
Last update: September 18, 2012

Local search algorithms

CMSC 421: Chapter 4, Sections 1 and 2

CMSC 421: Chapter 4, Sections 1 and 2 1

Iterative improvement algorithms

♦ In many optimization problems, the path to a goal is irrelevant

• the goal state itself is the solution

♦ State space = a set of goal states

• find one that satisfies constraints (e.g., no two classes at same time)

• or find optimal one (e.g., highest possible value, least possible cost)

♦ Iterative improvement algorithms

� keep a single “current” state, try to improve it

• Constant space

• Suitable for both offline and online search

CMSC 421: Chapter 4, Sections 1 and 2 2

Example: the n-Queens Problem

♦ Put n queens on an n× n chessboard

• No two queens on the same row, column, or diagonal

♦ Iterative improvement:

• Start with one queen in each column

• move a queen to reduce number of conflicts

h = 5 h = 2 h = 0

♦ Even for very large n (e.g., n= 1 million),
this usually finds a solution almost instantly

CMSC 421: Chapter 4, Sections 1 and 2 3

Example: Traveling Salesperson Problem

♦ Given a complete graph (edges between all pairs of nodes)

♦ Find a least-cost tour (simple cycle that visits each city exactly once)

♦ Iterative improvement:

• Start with any tour, perform pairwise exchanges

♦ Variants of this approach get within 1% of optimal very quickly
with thousands of cities

CMSC 421: Chapter 4, Sections 1 and 2 4

Outline

♦ Hill-climbing

♦ Simulated annealing

♦ Genetic algorithms (briefly)

♦ Local search in continuous spaces (very briefly)

CMSC 421: Chapter 4, Sections 1 and 2 5

Hill-climbing (or gradient ascent/descent)

♦ “Like climbing Everest in thick fog with amnesia”

function Hill-Climbing(problem)

current ← new node containing problem’s initial state

loop

next ← a highest-valued neighbor of current

if Value[next] ≤ Value[current] then return State[current]

current ← next

end

♦ Value[x] is x’s objective-function value

• how good we consider x to be

♦ At each step, move to a neighbor of higher value
in hopes of getting to a solution having the highest possible value

♦ Can easily modify this for problems where we want to
minimize rather than maximize

CMSC 421: Chapter 4, Sections 1 and 2 6

Hill-climbing, continued

♦ State space “landscape”:

current
state

objective function

state space

global maximum

local maximum

"flat" local maximum

shoulder

♦ Random-restart hill climbing:

• repeat with randomly chosen starting points

♦ If finitely many local maxima, then limrestarts→∞P (complete) = 1

CMSC 421: Chapter 4, Sections 1 and 2 7

Simulated annealing

function Simulated-Annealing(problem, temperatures)

node ← a new node containing problem’s initial state

for i ← 1 to ∞ do

T ← temperatures[i]

if T = 0 then return State[node]

next ← a randomly selected neighbor of node

∆E ← Value[next] – Value[node] /* difference in desirability */

if ∆E > 0 then node ← next

else with probability e∆E/T , set node ← next

♦ Idea: escape local maxima by allowing some “bad” moves

• but gradually decrease their frequency

♦ Next two slides: a simple example, in Python

CMSC 421: Chapter 4, Sections 1 and 2 8

import cmath, random

def anneal example(iterations):

state = 0; history = [state]

for i in range(iterations):

T = 10 * (0.9 ** i)

next = random.random()

DeltaE = value(next) - value(state)

target = cmath.e ** (DeltaE/T):

if target > random.random():

state = next

history.append(round(state,3))

return history

def value(state):

return -abs(0.5-state)

function anneal example(iterations)

state ← 0; history ← list containing state

for i ← 0 to iterations − 1 do

T ← 10× 0.9i

next ← a random number in [0,1)

∆E ← value(next) – value(state)

target ← e∆E/T

if target > random no. in [0,1) then

state ← next

append state to history

return history

function value(state)

return −|0.5− state|

♦ A state is a number s ∈ [0, 1]. All states are neighbors

♦ Desirability = max{–(dist. from 0.3), .025 – (dist. from .8)}
♦ Start with state = 0; iterate for i = 0 to iterations–1

♦ On i’th iteration, temperature is 10× 0.9i

• 10.0, 9.00, 8.10, 7.29, 6.56, 5.90, 5.31, 4.78, 4.30, 3.87, . . .

CMSC 421: Chapter 4, Sections 1 and 2 9

Simple example, continueds

i

CMSC 421: Chapter 4, Sections 1 and 2 10

Properties of simulated annealing

♦ At fixed “temperature” T , probability of being in any given state x
approaches a Boltzman distribution

p(x) = αe
E(x)
kT

♦ For every state x other than x∗ and for small T ,

p(x∗)/p(x) = e
E(x∗)
kT /e

E(x)
kT = e

E(x∗)−E(x)
kT � 1

♦ It can be shown that if we decrease T slowly enough,

• Pr[reach x∗] approaches 1

♦ Devised by Metropolis et al., 1953, for physical process modelling

• Widely used in VLSI layout, airline scheduling, etc.

CMSC 421: Chapter 4, Sections 1 and 2 11

Local beam search

function Beam-Search(problem, k) returns a solution state

start with k randomly generated states

loop

generate all successors of all k states

if any of them is a solution then return it

else select the k best successors

♦ Not the same as k parallel searches

• Searches that find good states will recruit other searches to join them

• Problem: often all k states end up on same local hill

♦ Stochastic beam search:

• Choose k successors randomly, biased towards good ones

• Close analogy to natural selection

CMSC 421: Chapter 4, Sections 1 and 2 12

Genetic algorithms
♦ Genetic algorithms

� stochastic local beam search

� generate successors from pairs of states

• Each state should be a string of characters

• Substrings should be meaningful components

♦ Example: n-queens problem

• i’th character = row where i’th queen is located

+ =

672 47588 752 51447 672 51447

CMSC 421: Chapter 4, Sections 1 and 2 13

Genetic algorithms

function Genetic-Algorithm(population,Fitness)

loop

new-population ← empty set

for i = 1 to |population|
choose x and y randomly∗ from population, using Fitness

child = Reproduce(x,y)

if small random probability then child = Mutate(child)

add child to new-population

population ←new-population

if some individual is fit enough, or enough time has elapsed then

return arg max {Fitness(x)|x ∈ population}

function Reproduce(x, y)

c ←random integer in range(len(x))

return x[:c] + y[c:]

* To choose x, usually use relative fitness:
for each x ∈ population, Pr[choose x] = Fitness(x)/ΣzFitness(z).

To choose y, usually use relative fitness or a uniform distribution

CMSC 421: Chapter 4, Sections 1 and 2 14

Genetic algorithms

32252124

Selection Cross−Over Mutation

24748552

32752411

24415124

24

23

20

32543213 11

29%

31%

26%

14%

32752411

24748552

32752411

24415124

32748552

24752411

32752124

24415411

24752411

32748152

24415417

Fitness Pairs Reproduction

for i = 1 to 4:

i=1

i=2

327

247
327 48552 32748152

32752 124 32752124
32752

24415 124

48552

+ =

CMSC 421: Chapter 4, Sections 1 and 2 15

Same simple example as before

♦ A state is a number s ∈ [0, 1]. All states are neighbors

♦ Fitness = max{–(dist. from 0.3), .025 – (dist. from .8)}

CMSC 421: Chapter 4, Sections 1 and 2 16

17

s

i

• 100 iterations, population size = 200, mutation probability = .001

• Running time is much worse than for simulated annealing

CMSC 421: Chapter 4, Sections 1 and 2 18

Discussion

♦ Genetic algorithms 6= biological evolution

• for example, real genes encode replication machinery

♦ Genetic algorithms are widely used by engineers for optimization problems

� circuit layout, job-shop scheduling

• Not clear whether this is due to performance or intuitive appeal

♦ More work is needed to identify conditions under which they perform well

CMSC 421: Chapter 4, Sections 1 and 2 19

Hill-climbing in continuous state spaces

♦ Suppose we want to put three airports in Romania – what locations?

• 6-D state space defined by (x1, y2), (x2, y2), (x3, y3)

• Objective function f (x1, y2, x2, y2, x3, y3) measures desirability

� e.g., sum of squared distances from each city to nearest airport

Bucharest

Giurgiu

Urziceni

Hirsova

Eforie

Neamt
Oradea

Zerind

Arad

Timisoara

Lugoj
Mehadia

Dobreta
Craiova

Sibiu

Fagaras

Pitesti
Rimnicu Vilcea

Vaslui

Iasi

Straight−line distance
to Bucharest

 0
160
242
161

77
151

241

366

193

178

253
329
80

199

244

380

226

234

374

98

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75
120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

•(x1, y1)

•(x2, y2)

•(x3, y3)

CMSC 421: Chapter 4, Sections 1 and 2 20

Hill-climbing in continuous state spaces

♦ A technique from numerical analysis:

♦ Given a surface z = f (x, y) and a point (x, y)

♦ A gradient is a vector

∇f (x, y) =

(
∂f

∂x
,
∂f

∂y

)
• points in the direction of the steepest slope

• length is proportional to the slope

♦ Gradient methods compute ∇f and use it to increase/reduce f

� e.g., x← x− α∇f (x)

• If ∇f = 0 then you’ve reached a local maximum/minimum

CMSC 421: Chapter 4, Sections 1 and 2 21

Hill-climbing in continuous state spaces

♦ Suppose we want to put three airports in Romania – what locations?

∇f =

(
∂f

∂x1
,
∂f

∂y1
,
∂f

∂x2
,
∂f

∂y2
,
∂f

∂x3
,
∂f

∂y3

)
♦ Look for x1, y1, x2, y2, x3, y3 such that ∇f (x1, y1, x2, y2, x3, y3) = 0

Bucharest

Giurgiu

Urziceni

Hirsova

Eforie

Neamt
Oradea

Zerind

Arad

Timisoara

Lugoj
Mehadia

Dobreta
Craiova

Sibiu

Fagaras

Pitesti
Rimnicu Vilcea

Vaslui

Iasi

Straight−line distance
to Bucharest

 0
160
242
161

77
151

241

366

193

178

253
329
80

199

244

380

226

234

374

98

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75
120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

•(x1, y1)

•(x2, y2)

•(x3, y3)

CMSC 421: Chapter 4, Sections 1 and 2 22

Continuous state spaces, continued

♦ Sometimes can solve for ∇f (x) = 0 exactly (e.g., with one city)

♦ Newton–Raphson method (1664, 1690)

• solve ∇f (x) = 0 by iterating x← x−H−1(x)∇f (x)

� H is an n× n matrix with Hij = ∂2f/∂xi∂xj

• I used to know this stuff,
but that was a long time ago

♦ Discretization methods turn continuous
space into discrete space

• e.g., empirical gradient considers
±δ change in each coordinate

•••••

CMSC 421: Chapter 4, Sections 1 and 2 23

