
Last update: October 2, 2012

Adversarial Search

CMSC 421, Chapter 5

CMSC 421, Chapter 5 1

We’ll start with a restricted class of games

♦ Finite: finitely many players, actions, states

♦ Perfect information: Every agent always knows exactly
what the current state is, and what the actions will do

� No simultaneous actions: players move one at a time

• Includes most (but not all) board games

• Excludes most card games and video games

♦ Deterministic: no chance elements

• Includes chess, checkers, go, tic-tac-toe, mancala (awari, kalah),
Othello (Reversi), Connect-Four, Qubic, Quoridor, . . .

• Excludes backgammon, parcheesi, Monopoly, Yahtzee, Risk,
Carcassonne, . . .

♦ Zero-sum: Σ{the players’ payoffs} = 0

CMSC 421, Chapter 5 2

Outline

♦ A brief history of work on this topic

♦ The minimax theorem

♦ Game trees

♦ The minimax algorithm

♦ α-β pruning

♦ Resource limits and approximate evaluation

CMSC 421, Chapter 5 3

A brief history

♦ 1846 (Babbage): machine to play tic-tac-toe

♦ 1928 (von Neumann): minimax theorem

♦ 1944 (von Neumann & Morgenstern): backward-induction algorithm
(produces perfect play)

♦ 1950 (Shannon): minimax algorithm (finite horizon, approximate
evaluation)

♦ 1951 (Turing): program (on paper) for playing chess

♦ 1952–7 (Samuel): checkers program, capable of beating its creator

♦ 1956 (McCarthy): pruning to allow deeper search

♦ 1957 (Bernstein): first complete chess program

• on an IBM 704 vacuum-tube computer

• could examine about 350 positions/minute

CMSC 421, Chapter 5 4

A brief history, continued

♦ 1967 (Greenblatt): first program to compete in human chess tournaments:

• 3 wins, 3 draws, 12 losses

♦ 1992 (Schaeffer): Chinook won the 1992 US Open checkers tournament

♦ 1994 (Schaeffer): Chinook became world checkers champion;

• Tinsley (human champion) withdrew for health reasons

♦ 1997 (Hsu et al): Deep Blue won 6-game chess match against
world chess champion Gary Kasparov

♦ 2007 (Schaeffer et al, 2007): Checkers solved:

• with perfect play, it’s a draw.

• This took 1014 calculations over 18 years

CMSC 421, Chapter 5 5

Terminology

♦ Utility: numeric measure of how much a player
likes an outcome of a game

♦ Usually we’ll assume this is the same as the game’s payoff

• When is this assumption correct?

♦ A strategy specifies what action an agent choose in every possible situation

• pure strategy: the choice is always deterministic

• mixed strategy: probability distribution over pure strategies

♦ Consider a game G between two players (Max and Min)

♦ Let U(s, t) be Max’s expected utility if Max’s and Min’s strategies
are s and t

♦ If G is a zero-sum game, then Min’s utility is always −U(s, t)

• Max wants to maximize U and Min wants to minimize it

CMSC 421, Chapter 5 6

The Minimax Theorem (von Neumann, 1928)

♦ Minimax theorem: If G is a finite, two-player, zero-sum game, then
there are strategies s∗ and t∗, and a number VG called G’s minimax value,
such that

• If Min uses t∗, Max’s expected utility is ≤ VG, i.e.,

max
s
U(s, t∗) = VG

• If Max uses s∗, Max’s expected utility is ≥ VG, i.e.,

min
t
U(s∗, t) = VG

♦ Corollary 1: U(s∗, t∗) = VG.

♦ Corollary 2: If G is a perfect-information game,
then there are pure strategies s∗ and t∗ that satisfy the theorem.

CMSC 421, Chapter 5 7

Game trees

XX
XX

X
X

X

XX

MAX (X)

MIN (O)

X X

O

O
OX O

O
O O

O OO

MAX (X)

X OX OX O X
X X

X
X

X X

MIN (O)

X O X X O X X O X

.

. . .

. . .

. . .

TERMINAL
XX

−1 0 +1Utility

♦ Extensive form game:

• Sequence of moves,
players take turns

♦ game tree:

• Root node ⇔ the initial state

• A node’s children ⇔ the
states a player can move to

♦ The tree below each child node
is called a subgame

CMSC 421, Chapter 5 8

Strategies on game trees

XX
XX

X
X

X

XX

MAX (X)

MIN (O)

X X

O

O
OX O

O
O O

O OO

MAX (X)

X OX OX O X
X X

X
X

X X

MIN (O)

X O X X O X X O X

.

. . .

. . .

. . .

TERMINAL
XX

−1 0 +1Utility

♦ Pure strategy for Max:

• One branch at each of
Max’s choice nodes

• There are Θ(bh) of these

♦ Pure strategy for Min:

• One branch at each of
Min’s choice nodes

• There are Θ(bh) of these

b = the branching factor (max. number of children of any node)
h = the tree’s height (max. depth of any node)

CMSC 421, Chapter 5 9

Strategies on game trees

XX
XX

X
X

X

XX

MAX (X)

MIN (O)

X X

O

O
OX O

O
O O

O OO

MAX (X)

X OX OX O X
X X

X
X

X X

MIN (O)

X O X X O X X O X

.

. . .

. . .

. . .
TERMINAL

XX
−1 0 +1Utility

♦ Two strategies are equivalent if they
differ only at unreachable nodes

♦ For Max:

• At each of Max’s choice nodes,
choose one branch

• At each of Min’s choice nodes,
include all branches

♦ Number of non-equivalent pure strategies for Max is Θ(bh/2)

b = the branching factor (max. number of children of any node)
h = the tree’s height (max. depth of any node)

CMSC 421, Chapter 5 10

Strategies on game trees

XX
XX

X
X

X

XX

MAX (X)

MIN (O)

X X

O

O
OX O

O
O O

O OO

MAX (X)

X OX OX O X
X X

X
X

X X

MIN (O)

X O X X O X X O X

.

. . .

. . .

. . .
TERMINAL

XX
−1 0 +1Utility

♦ Two strategies are equivalent if they
differ only at unreachable nodes

♦ For Min:

• At each of Min’s choice nodes,
choose one branch

• At each of Min’s choice nodes,
include all branches

♦ Number of non-equivalent pure strategies for Min is Θ(bh/2)

b = the branching factor (max. number of children of any node)
h = the tree’s height (max. depth of any node)

CMSC 421, Chapter 5 11

Finding the best strategy

♦ Brute-force approach

• Let S and T be the sets of pure strategies for Max and Min

• Compare every combination, choose the ones that work best:

s∗ = arg max
s∈S

min
t∈T

U(s, t)

t∗ = arg min
t∈T

max
s∈S

U(s, t)

♦ Each player has O(bh) strategies, each strategy has size O(bh)

♦ Number of comparisons is O(b2h)

• If we keep all strategies in memory, each comparison takes time O(h)

� O(hb2h) time and O(b2h) space

• If we generate strategies on the fly, each comparison takes time O(hbh)

� O(hb3h) time and O(bh) space

♦ If we only include reachable nodes, replace h with h/2 above

♦ But there’s an easier way

CMSC 421, Chapter 5 12

Minimax Algorithm

♦ Compute minimax value recursively: time O(bh), space O(bh)

function Minimax(s) returns a utility value

if s is a terminal state then return Max’s payoff at s

else if it is Max’s move in s then

return max{Minimax(result(a, s)) : a is applicable to s}
else return min{Minimax(result(a, s)) : a is applicable to s}

MAX

3 12 8 642 14 5 2

MIN

3
A 1 A 3A 2

A 13A 12A 11 A 21 A 23A 22 A 33A 32A 31

3 2 2

♦ To get the next move, return argmax and argmin instead of max and min

CMSC 421, Chapter 5 13

Properties of the minimax algorithm

♦ Is it sound? I.e., when it returns answers, are they correct?

CMSC 421, Chapter 5 14

Properties of the minimax algorithm

♦ Is it sound? I.e., when it returns answers, are they correct?

• Yes (can prove this by induction)

♦ Is it complete? I.e., does it always return an answer when one exists?

CMSC 421, Chapter 5 15

Properties of the minimax algorithm

♦ Is it sound? I.e., when it returns answers, are they correct?

• Yes (can prove this by induction)

♦ Is it complete? I.e., does it always return an answer when one exists?

• Yes on finite trees (e.g., chess has specific rules for this).

♦ Space complexity?

CMSC 421, Chapter 5 16

Properties of the minimax algorithm

♦ Is it sound? I.e., when it returns answers, are they correct?

• Yes (can prove this by induction)

♦ Is it complete? I.e., does it always return an answer when one exists?

• Yes on finite trees (e.g., chess has specific rules for this).

♦ Space complexity? O(bh), where b and h are as defined earlier

♦ Time complexity?

CMSC 421, Chapter 5 17

Properties of the minimax algorithm

♦ Is it sound? I.e., when it returns answers, are they correct?

• Yes (can prove this by induction)

♦ Is it complete? I.e., does it always return an answer when one exists?

• Yes on finite trees (e.g., chess has specific rules for this).

♦ Space complexity? O(bh), where b and h are as defined earlier

♦ Time complexity? O(bh)

♦ For chess, b ≈ 35, h ≈ 100 for “reasonable” games

• 35100 ≈ 10135 nodes

♦ About 1055 times the number of particles in the universe (about 1087)
⇒ no way to examine every node!

♦ But do we really need to examine every node?

CMSC 421, Chapter 5 18

Pruning example 1

MAX

3 12 8

MIN 3

2

2

X X

3

CMSC 421, Chapter 5 19

Pruning example 1

MAX

3 12 8

MIN 3

2

2

X X

3

♦ Max will never move to this node, because Max can do better by moving to
the first one

♦ Thus we don’t need to figure out this node’s minimax value

CMSC 421, Chapter 5 20

Pruning example 1

MAX

3 12 8

MIN 3

2

2

X X
14

14

3

This node might be better than the first one

CMSC 421, Chapter 5 21

Pruning example 1

MAX

3 12 8

MIN 3

2

2

X X
14

14

5

5

3

It still might be better than the first one

CMSC 421, Chapter 5 22

Pruning example 1

MAX

3 12 8

MIN

3

3

2

2

X X
14

14

5

5

2

2

3

No, it isn’t

CMSC 421, Chapter 5 23

Pruning example 2

 a

 b

≥ 7

 c

 d

≤ 5

=5

 e j

 f i

 • • •

= 7

 • • •

 • • •

♦ Same idea works farther down in the tree

• Max won’t move to e, because Max can do better by going to b

• Don’t need e’s exact value, because it won’t change minimax(a)

• So stop searching below e

CMSC 421, Chapter 5 24

Alpha cutoff

♦ Let s be any state where it’s Min’s move

♦ If we have visited some of s’s children, then
we have an upper bound v ≥ u(s)

• Let α = lower bound on the best
alternative for Max along the path to s

• If v ≤ α, then Max can do at least as well
by moving off of the path to s

� So stop searching below s

• This is called an alpha cutoff

♦ Example:

• In the figure, α = max(−2, 0, 4) = 4

• v = 3 < α, so stop searching below s

• Max can do better by moving to r

α = 4 4

 ≥ 4 r

 ≥ –2p

s

 3

 –2
q

 0

 ≥ 0

v = 3

CMSC 421, Chapter 5 25

Beta cutoff

♦ Let s be any state where it’s Max’s move

♦ Let β = upper bound on Min’s best alternative
along the path to s

♦ If we have visited some of s’s children, then
we have a lower bound v ≤ u(s)

• If v ≥ β, then Min can do at least as well
by moving off of the path to s

� So stop searching below s

• This is called a beta cutoff

♦ Example:

• In the figure, β = min(5,−2, 3) = −2

• v = 0 > β, so stop searching below s

• Min can do better by moving to q

β = –2 3

 ≤ 3 r

 ≤ 5p

s

0

 5
q

 –2

 ≤ –2

v = 0

CMSC 421, Chapter 5 26

The alpha-beta algorithm

function Alpha-Beta(s,α,β)

inputs: s, current state

α, lower bound on Max’s best alternative along the path to s

β, upper bound on Min’s best alternative along the path to s

if s is a terminal state then return Max’s payoff at s

else if it is Max’s move at s then

v ← −∞
for every action a applicable to s do

v ← max(v ,Alpha-Beta(result(a, s), α, β))

if v ≥ β then return v

α ← max(α, v) // Max’s best alternative along the path to descendants of s

else

v ← ∞
for every action a applicable to s do

v ← min(v ,Alpha-Beta(result(a, s), α, β))

if v ≤ α then return v

β ← min(β, v) // Min’s best alternative along the path to descendants of s

return v

CMSC 421, Chapter 5 27

α-β pruning example

 a

 b
 c

 d m

 e j

 f i k l

 g h

 • • •

 • • •

α = –∞
β = ∞

α = –∞
β = ∞

CMSC 421, Chapter 5 28

α-β pruning example

 a

 b
 c

 d m

 e j

 f i k l

 g h

 • • •

 • • •

α = –∞
β = ∞

α = –∞
β = ∞

7

X 7

7

CMSC 421, Chapter 5 29

α-β pruning example

 a

 b
 c

 d

 e

 f

 g

 • • •

7

α = –∞
β = ∞

α = 7
β = ∞

α = 7
β = ∞

α = 7
β = ∞

α = 7
β = ∞

X 7

α = –∞
β = ∞

m

 j

 i k l

 • • •

7

 h

α = 7
β = ∞

CMSC 421, Chapter 5 30

α-β pruning example

 a

 b
 c

 d

5

5 -3

 e

 f

 g h

 • • •

7

α = –∞
β = ∞

α = 7
β = ∞

α = 7
β = ∞

α = 7
β = ∞

α = 7
β = ∞

X 7

α = –∞
β = ∞

m

 j

 i k l

 • • •

7

α = 7
β = ∞

CMSC 421, Chapter 5 31

α-β pruning example

 a

 b
 c

 d

5

5

5 -3

 e

 f

 g h

 • • •

7

α = –∞
β = ∞

α = 7
β = ∞

α = 7
β = ∞

α = 7
β = ∞

α = 7
β = ∞

X 7

α = –∞
β = ∞

m

 j

 i k l

 • • •
alpha cutoff

5

7

α = 7
β = ∞

CMSC 421, Chapter 5 32

α-β pruning example

 a

 b
 c

 d

5

5

5 -3

 e j

 f i k

 g h

 • • •

7

α = –∞
β = ∞

α = 7
β = ∞

α = 7
β = ∞

α = 7
β = ∞

α = 7
β = ∞

α = 7
β = ∞

α = 7
β = ∞

X 7

α = –∞
β = ∞

alpha cutoff

m

 • • •

 l

5

7

α = 7
β = ∞

α = 7
β = ∞

CMSC 421, Chapter 5 33

α-β pruning example

 a

 b
 c

 d

5

5

5 -3

 e j

 f i k l

 g h

 • • •

7

α = –∞
β = ∞

0 8

8

α = 7
β = ∞

α = 7
β = ∞

α = 7
β = ∞

α = 7
β = ∞

α = 7
β = ∞

α = 7
β = ∞

X 8

X 7

α = 7
β = 8

α = –∞
β = ∞

alpha cutoff

m

 • • •

5

8

7

α = 7
β = ∞

α = 7
β = ∞

CMSC 421, Chapter 5 34

α-β pruning example

 a

 b
 c

 d

5

5

5 -3

 e j

 f i k l

 g h

 • • •

7

α = –∞
β = ∞

α = 7
β = ∞

α = 7
β = ∞

α = 7
β = ∞

α = 7
β = ∞

α = 7
β = ∞

α = 7
β = ∞

X 8

X 7

α = 7
β = 8

α = –∞
β = ∞

alpha cutoff

beta cutoff

9

9

m

 • • •

0 8

8

5

8

7

α = 7
β = ∞

α = 7
β = ∞

CMSC 421, Chapter 5 35

α-β pruning example

 a

 b
 c

 d

5

5

5 -3

 e j

 f i k l

 g h

 • • •

7

α = –∞
β = ∞

α = 7
β = ∞

α = 7
β = ∞

α = 7
β = ∞

α = 7
β = ∞

α = 7
β = ∞

α = 7
β = ∞

X 8

X 7

α = 7
β = 8

X 8

α = –∞
β = ∞

alpha cutoff

beta cutoff

9

9

0 8

8

5

8

X 8

7

m

 • • •

α = 7
β = ∞

α = 7
β = ∞

X 8

CMSC 421, Chapter 5 36

α-β pruning example

 a

 b
 c

 d

5

5

5 -3

 e j

 f i k l

 g h

 • • •

7

α = –∞
β = ∞

α = 7
β = ∞

α = 7
β = ∞

α = 7
β = ∞

α = 7
β = ∞

α = 7
β = ∞

α = 7
β = ∞

X 8

X 7

α = 7
β = 8

X 8

X 8α = –∞
β = ∞

alpha cutoff

m

 • • • • • •

m

α = 7
β = 8

beta cutoff

9

9

0 8

8

5

8

X 8

7

α = 7
β = ∞

α = 7
β = ∞

CMSC 421, Chapter 5 37

Properties of α-β

♦ The alpha-beta algorithm is a simple example of reasoning about
which computations are relevant (a form of metareasoning)

• if α ≤ minimax(s) ≤ β, then alpha-beta returns minimax(s)

• if minimax(s) ≤ α, then alpha-beta returns a value ≤ α

• if minimax(s) ≥ β, then alpha-beta returns a value ≥ β

♦ If we start with α = −∞ and β =∞, then
alpha-beta will always return minimax(s)

♦ Good move ordering can enable us to prune more nodes

• Best case is if

� at nodes where it’s Max’s move, children are largest-value first

� at nodes where it’s Min’s move, children are smallest-value first

� In this case time complexity = O(bh/2) ⇒ twice the solvable depth

• Worst case is the reverse

� In this case, α-β will search every node

CMSC 421, Chapter 5 38

Resource limits

♦ Even with alpha-beta, it can still be infeasible to search the entire game tree
� e.g., recall chess has about 10135 nodes

• ⇒ need to limit the depth of the search

♦ Basic approach: have a maximum search depth d

• Whenever we reach a node of depth > d

� If we’re at a terminal state, then return Max’s payoff

� Otherwise return an estimate of the node’s utility value,
computed by a static evaluation function

CMSC 421, Chapter 5 39

α-β with a bound d on the search depth

function Alpha-Beta(s,α,β,d)

inputs: s, current state

α, lower bound on Max’s best alternative along the path to s

β, upper bound on Min’s best alternative along the path to s

if s is a terminal state then return Max’s payoff at s

else if d = 0 then return Eval(s)

else if it is Max’s move at s then

v ← −∞
for every action a applicable to s do

v ← max(v ,Alpha-Beta(result(a, s), α, β,d − 1))

if v ≥ β then return v

α ← max(α, v) // Max’s best alternative along the path to descendants of s

else

v ← ∞
for every action a applicable to s do

v ← min(v ,Alpha-Beta(result(a, s), α, β,d − 1))

if v ≤ α then return v

β ← min(β, v) // Min’s best alternative along the path to descendants of s

return v

CMSC 421, Chapter 5 40

Evaluation functions

♦ Eval(s) is supposed to return an approximation of s’s minimax value

♦ Eval is often a weighted sum of features

• Eval(s) = w1f1(s) + w2f2(s) + . . . + wnfn(s)

• E.g., 1× (number of white pawns− number of black pawns)
+ 3× (number of white knights− number of black knights)
+ . . .

Black to move

White slightly better

White to move

Black winning

CMSC 421, Chapter 5 41

Exact values for Eval don’t matter

MIN

MAX

21

1

42

2

20

1

1 40020

20

♦ Behavior is preserved under any monotonic transformation of Eval

• Only the order matters:

• In deterministic games, payoff acts as an ordinal utility function

CMSC 421, Chapter 5 42

Discussion

♦ Increasing the search depth usually gives better decisions

♦ There are some exceptions

• Main result in my PhD dissertation (more than 30 years ago!):
“pathological” games in which deeper search gives worse decisions

• But such games hardly ever occur in practice

♦ Suppose we have 100 seconds, explore 104 nodes/second

• ⇒ 106 ≈ 358/2 nodes per move

• ⇒ α-β reaches depth 8 ⇒ pretty good chess program

♦ Some modifications that can improve the accuracy or computation time:
node ordering (see next slide)
quiescence search
biasing
transposition tables
thinking on the opponent’s time
. . .

CMSC 421, Chapter 5 43

Node ordering

♦ Recall that I said:

• Best case is if

� at nodes where it’s Max’s move, children are largest-value first

� at nodes where it’s Min’s move, children are smallest-value first

� In this case time complexity = O(bh/2) ⇒ twice the solvable depth

• Worst case is the reverse

� In this case, α-β will search every node

♦ How to get closer to the best case:

• Every time you expand a state, apply Eval to its children

• If it’s Min’s move, sort the children in order of their Eval values

• If it’s Max’s move, sort the children in reverse order of their Eval values

CMSC 421, Chapter 5 44

Quiescence search and biasing

♦ In a game like checkers or chess

• The evaluation is based greatly on material pieces

• It’s likely to be inaccurate if there are pending captures

� e.g., if someone is about to take your queen

♦ Search deeper to reach a position where there aren’t pending captures

• Evaluations will be more accurate here

♦ But it creates another problem

• You’re searching some paths to an even depth, others to an odd depth

• Paths that end just after your opponent’s move
will generally look worse than paths that end just after your move

♦ Add or subtract a number called the “biasing factor” to try to fix this

CMSC 421, Chapter 5 45

Transposition tables

♦ Often there are multiple paths to the same state

• i.e., the state space is a really graph rather than a tree

♦ Idea:

• when you compute a node’s minimax value, store it in a hash table

• visit it again ⇒ retrieve its value rather than computing it again

♦ The hash table is called a transposition table

• Any idea why?

♦ Problem: far too many states to store all of them

• Store some of the states, rather than all of them

• Try to store the ones that you’re most likely to need

CMSC 421, Chapter 5 46

Thinking on the opponent’s time

♦ Current state s, children s1, . . . , sn

♦ Compute their minimax values, move to the one that looks best

• Suppose it’s si

♦ You computed si’s minimax value as the min of its children, si1, . . . , sim

♦ Let sij be the child that has the smallest minimax value

• According to your analysis, that’s where the opponent is likely to move

♦ While waiting for the opponent to move, do a minimax search at sij

• If your opponent moves to sij

� then you have a head start on figuring out your next move

• If your opponent moves to sij

� then its no worse than if you just waited

CMSC 421, Chapter 5 47

Game-tree search in practice

♦ Checkers was solved in April 2007; took 1014 calculations over 18 years

• With perfect play, it’s a draw

• Search space of size 5× 1020

♦ Chess: Deep Blue searches 200 million positions per second

• very sophisticated evaluation

• undisclosed methods for extending some lines of search up to 40 ply

♦ Othello programs are much better than the best human players

♦ Go: Until about 5 years ago, computer programs were very bad

• A different kind of tree search has improved them dramatically

• Now, probably about as good as a good amateur

CMSC 421, Chapter 5 48

Game-tree search in the game of go

b =2

b =3

b =4

♦ A game tree’s size grows exponentially with both its depth and
its branching factor

♦ Go is much too big for a normal game-tree search:

• branching factor = about 200

• game length = about 250 to 300 moves

• number of paths in the game tree = 10525 to 10620

♦ For comparison, the size of the universe

• About 1080 atoms

• About 1087 particles

CMSC 421, Chapter 5 49

Game-tree search in the game of go

♦ During the past 4–5 years, go programs have gotten much better

♦ Main reason: Monte Carlo roll-outs

♦ Basic idea: do a minimax search of a randomly selected subtree

♦ At each node that the algorithm visits,

• It randomly selects some of the children
There are some heuristics for deciding how many

• It calls itself recursively on these, ignores the others

CMSC 421, Chapter 5 50

Forward pruning in chess

♦ Back in the 1970s, some similar ideas were tried in chess

♦ The approach was called forward pruning

• Main difference: select the children heuristically rather than randomly

• It didn’t work as well as brute-force alpha-beta, so people abandoned it

♦ Why does a similar idea work so much better in go?

CMSC 421, Chapter 5 51

Perfect-information stochastic games

♦ Example: backgammon

• Two players who take turns

• At each turn, the set of available moves
depends on the results of rolling the dice

• Each die specifies how far to move one of
your pieces (except if you roll doubles)

• If your piece will land on a location that
contains 2 or more of the opponent’s
piece you can’t move there

• If your piece lands on a location that
contains 1 of the opponent’s pieces,
that piece must start over

1 2 3 4 5 6 7 8 9 10 11 12

24 23 22 21 20 19 18 17 16 15 14 13

0

25

CMSC 421, Chapter 5 52

Backgammon game tree

♦ The players’
moves have
deterministic
outcomes

♦ The dice
rolls have
stochastic
outcomes

DICE

MIN

MAX

DICE

MAX

. . .

. . .

B

2 1 −1 1−1

. . .
1,1
1/36

1,2
1/18

TERMINAL

1,2
1/18

......

.........

......

1,1
1/36

...

......

...
C

. . .

1/18
6,5 6,6

1/36

1/18
6,5 6,6

1/36

CMSC 421, Chapter 5 53

Expectiminimax

♦ Returns expected minimax value

♦ Can be modified to return actions

♦ Can also be modified to do
α-β pruning

• But it’s more complicated
and less effective than in
deterministic games

MIN

MAX

2

CHANCE

4 7 4 6 0 5 −2

2 4 0 −2

0.5 0.5 0.5 0.5

3 −1

function ExpectiMinimax(s, d)

if s is a terminal state then return Max’s payoff at s

else if d = 0 then return Eval(s)

else if s is a “chance” node then

return Σt∈children(s)P (t |s)ExpectiMinimax(t , d − 1)

else if it is Max’s move at s then

return max{ExpectiMinimax(result(a, s), d − 1) : a is applicable to s}
else return min{ExpectiMinimax(result(a, s), d − 1) : a is applicable to s}

CMSC 421, Chapter 5 54

In stochastic games, exact values do matter

♦ At “chance” nodes, we need to compute weighted averages

• Behavior is preserved only by positive linear transformations of Eval

• Hence Eval should be proportional to the expected payoff

DICE

MIN

MAX

2 2 3 3 1 1 4 4

2 3 1 4

.9 .1 .9 .1

2.1 1.3

20 20 30 30 1 1 400 400

20 30 1 400

.9 .1 .9 .1

21 40.9

CMSC 421, Chapter 5 55

In practice

♦ Dice rolls increase b: 21 possible rolls with 2 dice

♦ Given the dice roll, ≈ 20 legal moves on average

• (for some dice rolls, can be much higher)

depth 4 =⇒ 20× (21× 20)3 ≈ 1.2× 109

♦ As depth increases, probability of reaching a given node shrinks
⇒ value of lookahead is diminished

♦ α-β pruning is much less effective

♦ TDGammon uses depth-2 search + very good Eval
≈ world-champion level

♦ The evaluation function was created automatically using a
machine-learning technique called Temporal Difference learning

• hence the TD in TDGammon

CMSC 421, Chapter 5 56

Summary

♦ We looked at games that have the following characteristics:

• two players, zero sum, perfect information, finite

♦ Case 1: deterministic

• In these games, can do a game-tree search

� minimax values, alpha-beta pruning

• In sufficiently complicated games, perfection is unattainable

� approximate using limited search depth, static evaluation function

• In some games, other techniques are better

� Monte Carlo roll-outs

♦ Case 2: stochastic (e.g., dice rolls)

• Expectiminimax

CMSC 421, Chapter 5 57

Reminder: midterm exam postponed

♦ October 9 was causing problems for too many people

♦ We discussed this in class last Tuesday, and decided to postpone it to
Thursday, October 18

CMSC 421, Chapter 5 58

