Last update: October 2, 2012

ADVERSARIAL SEARCH

CMSC 421, CHAPTER 5

CMSC 421, Chapter 5 1

<S> <5

We’ll start with a restricted class of games

Finite: finitely many players, actions, states
Perfect information: Every agent always knows exactly
what the current state is, and what the actions will do

¢ No simultaneous actions: players move one at a time
e Includes most (but not all) board games

e [ixcludes most card games and video games

Deterministic: no chance elements

e Includes chess, checkers, go, tic-tac-toe, mancala (awari, kalah),
Othello (Reversi), Connect-Four, Qubic, Quoridor, . . .

e [ixcludes backgammon, parcheesi, Monopoly, Yahtzee, Risk,
Carcassonne, . ..

Zero-sum: 2. {the players’ payoffs} = 0

CMSC 421, Chapter 5

2

Outline

A brief history of work on this topic

The minimax theorem

(Game trees

The minimax algorithm

Q-3 pruning

Resource limits and approximate evaluation

CMSC 421, Chapter 5

3

S S <5

<>

S S S 5

A brief history

1846 (Babbage): machine to play tic-tac-toe
1928 (von Neumann): minimax theorem

1944 (von Neumann & Morgenstern): backward-induction algorithm
(produces perfect play)

1950 (Shannon): minimax algorithm (finite horizon, approximate
evaluation)

1951 (Turing): program (on paper) for playing chess

1952-7 (Samuel): checkers program, capable of beating its creator
1956 (McCarthy): pruning to allow deeper search

1957 (Bernstein): first complete chess program

e on an IBM 704 vacuum-tube computer

e could examine about 350 positions/minute

CMSC 421, Chapter 5

4

A brief history, continued

& 1967 (Greenblatt): first program to compete in human chess tournaments:

e 3 wins, 3 draws, 12 losses
& 1992 (Schaeffer): Chinook won the 1992 US Open checkers tournament
& 1994 (Schaeffer): Chinook became world checkers champion;

e Tinsley (human champion) withdrew for health reasons

& 1997 (Hsu et al): Deep Blue won 6-game chess match against
world chess champion Gary Kasparov

& 2007 (Schaeffer et al, 2007): Checkers solved:
e with perfect play, it's a draw.

e This took 10 calculations over 18 years

CMSC 421, Chapter 5

5

Terminology

& Utility: numeric measure of how much a player
likes an outcome of a game
¢ Usually we'll assume this is the same as the game’s payoff

e When is this assumption correct?

& A strategy specifies what action an agent choose in every possible situation
e pure strategy: the choice is always deterministic

e mized strategy: probability distribution over pure strategies

<>

Consider a game GG between two players (Max and Min)

& Let Uls,t) be Max’s expected utility if Max’s and Min’s strategies
are s and ¢

& If GG is a zero-sum game, then Min’s utility is always —U (s, 1)

o Max wants to maximize U and Min wants to minimize it

CMSC 421, Chapter 5 6

The Minimax Theorem (von Neumann, 1928)

> Minimax theorem: If (7 is a finite, two-player, zero-sum game, then
there are strategies s* and ¢*, and a number Vi called GG's minimaz value,
such that

e [f Min uses ¢, Max’s expected utility is < V7, i.e.,
max U(s,t") = Vg

o [f Max uses s*, Max’s expected utility is > V¢, i.e.,
mtin U(s*,t) = Vg

{ Corollary 1: U(s*, t*) = V.

$ Corollary 2: If (¢ is a perfect-information game,
then there are pure strategies s* and ¢* that satisty the theorem.

CMSC 421, Chapter 5 7

Game trees

MAX (X)
X X X
MIN (O) X X X
X X X
X|O X @) X .
MAX (X) 5 - < Extensive form game:
e Sequence of moves,
x[oTx| [x]o]] [x[o players take turns
MIN (O) X X
& game tree:
\ e Root node < the initial state
‘ ‘ ‘ e A node’s children < the
x[o[x] [x[o][x] [x][o[x states a player can move to
TERMINAL OfX O|0| X X
- oL PR PR & The tree below each child node
ity - +

is called a subgame

CMSC 421, Chapter 5

MAX (X)

MIN (O)

MAX (X)

MIN (O)

TERMINAL

Utility

Strategies on game trees

o - Pure strategy for Max:

e One branch at each of

=5 Max’s choice nodes

e There are O(b") of these

& Pure strategy for Min:

‘ e One branch at each of

MR Min’s choice nodes

O|0|0O

X[O] %

x<|olot—

X
X
O

O
X
O

X

0 e There are O(b") of these

-1

o

+1

b = the branching factor (max. number of children of any node)
h = the tree’s height (max. depth of any node)

CMSC 421, Chapter 5

9

Strategies on game trees

|
MAX (X) |
_ 1%’\
MIN (O) | X X X
X X X
MAX (X) ¢ Two strategies are equivalent if they
differ only at unreachable nodes
> For Max:
MIN (O) _
e At each of Max’s choice nodes,

choose one branch

e At each of Min’s choice nodes,
include all branches

¢ Number of non-equivalent pure strategies for Max is O(b"/?)

b = the branching factor (max. number of children of any node)
h = the tree’s height (max. depth of any node)

CMSC 421, Chapter 5 10

MAX (X)

MIN (O)

IX
MAX (X) |
L

MIN (O)

Strategies on game trees

!

¢ Two strategies are equivalent if they

differ only at unreachable nodes

X

> For Min:

e At each of Min’s choice nodes,

choose one branch

e At each of Min’s choice nodes,
include all branches

¢ Number of non-equivalent pure strategies for Min is ©(5"/?)

b = the branching factor (max. number of children of any node)
h = the tree’s height (max. depth of any node)

CMSC 421, Chapter 5

11

Finding the best strategy

> Brute-force approach
e Let S and 7' be the sets of pure strategies for Max and Min

e Compare every combination, choose the ones that work best:

s" =argmax min U(s,1)
seS tel

t* = argmin max U(s,1)
telT seS

{ BEach player has O(b") strategies, each strategy has size O(b")

¢ Number of comparisons is O(b*")
o If we keep all strategies in memory, each comparison takes time O(h)
o O(hb*") time and O(b*") space
o If we generate strategies on the fly, each comparison takes time O(hb")
o O(hb*) time and O(b") space

¢ If we only include reachable nodes, replace h with h/2 above

> But there’s an easier way

CMSC 421, Chapter 5 12

Minimax Algorithm

¢ Compute minimax value recursively: time O(b"), space O(bh)

function MINIMAX(s) returns a utility value
if s is a terminal state then return Max’s payoff at s

else if it is Max’s move in s then

return max{MINIMAX (result(a, s)) :
else return min{ MINIMAX (result(a, s)) : a is applicable to s}

a is applicable to s}

MAX

MIN

3
AS
)2 2
A23 A31 A32 A33

4 6 14 5 2

& To get the next move, return argmaz and argmin instead of max and min

CMSC 421, Chapter 5 13

Properties of the minimax algorithm

& Is it sound? l.e., when it returns answers, are they correct?

CMSC 421, Chapter 5 14

Properties of the minimax algorithm

& Is it sound? l.e., when it returns answers, are they correct?

e Yes (can prove this by induction)

& Is it complete? le., does it always return an answer when one exists?

CMSC 421, Chapter 5 15

Properties of the minimax algorithm

& Is it sound? l.e., when it returns answers, are they correct?

e Yes (can prove this by induction)

& Is it complete? le., does it always return an answer when one exists?

e Yes on finite trees (e.g., chess has specific rules for this).

& Space complexity?

CMSC 421, Chapter 5 16

Properties of the minimax algorithm

& Is it sound? l.e., when it returns answers, are they correct?

e Yes (can prove this by induction)

& Is it complete? le., does it always return an answer when one exists?

e Yes on finite trees (e.g., chess has specific rules for this).

& Space complexity? O(bh), where b and h are as defined earlier

& Time complexity?

CMSC 421, Chapter 5 17

Properties of the minimax algorithm

Is 1t sound? l.e., when it returns answers, are they correct?

e Yes (can prove this by induction)

Is it complete? l.e., does it always return an answer when one exists?

e Yes on finite trees (e.g., chess has specific rules for this).

Space complexity? O(bh), where b and h are as defined earlier

Time complexity? O(b")

For chess, b ~ 35, h ~ 100 for “reasonable” games

o 35100 ~ 101 nodes

About 10” times the number of particles in the universe (about 10°7)
= no way to examine every node!

But do we really need to examine every node?

CMSC 421, Chapter 5 18

Pruning example 1

MAX >3

MIN 3

CMSC 421, Chapter 5 19

Pruning example 1

MAX >3
MIN 3]SZ
X X

¢ Max will never move to this node, because Max can do better by moving to
the first one

> Thus we don’t need to figure out this node’s minimax value

CMSC 421, Chapter 5 20

Pruning example 1

MAX >3
MIN 3 g2 <14
Ll x X
3 12 8 2 14

This node might be better than the first one

CMSC 421, Chapter 5 21

Pruning example 1

MAX >3
MIN 3)52 S <5
X X
3 12 8 2 14

[t still might be better than the first one

CMSC 421, Chapter 5 22

Pruning example 1

MAX

MIN 3

No, it isn't

CMSC 421, Chapter 5 23

Pruning example 2

d6db 6

> Same idea works farther down in the tree
e Max won’t move to e, because Max can do better by going to b
e Don’t need e’s exact value, because it won’t change minimax(a)

e 50 stop searching below e

CMSC 421, Chapter 5 24

Alpha cutoft

& Let s be any state where it’s Min’s move

& If we have visited some of s’s children, then //p‘.l = N
we have an upper bound v > u(s) _2" N \'\
e Let o = lower bound on the best q/ > 0. ‘|
alternative for Max along the path to s T \ |
o If v <, then Max can do at least as well ¥ "\, l| :
by moving oft of the path to s 0 r ’> . " |
¢ So stop searching below s —_ /"
e This is called an alpha cutoff 4'/"’ l‘.| /l—// |
> Example: @(x 4
e In the figure, o = max(—2,0,4) =4 V= ?/ /;‘//
e v =23 < «, so stop searching below s 3" !

e Max can do better by moving to r

CMSC 421, Chapter 5 25

< <5

Beta cutoff

Let s be any state where it’'s Max’s move

Let 3 = upper bound on Min’s best alternative
along the path to s

If we have visited some of s’s children, then
we have a lower bound v < u(s)

o If v > [then Min can do at least as well
by moving off of the path to s

¢ So stop searching below s
e 'This is called a beta cutoff

Example:
e In the figure, § = min(H, —2,3) = —2
e v =10 > [3 sostop searching below s

e Min can do better by moving to ¢

CMSC 421, Chapter 5

26

The alpha-beta algorithm

function ALPHA-BETA(s, a, 3)
inputs: s, current state
«, lower bound on Max’s best alternative along the path to s
3, upper bound on Min’s best alternative along the path to s

if s is a terminal state then return Max’s payoft at s
else if it is Max’s move at s then
V< —O0
for every action a applicable to s do
v < max(v, ALPHA-BETA (result(a, s), o, 7))
if v > [then return v
a < max(c,v) // Max’s best alternative along the path to descendants of s
else
U 4— 00
for every action a applicable to s do
v < min(v, ALPHA-BETA (result(a, s), o, 7))
if v < a then return v
[4+ min(f,v) // Min’s best alternative along the path to descendants of s
return v

CMSC 421, Chapter 5

27

a-(pruning example

& R

f I

S dy dhdy

CMSC 421, Chapter 5 28

a-(pruning example

a=-X 7
B:OO
a
a=-—0& 7
B:OO
7
d m

& R

f I

S dy dhdy

CMSC 421, Chapter 5 29

a-(pruning example

CMSC 421, Chapter 5 30

a-(pruning example

CMSC 421, Chapter 5 31

a-(pruning example

CMSC 421, Chapter 5 32

a-(pruning example

/

CMSC 421, Chapter 5

33

a-(pruning example

N
I
o)
~ 8
n o
s @l>
~ 3 1o
™ M no
%w T QQ

5
alpha cutoff

7
00

a
B

o0

a="7

B

7
00
5

S D

a
B

Jofats

fl5

a
B

34

CMSC 421, Chapter 5

a-(pruning example

7
8

b(eta cutoff

9
9

s

~ 3
n o
SR
~ 3 1o
™ N n
%w T Q

0

~ 8

5

alpha cutoff

7
00

a
B

fl5

o0

JoReto

a=7
B
7
@?

a
B

35

CMSC 421, Chapter 5

a-(pruning example

alpha cutoff

- a=7
B B:OO

&
O

CMSC 421, Chapter 5

36

a-(pruning example

N o0

i
S

7
8

b(eta cutoff

9
9

s

0

~ 8

fl5

o0

e L

a=7
B
7
@?

a
B

37

CMSC 421, Chapter 5

Properties of a-0

> The alpha-beta algorithm is a simple example of reasoning about
which computations are relevant (a form of metareasoning)

e if & < minimax(s) < 3, then alpha-beta returns minimax(s)
e if minimax(s) < a, then alpha-beta returns a value < «

e if minimax(s) > [, then alpha-beta returns a value > 3

$ If we start with o = —oo and 8 = oo, then
alpha-beta will always return minimax(s)

» Good move ordering can enable us to prune more nodes
e DBest case is if
¢ at nodes where it’'s Max’s move, children are largest-value first
¢ at nodes where it’s Min’s move, children are smallest-value first

o In this case time complexity = O(0"/?) = twice the solvable depth
e Worst case is the reverse

¢ In this case, a- will search every node

CMSC 421, Chapter 5 38

Resource limits

> Even with alpha-beta, it can still be infeasible to search the entire game tree
o e.g., recall chess has about 10™° nodes

e = need to limit the depth of the search

> Basic approach: have a maximum search depth d
e Whenever we reach a node of depth > d
o If we're at a terminal state, then return Max’s payoft

¢ Otherwise return an estimate of the node’s utility value,
computed by a static evaluation function

CMSC 421, Chapter 5 39

a-0 with a bound d on the search depth

function ALPHA-BETA(s, o, 3, d)
inputs: s, current state
«, lower bound on Max’s best alternative along the path to s
3, upper bound on Min’s best alternative along the path to s

if sis a terminal state then return Max’s payoff at s
else if d =0 then return EVAL(s)
else if it is Max’s move at s then
U< —0O0
for every action a applicable to s do
v 4— max(v, ALPHA-BETA(result(a, s), o, 3, d — 1))
if v > [then return v
« < max(a,v) // Max’s best alternative along the path to descendants of s
else
U <— OO
for every action a applicable to s do
v 4— min(v, ALPHA-BETA (result(a, s), o, 3, d — 1))
if v < a then return v
3 4« min(J,v) // Min’s best alternative along the path to descendants of s
return v

CMSC 421, Chapter 5 40

Evaluation functions
{ EVAL(s) is supposed to return an approximation of s’s minimax value

& EVAL is often a weighted sum of features
o EVAL(S) = wifi(s) +wafa(s) + ... +w,fuls)

e Eg, 1 X (number of white pawns — number of black pawns)
+ 3 X (number of white knights — number of black knights)

Black to move White to move

White sliahtly better Black winning

CMSC 421, Chapter 5 41

Exact values for EVAL don’t matter

MAX

SR

> Behavior is preserved under any monotonic transformation of EVAL

e Only the order matters:

e In deterministic games, payofl acts as an ordinal utility function

CMSC 421, Chapter 5 42

<>

Discussion
Increasing the search depth usually gives better decisions

There are some exceptions

e Main result in my PhD dissertation (more than 30 years ago!):
“pathological” games in which deeper search gives worse decisions

e DBut such games hardly ever occur in practice

Suppose we have 100 seconds, explore 10" nodes/second
o = 10° ~ 35%? nodes per move

e = o-f reaches depth 8 = pretty good chess program

Some modifications that can improve the accuracy or computation time:

node ordering (see next slide)
quiescence search

biasing

transposition tables

thinking on the opponent’s time

CMSC 421, Chapter 5

43

Node ordering
> Recall that I said:

e DBest case is if

¢ at nodes where it’'s Max’s move, children are largest-value first

¢ at nodes where it’s Min’s move, children are smallest-value first

o In this case time complexity = O(b"/?) = twice the solvable depth
e Worst case is the reverse

¢ In this case, a- will search every node

> How to get closer to the best case:
e [very time you expand a state, apply EVAL to its children
e [f it’s Min’s move, sort the children in order of their EVAL values

e [fit’'s Max’s move, sort the children in reverse order of their EVAL values

CMSC 421, Chapter 5 44

Quiescence search and biasing

¢ In a game like checkers or chess
e The evaluation is based greatly on material pieces
e [t’s likely to be inaccurate if there are pending captures

o e.g., if someone is about to take your queen

{» Search deeper to reach a position where there aren’t pending captures

e [valuations will be more accurate here

> But it creates another problem
e You're searching some paths to an even depth, others to an odd depth

e Paths that end just after your opponent’s move
will generally look worse than paths that end just after your move

& Add or subtract a number called the “biasing factor” to try to fix this

CMSC 421, Chapter 5 45

Transposition tables

{» Often there are multiple paths to the same state

e i.c., the state space is a really graph rather than a tree

& Ideas

e when you compute a node’s minimax value, store it in a hash table

e vVisit it again = retrieve its value rather than computing it again

> The hash table is called a transposition table
e Any idea why?

> Problem: far too many states to store all of them
e Store some of the states, rather than all of them

e Iy to store the ones that you're most likely to need

CMSC 421, Chapter 5 46

Thinking on the opponent’s time

{ Current state s, children s,.... s,
¢ Compute their minimax values, move to the one that looks best
e Suppose it’s s;
& You computed s;’s minimax value as the min of its children, s;1, ..., S,

¢ Let s;; be the child that has the smallest minimax value

e According to your analysis, that’s where the opponent is likely to move

¢ While waiting for the opponent to move, do a minimax search at s;;
e If your opponent moves to s;;
¢ then you have a head start on figuring out your next move
e If your opponent moves to s;;

¢ then its no worse than if you just waited

CMSC 421, Chapter 5 47

Game-tree search in practice

¢ Checkers was solved in April 2007; took 10* calculations over 18 years
e With perfect play, it’s a draw

e Search space of size 5 x 10%

> Chess: Deep Blue searches 200 million positions per second
e very sophisticated evaluation

e undisclosed methods for extending some lines of search up to 40 ply
¢ Othello programs are much better than the best human players

¢ Go: Until about 5 years ago, computer programs were very bad
e A different kind of tree search has improved them dramatically

e Now, probably about as good as a good amateur

CMSC 421, Chapter 5 48

Game-tree search in the game of go

& A game tree’s size grows exponentially with both its depth and
its branching factor

¢ Go is much too big for a normal game-tree search:
e branching factor = about 200
e came length = about 250 to 300 moves

e number of paths in the game tree = 10°* to 1052

¢ For comparison, the size of the universe /N
e About 10* atoms
e About 10%7 particles

CMSC 421, Chapter 5 49

Game-tree search in the game of go

& During the past 4-5 years, go programs have gotten much better

> Main reason: Monte Carlo roll-outs

> Basic idea: do a minimax search of a randomly selected subtree

{» At each node that the algorithm visits,

e [t randomly selects some of the children
There are some heuristics for deciding how many

e [t calls itself recursively on these, ignores the others

CMSC 421, Chapter 5 50

Forward pruning in chess

> Back in the 1970s, some similar ideas were tried in chess

{» The approach was called forward pruning
e Main difference: select the children heuristically rather than randomly

e [t didn’t work as well as brute-force alpha-beta, so people abandoned it

¢ Why does a similar idea work so much better in go?

CMSC 421, Chapter 5 51

Perfect-information stochastic games

e ST YT
- B“
| d q .j

$ Example: backgammon

Two players who take turns

At each turn, the set of available moves
depends on the results of rolling the dice

Each die specifies how far to move one of
your pieces (except if you roll doubles)

If your piece will land on a location that
contains 2 or more of the opponent’s
piece you can’t move there

[f your piece lands on a location that
contains 1 of the opponent’s pieces,
that piece must start over

N N

(D15

CMSC 421, Chapter 5

52

Backgammon game tree

MAX A
¢ The players’
moves have
N DICE
deterministic
outcomes i 5
& The dice MIN \/ N2V \/
rolls have
stochastic
outcomes DICE (© @ T @ @
1/36 1/18 1/18 1/36
1,1 1, 6,5 6,6
MAX A /\ /\ /\
TERMINAL J -1 1 -1 1

CMSC 421, Chapter 5 53

Expectiminimax

{» Returns expected minimax value "

> Can be modified to return actions

> Can also be modified to do CHANCE
Q-3 pruning
e DBut it’s more complicated MIN

and less effective than in
deterministic games

function EXPECTIMINIMAX(S, d)
if 5 is a terminal state then return Max’s payoff at s
else if ¢ = 0 then return EVAL(s)
else if sis a “chance” node then
return ZtECh“dren(s)P(ﬂS)EXPECTIMINIMAX(t, d—1)
else if it is Max’s move at s then
return max{ EXPECTIMINIMAX (result(a, s), d — 1) : a is applicable to s}
else return min{ EXPECTIMINIMAX (result(a, s), d — 1) : a is applicable to s}

CMSC 421, Chapter 5 54

In stochastic games, exact values do matter

& At “chance” nodes, we need to compute weighted averages

e DBehavior is preserved only by positive linear transtformations of EVAL
e Hence EVAL should be proportional to the expected payoft

MAX

DICE
N 2 3 1 4 2& 30 K 4OR
/\ A. /\1 /\4 2 0 Ao 400 400

CMSC 421, Chapter 5 55

MI

In practice

> Dice rolls increase b: 21 possible rolls with 2 dice

¢ Given the dice roll, &~ 20 legal moves on average

e (for some dice rolls, can be much higher)
depth 4 = 20 x (21 x 20)° ~ 1.2 x 10”

> As depth increases, probability of reaching a given node shrinks
= value of lookahead is diminished

> «a-f pruning is much less effective

¢ TDGAMMON uses depth-2 search 4+ very good EVAL
~ world-champion level

> The evaluation function was created automatically using a
machine-learning technique called Temporal Difference learning

e hence the TD in TDGammon

CMSC 421, Chapter 5 56

Summary

& We looked at games that have the following characteristics:
e two players, zero sum, perfect information, finite
{ Case 1: deterministic
e In these games, can do a game-tree search
¢ minimax values, alpha-beta pruning
e In sufficiently complicated games, perfection is unattainable

¢ approximate using limited search depth, static evaluation function
e In some games, other techniques are better

o Monte Carlo roll-outs

¢ Case 2: stochastic (e.g., dice rolls)

e [xpectiminimax

CMSC 421, Chapter 5 57

Reminder: midterm exam postponed
& October 9 was causing problems for too many people

¢ We discussed this in class last Tuesday, and decided to postpone it to
Thursday, October 18

CMSC 421, Chapter 5 58

