Last update: September 18, 2012

LOCAL SEARCH ALGORITHMS

CMSC 421: CHAPTER 4, SECTIONS 1 AND 2

CMSC 421: Chapter 4, Sections 1 and 2 1

Iterative improvement algorithms

¢ In many optimization problems, the path to a goal is irrelevant

e the goal state itself is the solution

» State space = a set of goal states
e find one that satisfies constraints (e.g., no two classes at same time)

e or find optimal one (e.g., highest possible value, least possible cost)

& Iterative improvement algorithms
¢ keep a single “current” state, try to improve it
e Constant space

e Suitable for both offline and online search

CMSC 421: Chapter 4, Sections 1 and 2 2

Example: the n-Queens Problem

¢ Put n queens on an n x n chessboard

e No two queens on the same row, column, or diagonal

$ lIterative improvement:
e Start with one queen in each column

e move a queen to reduce number of conflicts

& Even for very large n (e.g., n=1 million),
this usually finds a solution almost instantly

CMSC 421: Chapter 4, Sections 1 and 2 3

Example: Traveling Salesperson Problem

& Given a complete graph (edges between all pairs of nodes)

$ Find a least-cost tour (simple cycle that visits each city exactly once)

> Iterative improvement:

e Start with any tour, perform pairwise exchanges

9 [
’

¢ Variants of this approach get within 1% of optimal very quickly
with thousands of cities

CMSC 421: Chapter 4, Sections 1 and 2

4

Outline
¢ Hill-climbing
> Simulated annealing
$ Genetic algorithms (briefly)

¢ Local search in continuous spaces (very briefly)

CMSC 421: Chapter 4, Sections 1 and 2 5

Hill-climbing (or gradient ascent/descent)

¢ “Like climbing Everest in thick fog with amnesia”

function HiLL-CLIMBING(problem)
current <— new node containing problem’s initial state
loop
next <— a highest-valued neighbor of current
if VALUE|next] < VALUE|[current] then return STATE[current]
current <— next
end

{ VALUE|z] is «’s objective-function value

e how good we consider x to be

< At each step, move to a neighbor of higher value
in hopes of getting to a solution having the highest possible value

¢ Can easily modify this for problems where we want to
minimize rather than maximize

CMSC 421: Chapter 4, Sections 1 and 2 6

Hill-climbing, continued

 State space “landscape”:

objecti\‘e function

shoulder

N

lobal maximum

local maximum

"flat" local maximum

»state space
current

state

& Random-restart hill climbing:

e rcpeat with randomly chosen starting points

¢ If finitely many local maxima, then limpaqtarts o 2 (complete) = 1

CMSC 421: Chapter 4, Sections 1 and 2

Simulated annealing

function SIMULATED- ANNEALING(problem, temperatures)

node <— a new node containing problem’s initial state

for i < 1to oo do
T < temperatures|i
if 7= 0 then return STATE[nod¢]
nert <— a randomly selected neighbor of node
AFE < VALUE|next] — VALUE[node] /* difference in desirability */
if AE > 0 then node < next
else with probability e®"/ 7 set node < newt

{ Idea: escape local maxima by allowing some “bad” moves

e but gradually decrease their frequency

 Next two slides: a simple example, in Python

CMSC 421: Chapter 4, Sections 1 and 2 8

import cmath, random

def anneal example(iterations): function ANNEAL EXAMPLE(iterations)
state = 0; history = [state] state <— 0; history < list containing state
for i in range(iterations): for 1 < 0 to ilerations — 1 do
T =10 * (0.9 ** i) T <10 % 0.9’
next = random.random() next <— a random number in [0,1)
DeltaE = value(next) - value(state) AF < VALUE(next) — VALUE(state)
target = cmath.e ** (DeltaE/T): target « e~B/T
if target > random.random() : if target > random no. in [0,1) then
state = next state <— next
history.append(round(state,3)) append state to history
return history return history
def Value(state) . function VALUE(StCLt@)
return -abs(0.5-state) return —|0.5 — state|

& A state is a number s € [0, 1]. All states are neighbors

¢ Desirability = max{—(dist. from 0.3), .025 — (dist. from .8)}
{ Start with state = 0; iterate for : = 0 to iterations—1

& On 7th iteration, temperature is 10 x 0.9’

e 10.0, 9.00, 8.10, 7.29, 6.56, 5.90, 5.31. 4.78, 4.30, 3.87.

CMSC 421: Chapter 4, Sections 1 and 2 9

Simple example, continued

—

Properties of simulated annealing

& At fixed “temperature” 1. probability of being in any given state x
approaches a Boltzman distribution

p(gj) = (ve€ kT

{ For every state x other than =" and for small 7",

E(x* E(x) E(x™)—E(z)

™)
p(w*)/p(x) — e kT /@ T = e kT >]

& It can be shown that if we decrease 7' slowly enough,

e Prreach x*| approaches 1

¢ Devised by Metropolis et al., 1953, for physical process modelling
e Widely used in VLSI layout, airline scheduling, etc.

CMSC 421: Chapter 4, Sections 1 and 2

11

Local beam search

function BEAM-SEARCH(problem, k) returns a solution state
start with & randomly generated states
loop
generate all successors of all & states
if any of them is a solution then return it
else select the £ best successors

& Not the same as k parallel searches
e Secarches that find good states will recruit other searches to join them

e Problem: often all k states end up on same local hill

> Stochastic beam search:
e Choose k successors randomly, biased towards good ones

e C(lose analogy to natural selection

CMSC 421: Chapter 4, Sections 1 and 2 12

Genetic algorithms
& Genetic algorithms
¢ stochastic local beam search
¢ generate successors from pairs of states
e Fach state should be a string of characters

e Substrings should be meaningful components

{ Example: n-queens problem
e 'th character = row where 7'th queen is located

752 |51447 672(51447

CMSC 421: Chapter 4, Sections 1 and 2 13

Genetic algorithms

function GENETIC-ALGORITHM(population, FITNESS)

loop

new-population <— empty set

for 1 = 1 to |population|
choose = and y randomly™ from population, using FITNESS
child = REPRODUCE(,7)
if small random probability then child = MUTATE(child)
add child to new-population

population <—new-population

if some individual is fit enough, or enough time has elapsed then
return arg max { FITNESS(x)|x € population}

function REPRODUCE(z, 1)

¢ <—random integer in range (len(x))
return z[:c] + ylec:]

*To choose z, usually use relative fitness:
for each = € population, Prlchoose x] = FITNESS(z)/2 . FITNESS(2).
To choose 7, usually use relative fitness or a uniform distribution

CMSC 421: Chapter 4, Sections 1 and 2 14

Genetic algorithms

327

52411

247

48552

327521411

fori=1to 4:
24748552 | 24 31%
32752411:%?:;%EEI
24415124 \zaigifz
32543213 11 1%

24415

124

:>__.
:>__.

Fithness Selection

Pairs

327!48552

32748152

32752;124

Reproduction

32752124

W

CMSC 421: Chapter 4, Sections 1 and 2 15

Same simple example as before

& A state is a number s € |0, 1]. All states are neighbors
¢ Fitness = max{—(dist. from 0.3), .025 — (dist. from .8)}

CMSC 421: Chapter 4, Sections 1 and 2 16

import random
stringsize = 4; top = 10**stringsize

def example(times=100, popsize=200, mutation_prob=.001):
population = [int(random.random() * top) for j in range(popsize)]
history = []
for 1 in range(times):
fitness = [value(population[j]) for j in range(popsize)]
fitmax = -float('inf")
for j in range(popsize):
if fitness[j] > fitmax:
fitmax = fitness[j]; jbest = j
history.append(population[jbest])
fit_sum = sum(fitness)
probs = [x/fit_sum for x in fitness]
cutoff = [sum(probs[:j+1]) for j in range(popsize)]
children = []
for j in range(popsize):
r = random.random()
for k in range(popsize):
if r < cutoff[k]: break
parl = population[k-1];
par2 = population[int(random.random() * popsize)]
split = int(random.random() * (stringsize+l))
child = str(parl)[:split] + str(par2)[split:]
1f random.random() < mutation_prob:
where = int(random.random() * stringsize)
what = str(int(random.random() * 10))
child = child[0O:where] + what + child[where+1:]
children.append(int(child))
population = children
return history

def value(s):
return max(-abs(round(0.3*top) - s), .025 - abs(round(0.8%*top) - s))

1

e 100 iterations, population size = 200, mutation probability = .001

e Running time is much worse than for simulated annealing

CMSC 421: Chapter 4, Sections 1 and 2

18

Discussion

¢ Genetic algorithms # biological evolution

e for example, real genes encode replication machinery
> Genetic algorithms are widely used by engineers for optimization problems
& circuit layout, job-shop scheduling

e Not clear whether this is due to performance or intuitive appeal

> More work is needed to identify conditions under which they perform well

CMSC 421: Chapter 4, Sections 1 and 2 19

Hill-climbing in continuous state spaces

> Suppose we want to put three airports in Romania — what locations?

e 0-D state space defined by (21, 12), (22, vy2), (23, y3)

e Objective function f(x1, Yo, T2, yo, T3, y3) measures desirability

¢ e.g.. sum of squared distances from each city to nearest airport

] Oradea

92

Sibiu g9 Fagaras

80 [] Vaslui

‘(xla yl) imni i
Timisoara Rimnicu Vilcea

Pitesti

7] Mehadia
75

Dobreta []

L craiova ‘(5527 y2> Eforie

] Giurgiu

Straight-line distance

to Bucharest
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova

| asi

L ugoj

M ehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Ur ziceni
Vadui
Zerind

366
0
160
242
161
178
I
151
226
244
241
234
380
98
193
253
329
80
199
374

CMSC 421: Chapter 4, Sections 1 and 2

20

Hill-climbing in continuous state spaces

& A technique from numerical analysis:
$ Given a surface z = f(x,y) and a point (z,y)

$ A gradient is a vector

of 0
Vf(z,y) = (a—i 0—]:;)

e points in the direction of the steepest slope

e length is proportional to the slope

{ Gradient methods compute V f and use it to increase/reduce f
o eg,x <+ x—aVf(x)

o If Vf = 0 then you've reached a local maximum/minimum

CMSC 421: Chapter 4, Sections 1 and 2 21

Hill-climbing in continuous state spaces

> Suppose we want to put three airports in Romania — what locations?

vi_ (9 2f of of of of
B oxy’ 8y1’ 0z’ 8927 3393’ Y3

¢ Look for xy, vy, 2o, Y2, T3, Y3 such that Vf(% Y1, X2,Y2, I3, yB) =0

Straight-line distance
to Bucharest

Arad 366

Buchar est 0

Craiova 160

Dobreta 242

Eforie 161

Fagaras 178

Giurgiu 77

[] Vaslui :"ir_SOVa 151

o as 226
Timisoara < 1;3/1) Lugo] 244
142 Mehadia 241

Pitesti Neamt 234

Oradea 380

98 . Pitesti 08

] Mehadia] Hirsova Rimnicu Vilcea 193

75 86 Sibiu 253
Timisoara 329

Dobreta [] 90 Ur ziceni 80
H craiova 0(5[72, yg) Eforie Vaslui 199

[] Giurgiu Zerind 374

CMSC 421: Chapter 4, Sections 1 and 2 22

Continuous state spaces, continued

{ Sometimes can solve for V f(x) = 0 exactly (e.g., with one city)

$ Newton—Raphson method (1664, 1690)
e solve Vf(x) =0 by iterating x + x — H '(x)V f(x)
o His an n x n matrix with H;; = 9° [/0z,0x;

e [used to know this stuff,
but that was a long time ago)

> Discretization methods turn continuous
space into discrete space

o c.g.. empirical gradient considers
+0 change in each coordinate

CMSC 421: Chapter 4, Sections 1 and 2

23

