tree search example

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Lugoj AradArad OradeaRimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

CMSC 421: Chapter 3, Sections 1–4 17

Implementation: states vs. nodes

♦ Node: a data structure that’s part of a search tree. Includes

• a state

• a parent

• children (if the node has been expanded)

• a depth

• a path cost
1

23

45

6

7

81

23

45

6

7

8

State Node depth = 6

g = 6

state

parent, action

♦ State: representation of a physical configuration

• doesn’t have parents, children, depth, or path cost

♦ Expanding a node x:

• For each of x’s children, create a new node and fill in the fields

CMSC 421: Chapter 3, Sections 1–4 18

Eager vs. cautious tree search

function Eager-Tree-Search(problem) # my version

frontier ← list that contains a node for problem’s initial state

loop

if frontier is empty then return Failure

choose and remove a node x from frontier

for each node y in x’s expansion

if State[y] is a goal then return the corresponding solution

else add y to frontier

function Cautious-Tree-Search(problem) # like Tree-Search in the book

frontier ← list that contains a node for problem’s initial state

loop

if frontier is empty then return Failure

choose and remove a node x from frontier

if x contains a goal state then return the corresponding solution

else expand x and add the new nodes to frontier

♦ Similarities and differences?

CMSC 421: Chapter 3, Sections 1–4 19

Eager vs. cautious tree search

function Eager-Tree-Search(problem) # my version

frontier ← list that contains a node for problem’s initial state

loop

if frontier is empty then return Failure

choose and remove a node x from frontier

for each node y in x’s expansion

if State[y] is a goal then return the corresponding solution

else add y to frontier

function Cautious-Tree-Search(problem) # like Tree-Search in the book

frontier ← list that contains a node for problem’s initial state

loop

if frontier is empty then return Failure

choose and remove a node x from frontier

if x contains a goal state then return the corresponding solution

else expand x and add the new nodes to frontier

♦ Eager returns solution immediately – generates fewer nodes

♦ Cautious waits until node is chosen – necessary to find optimal solution

CMSC 421: Chapter 3, Sections 1–4 20

Search strategies

♦ A search strategy is defined by picking the order of node expansion

♦ Ways to evaluate a strategy:

• completeness: does it always find a solution if one exists?

• optimality: does it always find a least-cost solution?

• time complexity: number of nodes generated/expanded

• space complexity: maximum number of nodes in memory

♦ Time and space complexity are measured in terms of

• b = maximum branching factor of the search tree

� We’ll assume b is finite

• d = depth of the least-cost solution (or ∞ if there’s no solution)

• m = maximum depth of the state space (may be ∞)

CMSC 421: Chapter 3, Sections 1–4 21

Uninformed search strategies

♦ Uninformed strategies

� use only the information available in the problem definition

• Breadth-first search

• Depth-first search

• Uniform-cost search

• Limited-depth search

• Iterative deepening search

CMSC 421: Chapter 3, Sections 1–4 22

Breadth-first search

♦ Expand shallowest unexpanded node

♦ Implementation:
frontier is a FIFO queue, i.e., new successors go at end

A

B C

D E F G

CMSC 421: Chapter 3, Sections 1–4 23

Breadth-first search

♦ Expand shallowest unexpanded node

♦ Implementation:
frontier is a FIFO queue, i.e., new successors go at end

A

B C

D E F G

CMSC 421: Chapter 3, Sections 1–4 24

Breadth-first search

♦ Expand shallowest unexpanded node

♦ Implementation:
frontier is a FIFO queue, i.e., new successors go at end

A

B C

D E F G

CMSC 421: Chapter 3, Sections 1–4 25

Breadth-first search

♦ Expand shallowest unexpanded node

♦ Implementation:
frontier is a FIFO queue, i.e., new successors go at end

A

B C

D E F G

CMSC 421: Chapter 3, Sections 1–4 26

Properties of breadth-first search

♦ Complete?

• b = maximum branching factor of the search tree

• d = depth of the least-cost solution

• m = maximum depth of the state space (may be ∞)

CMSC 421: Chapter 3, Sections 1–4 27

Properties of breadth-first search

♦ Complete? Yes

♦ Time?

• b = maximum branching factor of the search tree

• d = depth of the least-cost solution

• m = maximum depth of the state space (may be ∞)

CMSC 421: Chapter 3, Sections 1–4 28

Properties of breadth-first search

♦ Complete? Yes

♦ Time? 1 + b + b2 + b3 + . . . + bd + b(bd − 1) = O(bd)

♦ Space?

• b = maximum branching factor of the search tree

• d = depth of the least-cost solution

• m = maximum depth of the state space (may be ∞)

CMSC 421: Chapter 3, Sections 1–4 29

Properties of breadth-first search

♦ Complete? Yes

♦ Time? 1 + b + b2 + b3 + . . . + bd + b(bd − 1) = O(bd)

♦ Space? O(bd) (keeps every node in memory)

• If we run for 12 hours and generate nodes at 200 MB/sec,
the space requirement is 8.64 TB

♦ Optimal solutions?

• b = maximum branching factor of the search tree

• d = depth of the least-cost solution

• m = maximum depth of the state space (may be ∞)

CMSC 421: Chapter 3, Sections 1–4 30

Properties of breadth-first search

♦ Complete? Yes

♦ Time? 1 + b + b2 + b3 + . . . + bd + b(bd − 1) = O(bd)

♦ Space? O(bd) (keeps every node in memory)

• If we run for 12 hours and generate nodes at 200 MB/sec,
the space requirement is 8.64 TB

♦ Optimal solutions?

• Yes if cost = k per step where k is constant; otherwise no

• b = maximum branching factor of the search tree

• d = depth of the least-cost solution

• m = maximum depth of the state space (may be ∞)

CMSC 421: Chapter 3, Sections 1–4 31

Breadth-first search

function Eager-Tree-Search(problem) # my version

frontier ← list that contains a node for problem’s initial state

loop

if frontier is empty then return Failure

choose and remove a node x from frontier

for each node y in x’s expansion

if State[y] is a goal then return the corresponding solution

else add y to frontier

function Cautious-Tree-Search(problem) # like Tree-Search in the book

frontier ← list that contains a node for problem’s initial state

loop

if frontier is empty then return Failure

choose and remove a node x from frontier

if x contains a goal state then return the corresponding solution

else expand x and add the new nodes to frontier

♦ Which is better for breadth-first search?

CMSC 421: Chapter 3, Sections 1–4 32

Comparison

♦ Every edge has cost 10, except for the following two:

� (G,N) and (G,O) both cost 5

• M is a goal node of cost 30

• N is a goal node of cost 25

A

B C

D E F G

H I J K L M N O

♦ For breadth-first search

• What solutions do Eager and Cautious return?

• How many nodes do they generate?

CMSC 421: Chapter 3, Sections 1–4 33

Depth-first search

♦ Expand deepest unexpanded node

♦ Implementation:
frontier = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

CMSC 421: Chapter 3, Sections 1–4 34

Depth-first search

♦ Expand deepest unexpanded node

♦ Implementation:
frontier = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

CMSC 421: Chapter 3, Sections 1–4 35

Depth-first search

♦ Expand deepest unexpanded node

♦ Implementation:
frontier = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

CMSC 421: Chapter 3, Sections 1–4 36

Depth-first search

♦ Expand deepest unexpanded node

♦ Implementation:
frontier = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

CMSC 421: Chapter 3, Sections 1–4 37

Depth-first search

♦ Expand deepest unexpanded node

♦ Implementation:
frontier = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

CMSC 421: Chapter 3, Sections 1–4 38

Depth-first search

♦ Expand deepest unexpanded node

♦ Implementation:
frontier = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

CMSC 421: Chapter 3, Sections 1–4 39

Depth-first search

♦ Expand deepest unexpanded node

♦ Implementation:
frontier = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

CMSC 421: Chapter 3, Sections 1–4 40

Depth-first search

♦ Expand deepest unexpanded node

♦ Implementation:
frontier = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

CMSC 421: Chapter 3, Sections 1–4 41

Depth-first search

♦ Expand deepest unexpanded node

♦ Implementation:
frontier = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

CMSC 421: Chapter 3, Sections 1–4 42

Properties of depth-first search

♦ Complete?

• b = maximum branching factor of the search tree

• d = depth of the least-cost solution

• m = maximum depth of the state space (may be ∞)

CMSC 421: Chapter 3, Sections 1–4 43

Properties of depth-first search

♦ Complete?

• No in infinite-depth spaces

• Yes in finite spaces, if we do loop-checking:

� Don’t generate states that are already on the current path

♦ Time?

• b = maximum branching factor of the search tree

• d = depth of the least-cost solution

• m = maximum depth of the state space (may be ∞)

CMSC 421: Chapter 3, Sections 1–4 44

Properties of depth-first search

♦ Complete?

• No in infinite-depth spaces

• Yes in finite spaces, if we do loop-checking:

� Don’t generate states that are already on the current path

♦ Time? O(bm): terrible if m is much larger than d

• but if solutions are dense, may be much faster than breadth-first

♦ Space?

• b = maximum branching factor of the search tree

• d = depth of the least-cost solution

• m = maximum depth of the state space (may be ∞)

CMSC 421: Chapter 3, Sections 1–4 45

Properties of depth-first search

♦ Complete?

• No in infinite-depth spaces

• Yes in finite spaces, if we do loop-checking:

� Don’t generate states that are already on the current path

♦ Time? O(bm): terrible if m is much larger than d

• but if solutions are dense, may be much faster than breadth-first

♦ Space? O(bm), i.e., linear space

♦ Optimal solutions?

• b = maximum branching factor of the search tree

• d = depth of the least-cost solution

• m = maximum depth of the state space (may be ∞)

CMSC 421: Chapter 3, Sections 1–4 46

Properties of depth-first search

♦ Complete?

• No in infinite-depth spaces

• Yes in finite spaces, if we do loop-checking:

� Don’t generate states that are already on the current path

♦ Time? O(bm): terrible if m is much larger than d

• but if solutions are dense, may be much faster than breadth-first

♦ Space? O(bm), i.e., linear space

♦ Optimal solutions? Not unless it’s lucky

• b = maximum branching factor of the search tree

• d = depth of the least-cost solution

• m = maximum depth of the state space (may be ∞)

CMSC 421: Chapter 3, Sections 1–4 47

Eager vs. cautious tree search

function Eager-Tree-Search(problem) # my version

frontier ← list that contains a node for problem’s initial state

loop

if frontier is empty then return Failure

choose and remove a node x from frontier

for each node y in x’s expansion

if State[y] is a goal then return the corresponding solution

else add y to frontier

function Cautious-Tree-Search(problem) # like Tree-Search in the book

frontier ← list that contains a node for problem’s initial state

loop

if frontier is empty then return Failure

choose and remove a node x from frontier

if x contains a goal state then return the corresponding solution

else expand x and add the new nodes to frontier

♦ Which is better for depth-first search?

CMSC 421: Chapter 3, Sections 1–4 48

Comparison

♦ Every edge has cost 10, except for the following two:

� (G,N) and (G,O) both cost 5

• M is a goal node; path cost = 30

• N is a goal node; path cost = 25

A

B C

D E F G

H I J K L M N O

♦ For breadth-first search

• What solutions do Eager and Cautious tree search return?

• How many nodes do they generate?

CMSC 421: Chapter 3, Sections 1–4 49

Eager vs. cautious tree search

function Eager-Tree-Search(problem) # my version

frontier ← list that contains a node for problem’s initial state

loop

if frontier is empty then return Failure

choose and remove a node x from frontier

for each node y in x’s expansion

if State[y] is a goal then return the corresponding solution

else add y to frontier

function Cautious-Tree-Search(problem) # like Tree-Search in the book

frontier ← list that contains a node for problem’s initial state

loop

if frontier is empty then return Failure

choose and remove a node x from frontier

if x contains a goal state then return the corresponding solution

else expand x and add the new nodes to frontier

♦ Where would we put loop-checking?

CMSC 421: Chapter 3, Sections 1–4 50

Uniform-cost search

♦ Expand least-cost unexpanded node

♦ Implementation: frontier = queue ordered by path cost, lowest first
Equivalent to breadth-first if step costs all equal

♦ Complete?

• b = maximum branching factor of the search tree

• d = depth of the least-cost solution

• m = maximum depth of the state space (may be ∞)

CMSC 421: Chapter 3, Sections 1–4 51

Uniform-cost search

♦ Expand least-cost unexpanded node

♦ Implementation: frontier = queue ordered by path cost, lowest first
Equivalent to breadth-first if step costs all equal

♦ Complete? Yes, if ∃ ε > 0 such that step cost ≥ ε

♦ Time?

• b = maximum branching factor of the search tree

• d = depth of the least-cost solution

• m = maximum depth of the state space (may be ∞)

CMSC 421: Chapter 3, Sections 1–4 52

Uniform-cost search

♦ Expand least-cost unexpanded node

♦ Implementation: frontier = queue ordered by path cost, lowest first
Equivalent to breadth-first if step costs all equal

♦ Complete? Yes, if ∃ ε > 0 such that step cost ≥ ε

♦ Time? |{nodes with g ≤ C∗}| = O(bdC
∗/εe), where

• C∗ = cost of the optimal solution

♦ Space?

• b = maximum branching factor of the search tree

• d = depth of the least-cost solution

• m = maximum depth of the state space (may be ∞)

CMSC 421: Chapter 3, Sections 1–4 53

Uniform-cost search

♦ Expand least-cost unexpanded node

♦ Implementation: frontier = queue ordered by path cost, lowest first
Equivalent to breadth-first if step costs all equal

♦ Complete? Yes, if ∃ ε > 0 such that step cost ≥ ε

♦ Time? |{nodes with g ≤ C∗}| = O(bdC
∗/εe), where

• C∗ = cost of the optimal solution

♦ Space? |{nodes with g ≤ C∗}| = O(bdC
∗/εe)

♦ Optimal solutions?

• b = maximum branching factor of the search tree

• d = depth of the least-cost solution

• m = maximum depth of the state space (may be ∞)

CMSC 421: Chapter 3, Sections 1–4 54

Uniform-cost search

♦ Expand least-cost unexpanded node

♦ Implementation: frontier = queue ordered by path cost, lowest first
Equivalent to breadth-first if step costs all equal

♦ Complete? Yes, if ∃ ε > 0 such that step cost ≥ ε

♦ Time? |{nodes with g ≤ C∗}| = O(bdC
∗/εe), where

• C∗ = cost of the optimal solution

♦ Space? |{nodes with g ≤ C∗}| = O(bdC
∗/εe)

♦ Optimal solutions? Yes, if we use Cautious-Tree-Search

• b = maximum branching factor of the search tree

• d = depth of the least-cost solution

• m = maximum depth of the state space (may be ∞)

CMSC 421: Chapter 3, Sections 1–4 55

Eager vs. cautious tree search

function Eager-Tree-Search(problem) # my version

frontier ← list that contains a node for problem’s initial state

loop

if frontier is empty then return Failure

choose and remove a node x from frontier

for each node y in x’s expansion

if State[y] is a goal then return the corresponding solution

else add y to frontier

function Cautious-Tree-Search(problem) # like Tree-Search in the book

frontier ← list that contains a node for problem’s initial state

loop

if frontier is empty then return Failure

choose and remove a node x from frontier

if x contains a goal state then return the corresponding solution

else expand x and add the new nodes to frontier

♦ Which is better for uniform-cost search?

CMSC 421: Chapter 3, Sections 1–4 56

Comparison

♦ Every edge has cost 10, except for the following two:

� (G,N) and (G,O) both cost 5

• M is a goal node of cost 30

• N is a goal node of cost 25

A

B C

D E F G

H I J K L M N O

♦ For uniform-cost search

• What solutions do Eager and Cautious return?

• How many nodes do they generate?

CMSC 421: Chapter 3, Sections 1–4 57

Limited-depth search

♦ Depth-first search, backtrack at each node of depth = limit
unless it’s a solution

♦ Recursive implementation:

function Limited-Depth-Search(node, problem, limit)

if node contains a goal state then return the corresponding solution

else if limit = 0 then return Cutoff

else

notfound ← Failure /* what to return if we don’t find a solution */

for each y in Expand(node) do

result ← Limited-Depth-Search(y, problem, limit − 1)

if result is a solution then return result

else if result = Cutoff then notfound ← Cutoff

return notfound

CMSC 421: Chapter 3, Sections 1–4 58

Iterative deepening search

function Iterative-Deepening-Search(problem)

node ← node for problem’s initial state

for limit ← 0 to ∞ do

result ← Limited-Depth-Search(node, problem, limit)

if result 6= Cutoff then return result

♦ Limited-depth search to depth 0,

♦ Limited-depth search to depth 1,

♦ Limited-depth search to depth 2,
. . .

♦ Stop when you find a solution

CMSC 421: Chapter 3, Sections 1–4 59

function Iterative-Deepening-Search(problem)

node ← node for problem’s initial state

for limit ← 0 to ∞ do

result ← Limited-Depth-Search(node, problem, limit)

if result 6= Cutoff then return result

Limit = 0 A A

CMSC 421: Chapter 3, Sections 1–4 60

function Iterative-Deepening-Search(problem)

node ← node for problem’s initial state

for limit ← 0 to ∞ do

result ← Limited-Depth-Search(node, problem, limit)

if result 6= Cutoff then return result

Limit = 1 A

B C

A

B C

A

B C

A

B C

CMSC 421: Chapter 3, Sections 1–4 61

function Iterative-Deepening-Search(problem)

node ← node for problem’s initial state

for limit ← 0 to ∞ do

result ← Limited-Depth-Search(node, problem, limit)

if result 6= Cutoff then return result

Limit = 2 A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

CMSC 421: Chapter 3, Sections 1–4 62

function Iterative-Deepening-Search(problem)

node ← node for problem’s initial state

for limit ← 0 to ∞ do

result ← Limited-Depth-Search(node, problem, limit)

if result 6= Cutoff then return result

Limit = 3

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H J K L M N OI

A

B C

D E F G

H I J K L M N O

CMSC 421: Chapter 3, Sections 1–4 63

Properties of iterative deepening search

• b = maximum branching factor of the search tree

• d = depth of the least-cost solution

• m = maximum depth of the state space (may be ∞)

♦ Complete?

CMSC 421: Chapter 3, Sections 1–4 64

Properties of iterative deepening search

• b = maximum branching factor of the search tree

• d = depth of the least-cost solution

• m = maximum depth of the state space (may be ∞)

♦ Complete? Yes

♦ Time?

CMSC 421: Chapter 3, Sections 1–4 65

Properties of iterative deepening search

• b = maximum branching factor of the search tree

• d = depth of the least-cost solution

• m = maximum depth of the state space (may be ∞)

♦ Complete? Yes

♦ Time? (d + 1)b0 + db1 + (d− 1)b2 + . . . + bd = O(bd)

♦ Space?

CMSC 421: Chapter 3, Sections 1–4 66

Properties of iterative deepening search

• b = maximum branching factor of the search tree

• d = depth of the least-cost solution

• m = maximum depth of the state space (may be ∞)

♦ Complete? Yes

♦ Time? (d + 1)b0 + db1 + (d− 1)b2 + . . . + bd = O(bd)

♦ Space? O(bd)

♦ Optimal solutions?

CMSC 421: Chapter 3, Sections 1–4 67

Properties of iterative deepening search

• b = maximum branching factor of the search tree

• d = depth of the least-cost solution

• m = maximum depth of the state space (may be ∞)

♦ Complete? Yes

♦ Time? (d + 1)b0 + db1 + (d− 1)b2 + . . . + bd = O(bd)

♦ Space? O(bd)

♦ Optimal solutions? Yes, if step cost = 1

• Can be modified to behave like uniform-cost search

CMSC 421: Chapter 3, Sections 1–4 68

Summary of algorithms

b = branching factor

C∗ = cost of optimal solution, or ∞ if there’s no solution

d = depth of shallowest solution, or ∞ if there’s no solution

ε = smallest cost of each edge

l = cutoff depth for limited-depth search

m = depth of deepest node (may be ∞)

Criterion Breadth- Uniform- Depth- Depth- Iterative
First Cost First Limited Deepening

Complete? Yes Yes(2) No Yes, if l ≥ d Yes
Time bd bdC

∗/εe bm bl bd

Space bd bdC
∗/εe bm bl bd

Optimal? Yes(1) Yes No No Yes(1)

(1) if step costs are equal
(2) if ε > 0

CMSC 421: Chapter 3, Sections 1–4 69

Repeated states

♦ Failure to detect repeated states can turn a linear problem into an exponen-
tial one!

A

B

C

D

A

BB

CCCC

CMSC 421: Chapter 3, Sections 1–4 70

Graph search

function Graph-Search(problem)

frontier ← list that contains a node for problem’s initial state

explored ← empty set

loop

if frontier is empty then return Failure

choose and remove a node x from frontier

if State[x] is a goal then return the corresponding solution

if State[x] is not in explored then

add State[x] to explored

expand x and add the new nodes to frontier

♦ Search strategy is implemented by the InsertAll function

• breadth-first: insert new nodes at end of queue

• depth-first: insert new nodes at front of queue

• uniform-cost: keep queue ordered by cost

CMSC 421: Chapter 3, Sections 1–4 71

Summary

♦ Problem formulation usually requires abstracting away real-world
details to define a state space that can feasibly be explored

♦ Variety of uninformed search strategies

♦ Iterative deepening search uses only linear space

• When b ≥ 2, same big-O time as other uninformed algorithms

♦ Graph search can take exponentially less time than tree search

• when the number of paths to a node is exponential in its depth

♦ Graph search can take exponentially more space than tree search

• when the search space is treelike

CMSC 421: Chapter 3, Sections 1–4 72

Homework 1

♦ Due in one week

♦ 5 problems, 10 points per problem, 50 points total

• 2.10

• 3.6(a,b)

• 3.9(a,c)

• 3.15

• 3.18

CMSC 421: Chapter 3, Sections 1–4 73

Python resources

♦ Documentation: http://docs.python.org

• Important: in the left-hand column, click on Python 3.2 (stable)

♦ If you don’t know Python already, read the Tutorial

♦ To find out how a function or method works, use these:

� Library Reference

� General Index

• These are less useful

� Quick search and Search page produce too many irrelevant results

� Language reference talks about syntax, not what the functions do

♦ If you know Python 2 but not Python 3, this might be useful:

• http://wiki.python.org/moin/Python2orPython3

CMSC 421: Chapter 3, Sections 1–4 74

http://docs.python.org
http://wiki.python.org/moin/Python2orPython3

Eager tree search

CMSC 421: Chapter 3, Sections 1–4 75

Eager tree search (continued)

CMSC 421: Chapter 3, Sections 1–4 76

Romanian map problem

CMSC 421: Chapter 3, Sections 1–4 77

Romanian map problem (continued)

CMSC 421: Chapter 3, Sections 1–4 78

