Last update: October 2, 2012

Adversarial Search

CMSC 421, Chapter 5

CMSC 421, Chapter 5 1

We'll start with a restricted class of games

- \diamond **Finite**: finitely many players, actions, states
- ♦ Perfect information: Every agent always knows exactly what the current state is, and what the actions will do
 - $\diamond~$ No simultaneous actions: players move one at a time
 - Includes most (but not all) board games
 - Excludes most card games and video games
- \diamond **Deterministic**: no chance elements
 - Includes chess, checkers, go, tic-tac-toe, mancala (awari, kalah), Othello (Reversi), Connect-Four, Qubic, Quoridor, ...
 - Excludes backgammon, parcheesi, Monopoly, Yahtzee, Risk, Carcassonne, . . .

\Diamond **Zero-sum**: Σ {the players' payoffs} = 0

Outline

- $\diamondsuit~$ A brief history of work on this topic
- \diamond The minimax theorem
- \diamond Game trees
- \diamondsuit The minimax algorithm
- $\Diamond \alpha$ - β pruning
- \diamondsuit Resource limits and approximate evaluation

A brief history

- \diamond 1846 (Babbage): machine to play tic-tac-toe
- \Diamond 1928 (von Neumann): minimax theorem
- ♦ 1944 (von Neumann & Morgenstern): backward-induction algorithm (produces perfect play)
- \Diamond 1950 (Shannon): minimax algorithm (finite horizon, approximate evaluation)
- \diamondsuit 1951 (Turing): program (on paper) for playing chess
- \Diamond 1952–7 (Samuel): checkers program, capable of beating its creator
- $\diamondsuit~1956$ (McCarthy): pruning to allow deeper search
- $\diamondsuit~1957$ (Bernstein): first complete chess program
 - on an IBM 704 vacuum-tube computer
 - could examine about 350 positions/minute

A brief history, continued

 \diamond 1967 (Greenblatt): first program to compete in human chess tournaments:

- 3 wins, 3 draws, 12 losses
- \diamondsuit 1992 (Schaeffer): Chinook won the 1992 US Open checkers tournament
- \diamond 1994 (Schaeffer): Chinook became world checkers champion;
 - Tinsley (human champion) withdrew for health reasons
- \diamondsuit 1997 (H
su et al): Deep Blue won 6-game chess match against world chess champion Gary Kasparov
- \diamond 2007 (Schaeffer *et al*, 2007): Checkers solved:
 - with perfect play, it's a draw.
 - This took 10¹⁴ calculations over 18 years

Terminology

- \diamond *Utility*: numeric measure of how much a player likes an outcome of a game
- \diamondsuit U sually we'll assume this is the same as the game's payoff
 - When is this assumption correct?
- \diamond A *strategy* specifies what action an agent choose in every possible situation
 - *pure* strategy: the choice is always deterministic
 - *mixed* strategy: probability distribution over pure strategies
- \diamond Consider a game *G* between two players (Max and Min)
- \diamond Let U(s,t) be Max's *expected utility* if Max's and Min's strategies are s and t
- \diamond If G is a zero-sum game, then Min's utility is always -U(s,t)
 - Max wants to maximize U and Min wants to minimize it

The Minimax Theorem (von Neumann, 1928)

- \diamond **Minimax theorem:** If *G* is a finite, two-player, zero-sum game, then there are strategies s^* and t^* , and a number V_G called *G*'s *minimax value*, such that
 - If Min uses t^* , Max's expected utility is $\leq V_G$, i.e.,

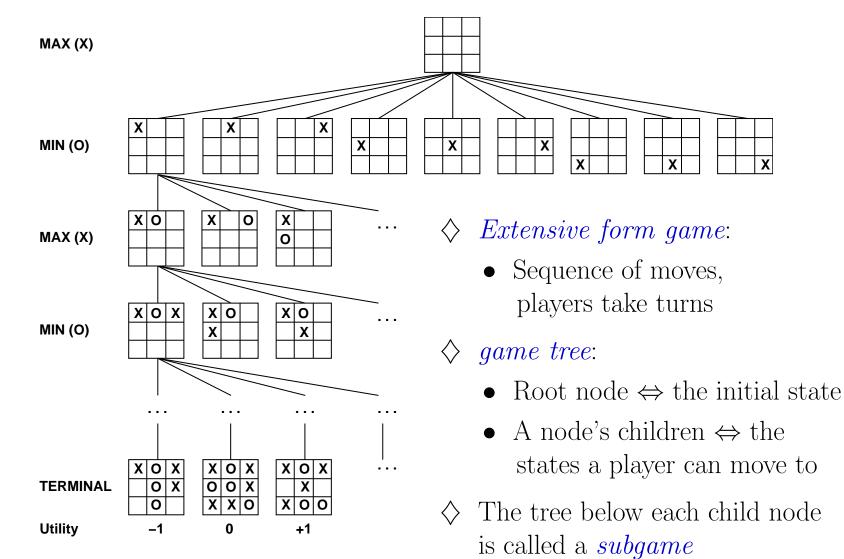
 $\max_{s} U(s, t^*) = V_G$

• If Max uses s^* , Max's expected utility is $\geq V_G$, i.e.,

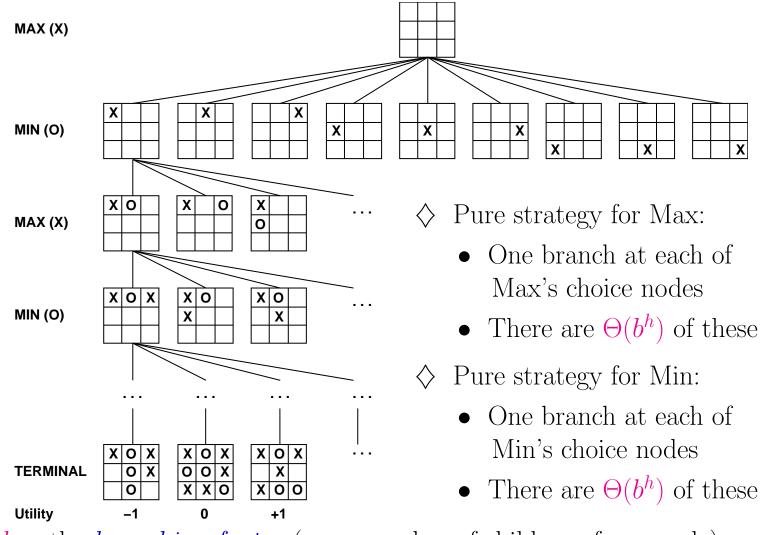
 $\min_{t} U(s^*, t) = V_G$

- \diamond Corollary 1: $U(s^*, t^*) = V_G$.
- ♦ Corollary 2: If G is a perfect-information game, then there are *pure* strategies s^* and t^* that satisfy the theorem.

Game trees

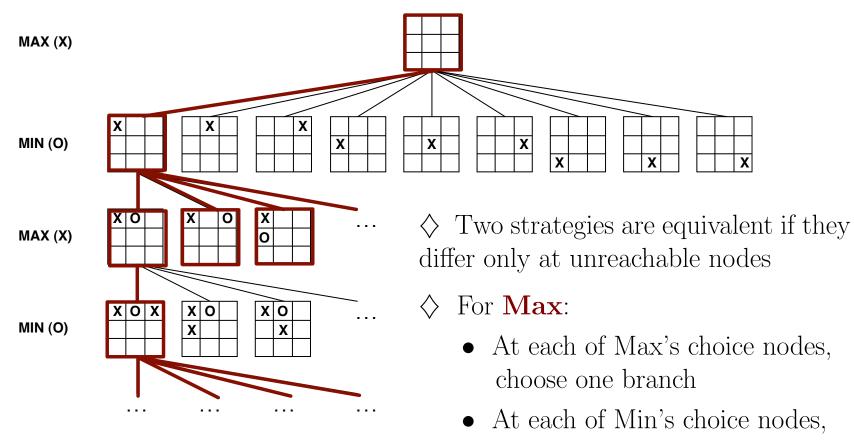


Strategies on game trees



b = the *branching factor* (max. number of children of any node) h = the tree's *height* (max. depth of any node)

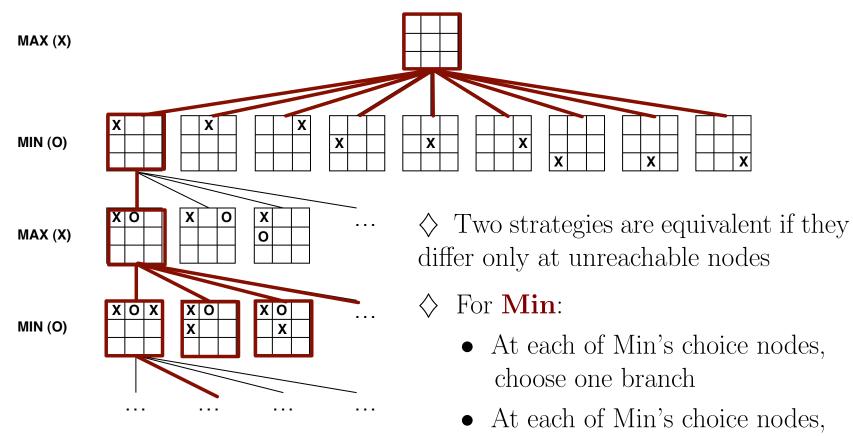
Strategies on game trees



include all branches \diamond Number of **non-equivalent** pure strategies for Max is $\Theta(b^{h/2})$

b = the *branching factor* (max. number of children of any node) h = the tree's *height* (max. depth of any node)

Strategies on game trees



include all branches \diamond Number of **non-equivalent** pure strategies for Min is $\Theta(b^{h/2})$

b = the *branching factor* (max. number of children of any node) h = the tree's *height* (max. depth of any node)

Finding the best strategy

- \diamond Brute-force approach
 - Let S and T be the sets of pure strategies for Max and Min
 - Compare every combination, choose the ones that work best:

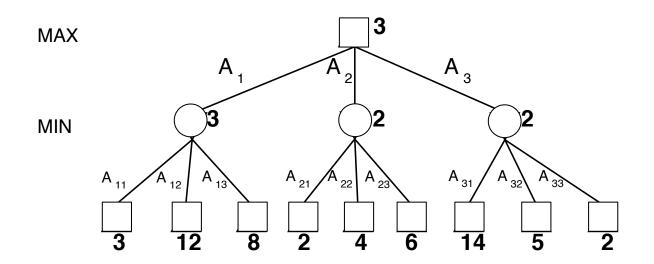
 $s^* = \arg \max_{s \in S} \min_{t \in T} U(s, t)$ $t^* = \arg \min_{t \in T} \max_{s \in S} U(s, t)$

- \diamondsuit Each player has $O(b^h)$ strategies, each strategy has size $O(b^h)$
- \diamond Number of comparisons is $O(b^{2h})$
 - If we keep all strategies in memory, each comparison takes time O(h) $\diamond O(hb^{2h})$ time and $O(b^{2h})$ space
 - If we generate strategies on the fly, each comparison takes time $O(hb^h)$ $\diamond O(hb^{3h})$ time and $O(b^h)$ space
- \diamond If we only include reachable nodes, replace h with h/2 above
- \diamondsuit But there's an easier way

Minimax Algorithm

 \diamond Compute minimax value recursively: time $O(b^h)$, space O(bh)

 $\begin{array}{l} \textbf{function MINIMAX}(s) \textbf{ returns } a \text{ utility value} \\ \textbf{if } s \text{ is a terminal state } \textbf{then return } \text{Max's payoff at } s \\ \textbf{else if it is Max's move in } s \textbf{then} \\ \textbf{return } \max\{\text{MINIMAX}(\operatorname{result}(a,s)) : a \text{ is applicable to } s\} \\ \textbf{else return } \min\{\text{MINIMAX}(\operatorname{result}(a,s)) : a \text{ is applicable to } s\} \\ \end{array}$



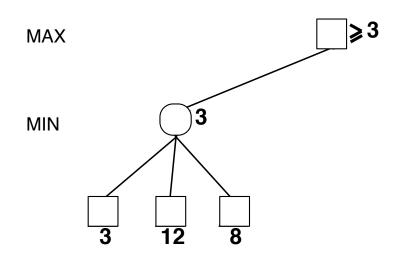
 \diamond To get the next move, return *argmax* and *argmin* instead of *max* and *min*

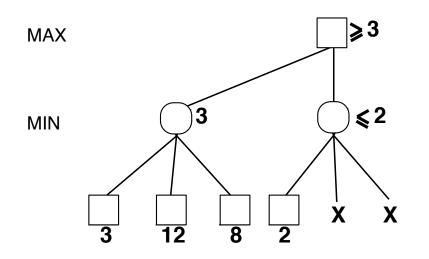
- Yes (can prove this by induction)
- *Is it complete?* I.e., does it always return an answer when one exists?

- Yes (can prove this by induction)
- *Is it complete?* I.e., does it always return an answer when one exists?
 - Yes on **finite** trees (e.g., chess has specific rules for this).
- $\Diamond \ \underline{Space \ complexity?}$

- Yes (can prove this by induction)
- \Diamond Is it complete? I.e., does it always return an answer when one exists?
 - Yes on **finite** trees (e.g., chess has specific rules for this).
- \Diamond Space complexity? O(bh), where b and h are as defined earlier
- \bigcirc Time complexity?

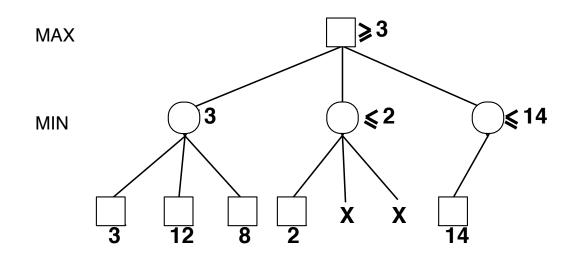
- Yes (can prove this by induction)
- \Diamond Is it complete? I.e., does it always return an answer when one exists?
 - Yes on **finite** trees (e.g., chess has specific rules for this).
- \Diamond Space complexity? O(bh), where b and h are as defined earlier
- \bigcirc <u>Time complexity?</u> $O(b^h)$
- \diamondsuit For chess, $b\approx 35,\,h\approx 100$ for "reasonable" games
 - $35^{100} \approx 10^{135}$ nodes
- ♦ About 10^{55} times the number of particles in the universe (about 10^{87}) ⇒ no way to examine every node!
- \diamond But do we really need to examine every node?



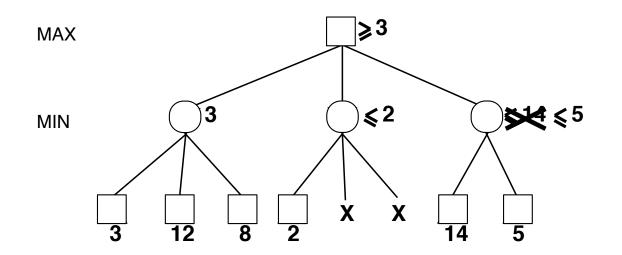


 \diamondsuit Max will never move to this node, because Max can do better by moving to the first one

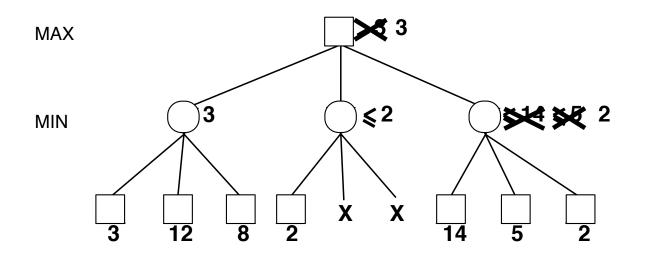
 \diamond Thus we don't need to figure out this node's minimax value



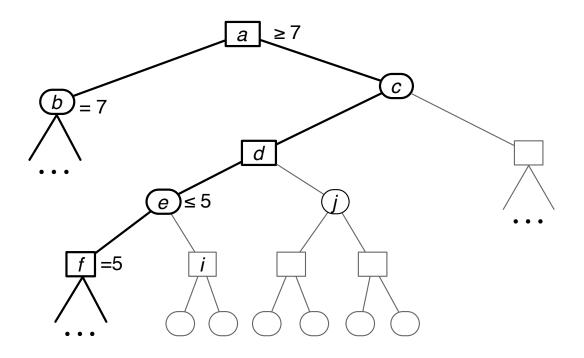
This node might be better than the first one



It still might be better than the first one



No, it isn't

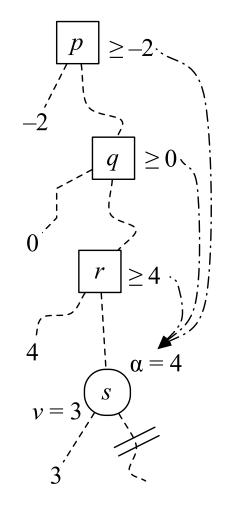


 \diamond Same idea works farther down in the tree

- Max won't move to e, because Max can do better by going to b
- Don't need e's exact value, because it won't change $\min(a)$
- So stop searching below e

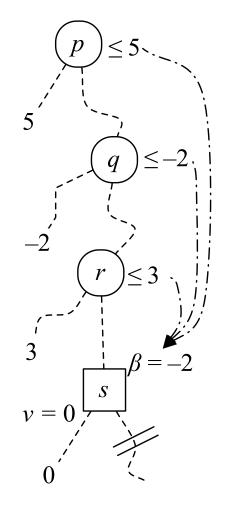
Alpha cutoff

- \diamondsuit Let *s* be any state where it's Min's move
- \diamond If we have visited some of s's children, then we have an upper bound $v \ge u(s)$
 - Let α = lower bound on the best alternative for Max along the path to *s*
 - If $v \leq \alpha$, then Max can do at least as well by moving off of the path to s
 - $\diamond~$ So stop searching below s
 - This is called an *alpha cutoff*
- \diamond Example:
 - In the figure, $\alpha = \max(-2, 0, 4) = 4$
 - $v = 3 < \alpha$, so stop searching below *s*
 - Max can do better by moving to r



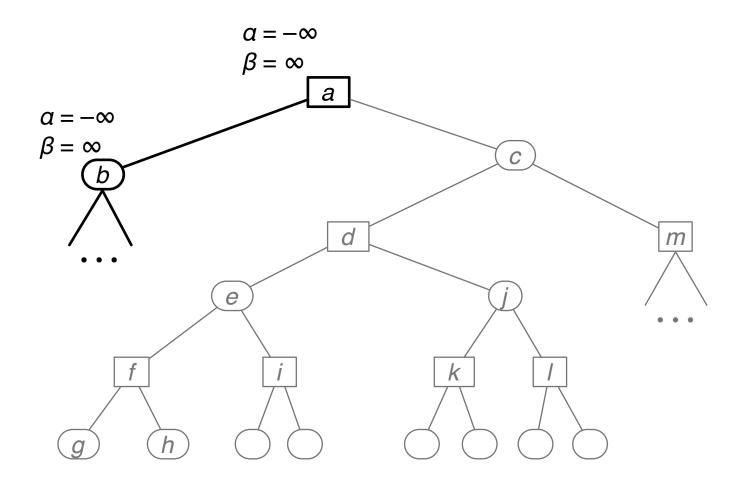
Beta cutoff

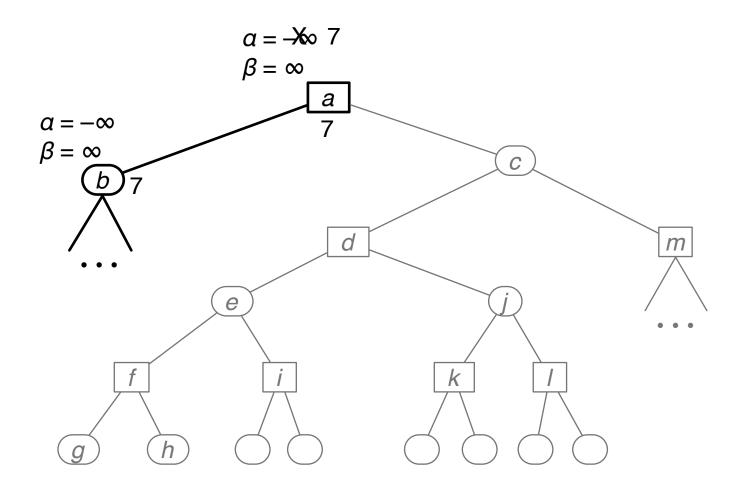
- \diamond Let *s* be any state where it's Max's move
- ♦ Let β = upper bound on Min's best alternative along the path to s
- \diamond If we have visited some of s's children, then we have a lower bound $v \leq u(s)$
 - If $v \ge \beta$, then Min can do at least as well by moving off of the path to s
 - \diamond So stop searching below *s*
 - This is called a *beta cutoff*
- \diamond Example:
 - In the figure, $\beta = \min(5, -2, 3) = -2$
 - $v = 0 > \beta$, so stop searching below s
 - Min can do better by moving to q

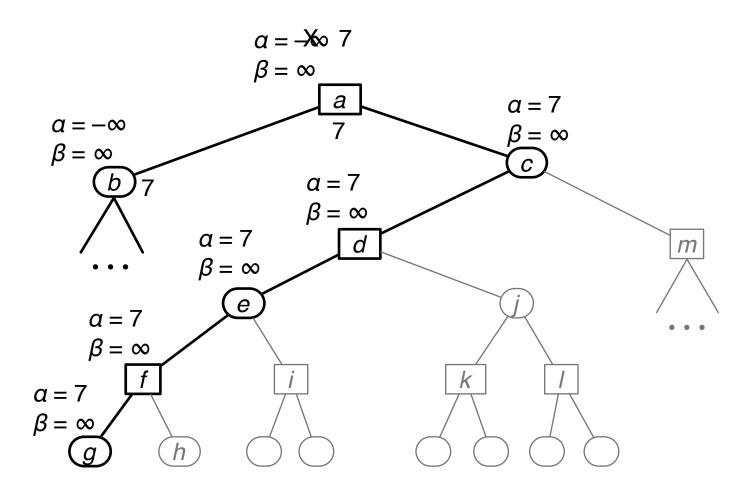


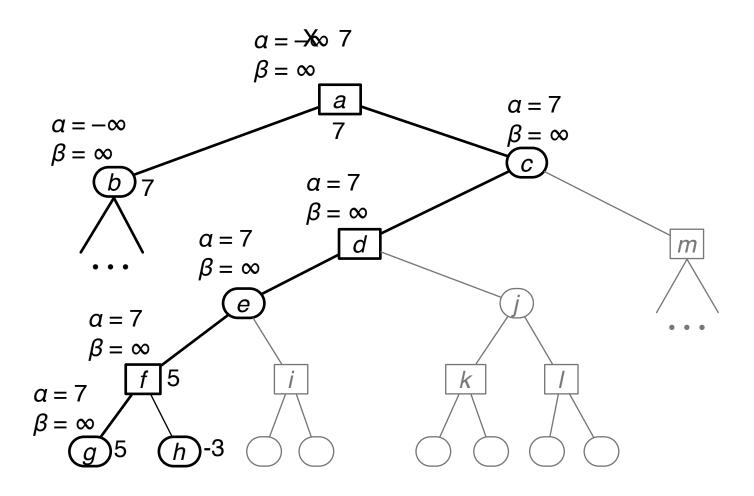
The alpha-beta algorithm

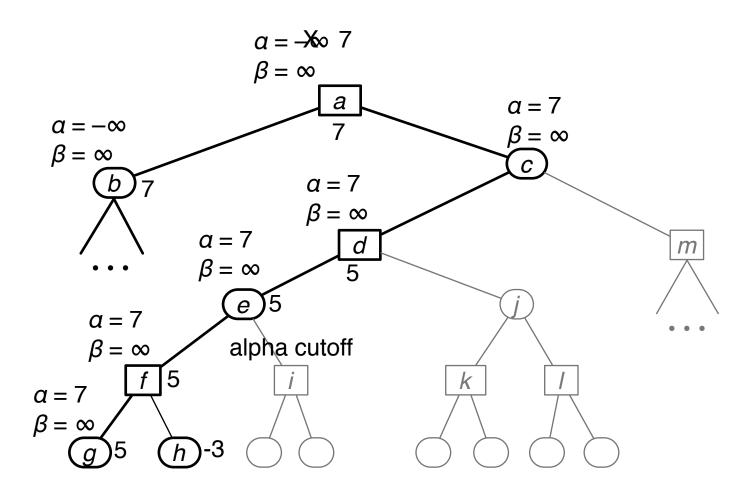
```
function ALPHA-BETA(s, \alpha, \beta)
inputs: s, current state
           \alpha, lower bound on Max's best alternative along the path to s
           \beta, upper bound on Min's best alternative along the path to s
if s is a terminal state then return Max's payoff at s
else if it is Max's move at s then
   v \leftarrow -\infty
   for every action a applicable to s do
       v \leftarrow \max(v, \text{Alpha-Beta}(\operatorname{result}(a, s), \alpha, \beta))
      if v \ge \beta then return v
      \alpha \leftarrow \max(\alpha, v) // Max's best alternative along the path to descendants of s
else
   v \leftarrow \infty
   for every action a applicable to s do
       v \leftarrow \min(v, \text{ALPHA-BETA}(\operatorname{result}(a, s), \alpha, \beta))
      if v \leq \alpha then return v
      \beta \leftarrow \min(\beta, v) // Min's best alternative along the path to descendants of s
return v
```

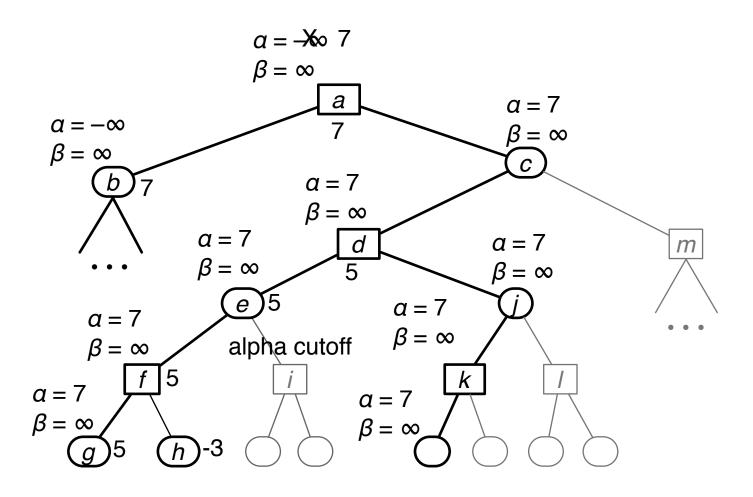


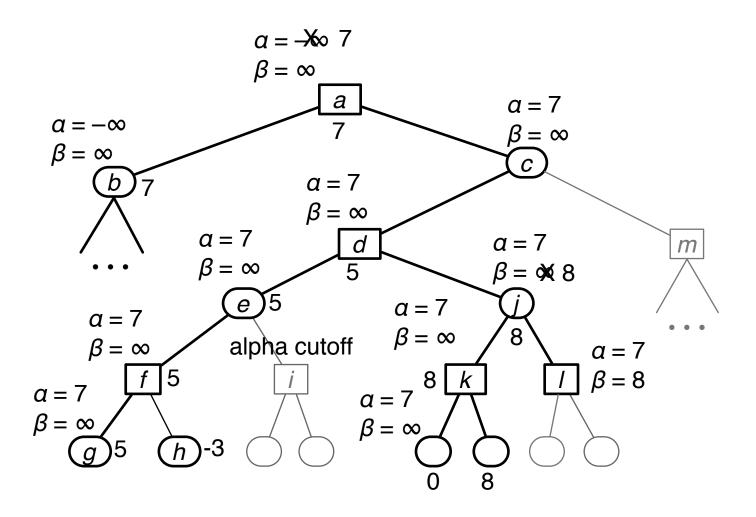


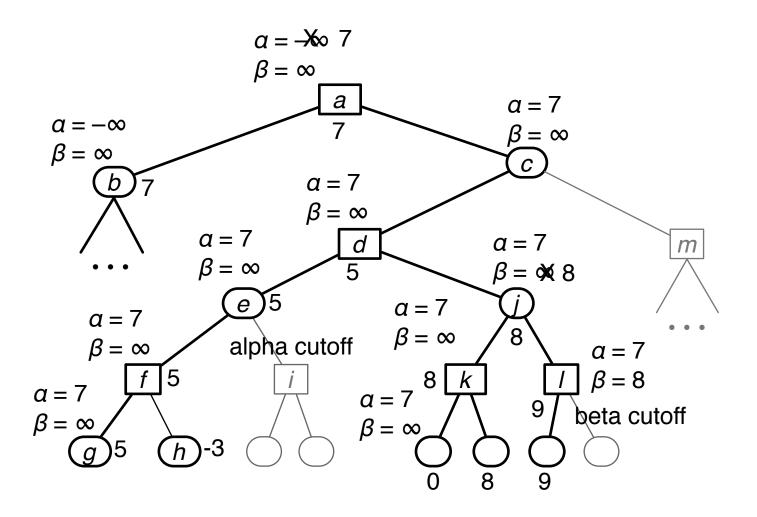


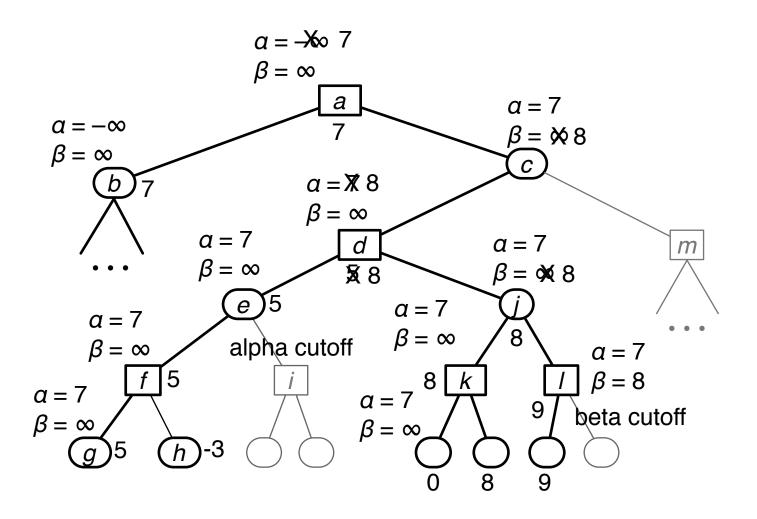




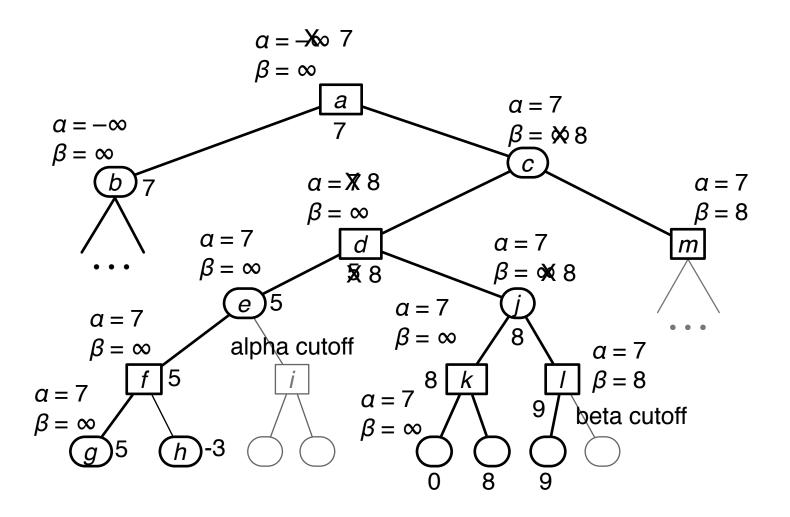








α - β pruning example



Properties of α - β

- \diamond The alpha-beta algorithm is a simple example of reasoning about which computations are relevant (a form of *metareasoning*)
 - if $\alpha \leq \min(s) \leq \beta$, then alpha-beta returns $\min(s)$
 - if $\min(s) \leq \alpha$, then alpha-beta returns a value $\leq \alpha$
 - if minimax(s) $\geq \beta$, then alpha-beta returns a value $\geq \beta$
- \diamond If we start with $\alpha = -\infty$ and $\beta = \infty$, then alpha-beta will always return minimax(s)
- \diamond Good move ordering can enable us to prune more nodes
 - Best case is if
 - $\diamond\,$ at nodes where it's Max's move, children are largest-value first
 - $\diamond~$ at nodes where it's Min's move, children are smallest-value first
 - ♦ In this case time complexity = $O(b^{h/2})$ ⇒ twice the solvable depth
 - Worst case is the reverse
 - $\diamond~$ In this case, $\alpha\text{-}\beta$ will search every node

Resource limits

 \diamondsuit Even with alpha-beta, it can still be infeasible to search the entire game tree $\diamond\,$ e.g., recall chess has about 10^{135} nodes

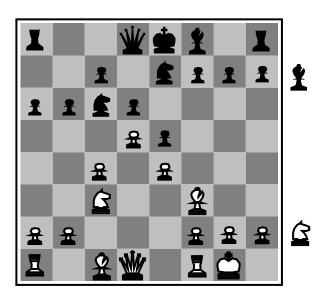
- \Rightarrow need to limit the depth of the search
- \diamond Basic approach: have a maximum search depth d
 - Whenever we reach a node of depth > d
 - $\diamond~$ If we're at a terminal state, then return Max's payoff
 - ♦ Otherwise return an *estimate* of the node's utility value, computed by a **static evaluation function**

$\alpha\text{-}\beta$ with a bound d on the search depth

```
function ALPHA-BETA(s, \alpha, \beta, d)
inputs: s, current state
           \alpha, lower bound on Max's best alternative along the path to s
           \beta, upper bound on Min's best alternative along the path to s
if s is a terminal state then return Max's payoff at s
else if d = 0 then return EVAL(s)
else if it is Max's move at s then
   v \leftarrow -\infty
   for every action a applicable to s do
      v \leftarrow \max(v, \text{ALPHA-BETA}(\operatorname{result}(a, s), \alpha, \beta, d-1))
      if v \geq \beta then return v
      \alpha \leftarrow \max(\alpha, v) // Max's best alternative along the path to descendants of s
else
   v \leftarrow \infty
   for every action a applicable to s do
      v \leftarrow \min(v, \text{ALPHA-BETA}(\operatorname{result}(a, s), \alpha, \beta, d-1))
      if v \leq \alpha then return v
      \beta \leftarrow \min(\beta, v) // Min's best alternative along the path to descendants of s
return v
```

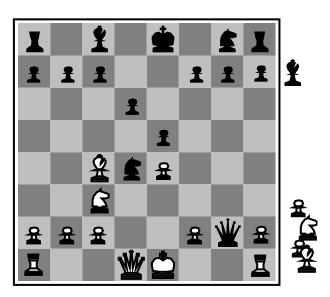
Evaluation functions

- \diamond EVAL(s) is supposed to return an approximation of s's minimax value
- \diamond EVAL is often a weighted sum of *features*
 - EVAL $(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$
 - E.g., 1 × (number of white pawns number of black pawns) + 3 × (number of white knights – number of black knights) + ...



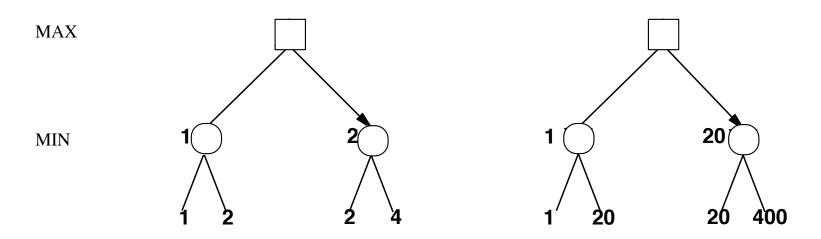
Black to move

White slightly better



White to move Black winning

Exact values for EVAL don't matter



 \diamondsuit Behavior is preserved under any **monotonic** transformation of EVAL

- Only the order matters:
- In deterministic games, payoff acts as an *ordinal utility* function

Discussion

- \diamondsuit Increasing the search depth usually gives better decisions
- \diamond There are some exceptions

. . .

- Main result in my PhD dissertation (more than 30 years ago!): "pathological" games in which deeper search gives worse decisions
- But such games hardly ever occur in practice
- \diamond Suppose we have 100 seconds, explore 10⁴ nodes/second
 - $\Rightarrow 10^6 \approx 35^{8/2}$ nodes per move
 - $\Rightarrow \alpha \beta$ reaches depth 8 \Rightarrow pretty good chess program
- Some modifications that can improve the accuracy or computation time: node ordering (see next slide) quiescence search biasing transposition tables thinking on the opponent's time

Node ordering

- \diamond Recall that I said:
 - Best case is if
 - $\diamond~$ at nodes where it's Max's move, children are largest-value first
 - $\diamond~$ at nodes where it's Min's move, children are smallest-value first
 - $\diamond~$ In this case time complexity = $O(b^{h/2}) \Rightarrow$ twice the solvable depth
 - Worst case is the reverse
 - $\diamond~$ In this case, $\alpha\text{-}\beta$ will search every node
- \diamondsuit How to get closer to the best case:
 - Every time you expand a state, apply EVAL to its children
 - If it's Min's move, sort the children in order of their EVAL values
 - If it's Max's move, sort the children in reverse order of their EVAL values

Quiescence search and biasing

- \diamond In a game like checkers or chess
 - The evaluation is based greatly on material pieces
 - It's likely to be inaccurate if there are pending captures
 - $\diamond~$ e.g., if someone is about to take your queen
- \diamondsuit Search deeper to reach a position where there aren't pending captures
 - Evaluations will be more accurate here
- \diamond But it creates another problem
 - You're searching some paths to an even depth, others to an odd depth
 - Paths that end just after your opponent's move will generally look worse than paths that end just after your move
- \diamondsuit Add or subtract a number called the "biasing factor" to try to fix this

Transposition tables

- \diamondsuit Often there are multiple paths to the same state
 - i.e., the state space is a really graph rather than a tree
- \diamondsuit Idea:
 - when you compute a node's minimax value, store it in a hash table
 - visit it again \Rightarrow retrieve its value rather than computing it again
- \diamondsuit The hash table is called a **transposition table**
 - Any idea why?
- \diamondsuit Problem: far too many states to store all of them
 - Store some of the states, rather than all of them
 - Try to store the ones that you're most likely to need

Thinking on the opponent's time

- \diamond Current state *s*, children s_1, \ldots, s_n
- \diamondsuit Compute their minimax values, move to the one that looks best
 - Suppose it's s_i
- \diamond You computed s_i 's minimax value as the min of its children, s_{i1}, \ldots, s_{im}
- \diamond Let s_{ij} be the child that has the smallest minimax value
 - According to your analysis, that's where the opponent is likely to move
- \diamond While waiting for the opponent to move, do a minimax search at s_{ij}
 - If your opponent moves to s_{ij}
 - \diamond then you have a head start on figuring out your next move
 - If your opponent moves to s_{ij}
 - \diamond then its no worse than if you just waited

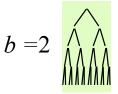
Game-tree search in practice

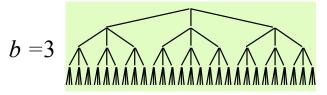
 \diamond **Checkers** was solved in April 2007; took 10¹⁴ calculations over 18 years

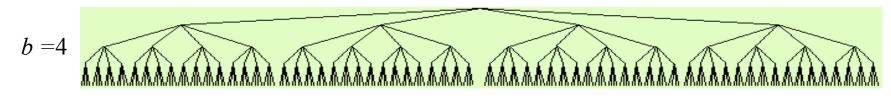
- With perfect play, it's a draw
- Search space of size 5×10^{20}
- \diamond **Chess**: Deep Blue searches 200 million positions per second
 - very sophisticated evaluation
 - undisclosed methods for extending some lines of search up to 40 ply
- ♦ **Othello** programs are much better than the best human players
- \diamond **Go**: Until about 5 years ago, computer programs were very bad
 - A different kind of tree search has improved them dramatically
 - Now, probably about as good as a good amateur

Game-tree search in the game of go

- $\diamondsuit\,$ A game tree's size grows exponentially with both its depth and its branching factor
- \diamond Go is much too big for a normal game-tree search:
 - branching factor = about 200
 - game length = about 250 to 300 moves
 - number of paths in the game tree = 10^{525} to 10^{620}
- \diamondsuit For comparison, the size of the universe
 - About 10^{80} atoms
 - About 10^{87} particles







Game-tree search in the game of go

- \diamondsuit During the past 4–5 years, go programs have gotten much better
- ♦ Main reason: Monte Carlo roll-outs
- \diamondsuit Basic idea: do a minimax search of a randomly selected subtree
- \diamondsuit At each node that the algorithm visits,
 - It randomly selects some of the children There are some heuristics for deciding how many
 - It calls itself recursively on these, ignores the others

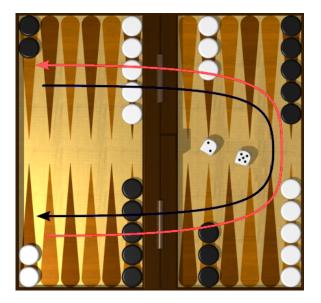
Forward pruning in chess

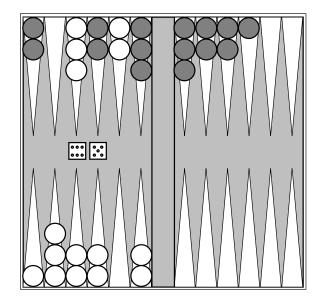
- $\diamondsuit~$ Back in the 1970s, some similar ideas were tried in chess
- \diamondsuit The approach was called **forward pruning**
 - Main difference: select the children heuristically rather than randomly
 - It didn't work as well as brute-force alpha-beta, so people abandoned it
- \diamond Why does a similar idea work so much better in go?

Perfect-information stochastic games

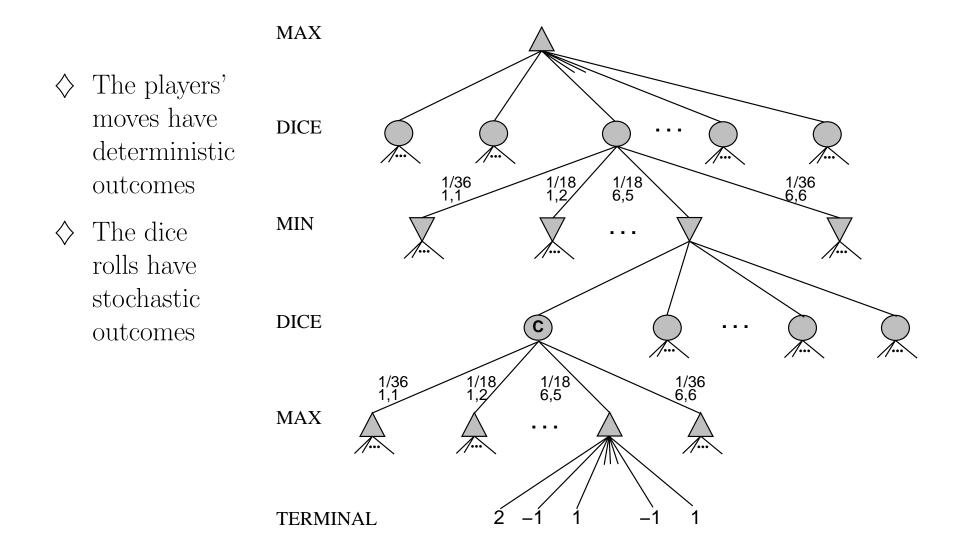
♦ Example: **backgammon**

- Two players who take turns
- At each turn, the set of available moves depends on the results of rolling the dice
- Each die specifies how far to move one of your pieces (except if you roll doubles)
- If your piece will land on a location that contains 2 or more of the opponent's piece you can't move there
- If your piece lands on a location that contains 1 of the opponent's pieces, that piece must start over

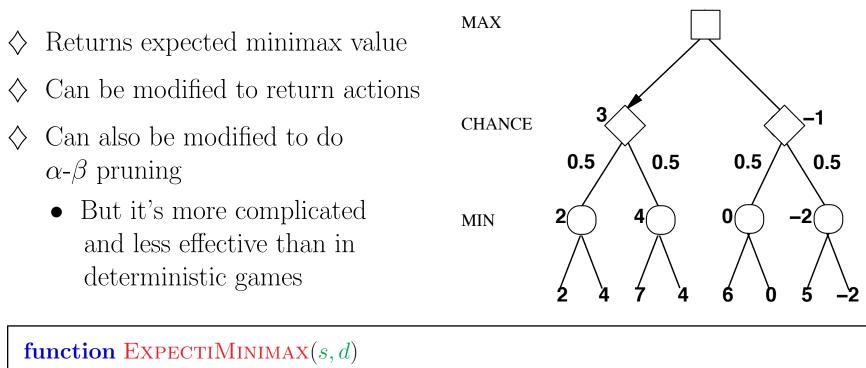




Backgammon game tree



Expectiminimax

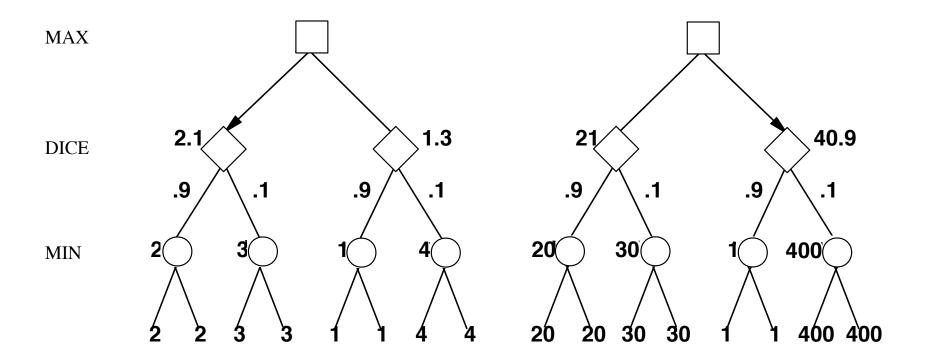


if s is a terminal state then return Max's payoff at s else if d = 0 then return EVAL(s) else if s is a "chance" node then return $\sum_{t \in children(s)} P(t|s)$ EXPECTIMINIMAX(t, d - 1)else if it is Max's move at s then return max{EXPECTIMINIMAX(result(a, s), d - 1) : a is applicable to s} else return min{EXPECTIMINIMAX(result(a, s), d - 1) : a is applicable to s}

In stochastic games, exact values do matter

 \diamondsuit At "chance" nodes, we need to compute weighted averages

- Behavior is preserved only by *positive linear* transformations of EVAL
- Hence EVAL should be proportional to the expected payoff



In practice

- \diamond Dice rolls increase b: 21 possible rolls with 2 dice
- \diamondsuit Given the dice roll, \thickapprox 20 legal moves on average
 - (for some dice rolls, can be much higher)

depth 4 $\implies 20 \times (21 \times 20)^3 \approx 1.2 \times 10^9$

- \diamondsuit As depth increases, probability of reaching a given node shrinks \Rightarrow value of lookahead is diminished
- $\Diamond \alpha$ - β pruning is much less effective
- ♦ The evaluation function was created automatically using a machine-learning technique called Temporal Difference learning
 - hence the TD in TDGammon

Summary

- \diamondsuit We looked at games that have the following characteristics:
 - two players, zero sum, perfect information, finite
- \diamond Case 1: deterministic
 - In these games, can do a game-tree search
 - $\diamond\,$ minimax values, alpha-beta pruning
 - In sufficiently complicated games, perfection is unattainable
 - $\diamond~$ approximate using limited search depth, static evaluation function
 - In some games, other techniques are better
 - $\diamond~$ Monte Carlo roll-outs
- \diamond Case 2: stochastic (e.g., dice rolls)
 - Expectiminimax

Reminder: midterm exam postponed

- \diamondsuit October 9 was causing problems for too many people
- \diamondsuit We discussed this in class last Tuesday, and decided to postpone it to Thursday, October 18