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Iterative improvement algorithms

♦ In many optimization problems, the path to a goal is irrelevant

• the goal state itself is the solution

♦ State space = a set of goal states

• find one that satisfies constraints (e.g., no two classes at same time)

• or find optimal one (e.g., highest possible value, least possible cost)

♦ Iterative improvement algorithms

� keep a single “current” state, try to improve it

• Constant space

• Suitable for both offline and online search
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Example: the n-Queens Problem

♦ Put n queens on an n× n chessboard

• No two queens on the same row, column, or diagonal

♦ Iterative improvement:

• Start with one queen in each column

• move a queen to reduce number of conflicts

h = 5 h = 2 h = 0

♦ Even for very large n (e.g., n= 1 million),
this usually finds a solution almost instantly
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Example: Traveling Salesperson Problem

♦ Given a complete graph (edges between all pairs of nodes)

♦ Find a least-cost tour (simple cycle that visits each city exactly once)

♦ Iterative improvement:

• Start with any tour, perform pairwise exchanges

♦ Variants of this approach get within 1% of optimal very quickly
with thousands of cities
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Outline

♦ Hill-climbing

♦ Simulated annealing

♦ Genetic algorithms (briefly)

♦ Local search in continuous spaces (very briefly)
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Hill-climbing (or gradient ascent/descent)

♦ “Like climbing Everest in thick fog with amnesia”

function Hill-Climbing( problem)

current ← new node containing problem’s initial state

loop

next ← a highest-valued neighbor of current

if Value[next] ≤ Value[current] then return State[current]

current ← next

end

♦ Value[x] is x’s objective-function value

• how good we consider x to be

♦ At each step, move to a neighbor of higher value
in hopes of getting to a solution having the highest possible value

♦ Can easily modify this for problems where we want to
minimize rather than maximize
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Hill-climbing, continued

♦ State space “landscape”:

current
state

objective function

state space

global maximum

local maximum

"flat" local maximum

shoulder

♦ Random-restart hill climbing:

• repeat with randomly chosen starting points

♦ If finitely many local maxima, then limrestarts→∞P (complete) = 1

CMSC 421: Chapter 4, Sections 1 and 2 7



Simulated annealing

function Simulated-Annealing( problem, temperatures)

node ← a new node containing problem’s initial state

for i ← 1 to ∞ do

T ← temperatures[i]

if T = 0 then return State[node]

next ← a randomly selected neighbor of node

∆E ← Value[next] – Value[node] /* difference in desirability */

if ∆E > 0 then node ← next

else with probability e∆E/T , set node ← next

♦ Idea: escape local maxima by allowing some “bad” moves

• but gradually decrease their frequency

♦ Next two slides: a simple example, in Python
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import cmath, random

def anneal example(iterations):

state = 0; history = [state]

for i in range(iterations):

T = 10 * (0.9 ** i)

next = random.random()

DeltaE = value(next) - value(state)

target = cmath.e ** (DeltaE/T):

if target > random.random():

state = next

history.append(round(state,3))

return history

def value(state):

return -abs(0.5-state)

function anneal example(iterations)

state ← 0; history ← list containing state

for i ← 0 to iterations − 1 do

T ← 10× 0.9i

next ← a random number in [0,1)

∆E ← value(next) – value(state)

target ← e∆E/T

if target > random no. in [0,1) then

state ← next

append state to history

return history

function value(state)

return −|0.5− state|

♦ A state is a number s ∈ [0, 1]. All states are neighbors

♦ Desirability = max{–(dist. from 0.3), .025 – (dist. from .8)}
♦ Start with state = 0; iterate for i = 0 to iterations–1

♦ On i’th iteration, temperature is 10× 0.9i

• 10.0, 9.00, 8.10, 7.29, 6.56, 5.90, 5.31, 4.78, 4.30, 3.87, . . .
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Simple example, continueds

i
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Properties of simulated annealing

♦ At fixed “temperature” T , probability of being in any given state x
approaches a Boltzman distribution

p(x) = αe
E(x)
kT

♦ For every state x other than x∗ and for small T ,

p(x∗)/p(x) = e
E(x∗)
kT /e

E(x)
kT = e

E(x∗)−E(x)
kT � 1

♦ It can be shown that if we decrease T slowly enough,

• Pr[reach x∗] approaches 1

♦ Devised by Metropolis et al., 1953, for physical process modelling

• Widely used in VLSI layout, airline scheduling, etc.
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Local beam search

function Beam-Search( problem, k) returns a solution state

start with k randomly generated states

loop

generate all successors of all k states

if any of them is a solution then return it

else select the k best successors

♦ Not the same as k parallel searches

• Searches that find good states will recruit other searches to join them

• Problem: often all k states end up on same local hill

♦ Stochastic beam search:

• Choose k successors randomly, biased towards good ones

• Close analogy to natural selection
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Genetic algorithms
♦ Genetic algorithms

� stochastic local beam search

� generate successors from pairs of states

• Each state should be a string of characters

• Substrings should be meaningful components

♦ Example: n-queens problem

• i’th character = row where i’th queen is located

+ =

672 47588 752 51447 672 51447
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Genetic algorithms

function Genetic-Algorithm( population,Fitness)

loop

new-population ← empty set

for i = 1 to |population|
choose x and y randomly∗ from population, using Fitness

child = Reproduce(x,y)

if small random probability then child = Mutate(child)

add child to new-population

population ←new-population

if some individual is fit enough, or enough time has elapsed then

return arg max {Fitness(x)|x ∈ population}

function Reproduce( x, y)

c ←random integer in range(len(x))

return x[:c] + y[c:]

* To choose x, usually use relative fitness:
for each x ∈ population, Pr[choose x] = Fitness(x)/ΣzFitness(z).

To choose y, usually use relative fitness or a uniform distribution
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Genetic algorithms
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Same simple example as before

♦ A state is a number s ∈ [0, 1]. All states are neighbors

♦ Fitness = max{–(dist. from 0.3), .025 – (dist. from .8)}
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i

• 100 iterations, population size = 200, mutation probability = .001

• Running time is much worse than for simulated annealing
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Discussion

♦ Genetic algorithms 6= biological evolution

• for example, real genes encode replication machinery

♦ Genetic algorithms are widely used by engineers for optimization problems

� circuit layout, job-shop scheduling

• Not clear whether this is due to performance or intuitive appeal

♦ More work is needed to identify conditions under which they perform well
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Hill-climbing in continuous state spaces

♦ Suppose we want to put three airports in Romania – what locations?

• 6-D state space defined by (x1, y2), (x2, y2), (x3, y3)

• Objective function f (x1, y2, x2, y2, x3, y3) measures desirability

� e.g., sum of squared distances from each city to nearest airport
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Arad

Timisoara
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Vaslui
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Straight−line distance
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•(x1, y1)

•(x2, y2)

•(x3, y3)
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Hill-climbing in continuous state spaces

♦ A technique from numerical analysis:

♦ Given a surface z = f (x, y) and a point (x, y)

♦ A gradient is a vector

∇f (x, y) =

(
∂f

∂x
,
∂f

∂y

)
• points in the direction of the steepest slope

• length is proportional to the slope

♦ Gradient methods compute ∇f and use it to increase/reduce f

� e.g., x← x− α∇f (x)

• If ∇f = 0 then you’ve reached a local maximum/minimum
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Hill-climbing in continuous state spaces

♦ Suppose we want to put three airports in Romania – what locations?

∇f =

(
∂f

∂x1
,
∂f

∂y1
,
∂f

∂x2
,
∂f

∂y2
,
∂f

∂x3
,
∂f

∂y3

)
♦ Look for x1, y1, x2, y2, x3, y3 such that ∇f (x1, y1, x2, y2, x3, y3) = 0
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Continuous state spaces, continued

♦ Sometimes can solve for ∇f (x) = 0 exactly (e.g., with one city)

♦ Newton–Raphson method (1664, 1690)

• solve ∇f (x) = 0 by iterating x← x−H−1(x)∇f (x)

� H is an n× n matrix with Hij = ∂2f/∂xi∂xj

• I used to know this stuff,
but that was a long time ago

♦ Discretization methods turn continuous
space into discrete space

• e.g., empirical gradient considers
±δ change in each coordinate

•••••
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