
Last update: October 4, 2012

Constraint Satisfaction Problems

CMSC 421, Chapter 6

CMSC 421, Chapter 6 1

Outline

♦ CSP examples

♦ Backtracking search for CSPs

♦ Problem structure and problem decomposition

♦ Local search for CSPs

CMSC 421, Chapter 6 2

Constraint satisfaction problems (CSPs)

♦ Standard search problem:

• state: any data structure that supports goal test, eval, successor

♦ CSP:

• state is a set of assignments of values
to variables {Xi}ni=1 with domains {Di}ni=1

• goal test is a set of constraints that specify
allowable combinations of values for various sets of variables

♦ Simple example of a formal representation language

• Allows useful general-purpose algorithms with more power
than standard search algorithms

CMSC 421, Chapter 6 3

Example: map coloring

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

♦ Want to color the map of
Australia, using at most
three colors

♦ Variables: WA, NT, Q,
NSW, V, SA, T

♦ Each variable’s domain
is {red,green,blue}

♦ Constraints: adjacent regions
must have different colors,

• e.g., WA 6= NT if the language allows this

• or else (WA,NT) ∈ {(red , green), (red , blue), (green, red),
(green, blue), (blue, red), (blue, green)}

CMSC 421, Chapter 6 4

Example: map coloring, continued

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania
♦ Solutions are assignments that

satisfy all the constraints, e.g.,

• {WA = red ,NT = green,Q = red ,NSW = green,
V = red , SA = blue,T = green}

CMSC 421, Chapter 6 5

Constraint graph

♦ Binary CSP: each constraint relates at most two variables

♦ Constraint graph: nodes are variables, edges represent constraints

Victoria

WA

NT

SA

Q

NSW

V

T

♦ General-purpose CSP algorithms use graph structure to speed up search

• E.g., Tasmania is an independent subproblem

CMSC 421, Chapter 6 6

Varieties of CSPs

♦ Discrete variables

• if n variables, each with d possible values,
then O(dn) complete assignments

• Boolean CSPs, incl. Boolean satisfiability (NP-complete)

• Infinite domains (integers, strings, etc.)

� job scheduling, variables are start/end days for each job

• need a constraint language, e.g., StartJob1 + 5 ≤ StartJob3

� linear constraints solvable but NP-hard

� nonlinear constraints undecidable

♦ Continuous variables

• e.g., start/end times for Hubble Space Telescope observations

• linear constraints solvable using Linear Programming (LP) methods

� can be done in polynomial time, but very high overhead

� usually use a low-overhead algorithm with exponential worst-case

CMSC 421, Chapter 6 7

Varieties of constraints

♦ Unary constraints involve a single variable,

• e.g., SA 6= green

♦ Binary constraints involve pairs of variables

• e.g., SA 6= WA

♦ Preferences (soft constraints), e.g., red is better than green
often representable by a cost for each variable assignment

• e.g., cost(red) = 1 , cost(green) = 5

• → constrained optimization problems

♦ Higher-order constraints involve 3 or more variables,

• e.g., cryptarithmetic (next slide)

CMSC 421, Chapter 6 8

Example: Cryptarithmetic

♦ Find distinct digits • Each square box represents a constraint:
F, O, R, T, U, W
such that

OWTF U R

+
OWT
OWT

F O U R

X2 X1X3

♦ Solution:
7 3 4

+ 7 3 4
1 4 6 8

• Variables: F , T , U , W , R, O, X1, X2, X3

• Domain: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
• Constraints:

� alldiff(F, T, U,W,R,O)

� O + O = R + 10X1

� etc.

CMSC 421, Chapter 6 9

Real-world CSPs

♦ Assignment problems

• e.g., who teaches what class

♦ Timetabling problems

• e.g., which class is offered when and where?

♦ Hardware configuration

♦ Spreadsheets

♦ Transportation scheduling

♦ Factory scheduling

♦ Floorplanning (e.g., factory layouts)

♦ Notice that many real-world problems involve real-valued variables

CMSC 421, Chapter 6 10

Standard search formulation (incremental)

♦ States are defined by the values assigned so far

• Initial state: the empty assignment, { }
• Successor function: choose an unassigned variable x

� assign a value to x that doesn’t conflict with the other variables

� ⇒ fail if no legal assignments

• Goal test: the current assignment is complete

• Path is irrelevant

♦ Let’s start with the straightforward, dumb approach, then fix it

♦ With n variables, every solution is at depth n ⇒ use depth-first search

• Suppose there are d possible values for each variable

• Then for i = 1, . . . , n,

� at depth i there are n− i unassigned variables

� so the branching factor at depth i is bi = (n− i)d

• So the number of leaves is b0b1 . . . bn = n!dn

CMSC 421, Chapter 6 11

Backtracking search

♦ Variable assignments are commutative

• e.g., these two:

� first assign WA= red, then NT = green

� first assign NT = green, then WA= red

♦ Only need to consider assignments to a single variable at each node

� ⇒ b= d and there are dn leaves

• Depth-first search for CSPs with single-variable assignments
is called backtracking search

♦ Backtracking search is the basic uninformed algorithm for CSPs

• Can solve n-queens for n ≈ 25

CMSC 421, Chapter 6 12

Backtracking search

function Backtracking-Search(CSP)

return Backtrack({ }, CSP)

function Backtrack(assignment, CSP)

if assignment is complete then

return assignment

select an unassigned variable x in CSP

for each possible value v of x

new = assignment ∪ {x = v}
if new doesn’t violate CSP’s constraints then

result ← Backtrack(new, CSP)

if result 6= Failure then return result

return Failure

CMSC 421, Chapter 6 13

Backtracking search

function Backtracking-Search(CSP)

return Backtrack({ }, CSP)

function Backtrack(assignment, CSP)

if assignment is complete then

return assignment

select an unassigned variable x in CSP

for each possible value v of x

new = assignment ∪ {x = v}
if new doesn’t violate CSP’s constraints then

result ← Backtrack(new, CSP)

if result 6= Failure then return result

return Failure

CMSC 421, Chapter 6 14

Backtracking search

function Backtracking-Search(CSP)

return Backtrack({ }, CSP)

function Backtrack(assignment, CSP)

if assignment is complete then

return assignment

select an unassigned variable x in CSP

for each possible value v of x

new = assignment ∪ {x = v}
if new doesn’t violate CSP’s constraints then

result ← Backtrack(new, CSP)

if result 6= Failure then return result

return Failure

CMSC 421, Chapter 6 15

Backtracking search

function Backtracking-Search(CSP)

return Backtrack({ }, CSP)

function Backtrack(assignment, CSP)

if assignment is complete then

return assignment

select an unassigned variable x in CSP

for each possible value v of x

new = assignment ∪ {x = v}
if new doesn’t violate CSP’s constraints then

result ← Backtrack(new, CSP)

if result 6= Failure then return result

return Failure

CMSC 421, Chapter 6 16

Improving backtracking efficiency

♦ There are general-purpose methods that can give huge gains in speed:

• Deciding which variable to assign next

• In what order to try the variable’s values

• Detecting inevitable failures early

• Taking advantage of problem structure

CMSC 421, Chapter 6 17

1. Deciding which variable to assign next

♦ Minimum remaining values (MRV) heuristic:

• Choose the variable with the fewest legal values

♦ Example: a has 2 possible values, b has 4, c has 3, . . .

• Same number of leaves, but 1st tree has fewer nodes

a

c

b

b

c

a

… ………
♦ Australia example:

CMSC 421, Chapter 6 18

1. Deciding which variable to assign next

♦ Degree heuristic – use this as a tie-breaker among MRV variables

• Choose the variable that’s involved in the largest number of constraints
on other unassigned variables

♦ Example: a, b, c, . . . ∈ {1, 2, 3}, a unconstrained, constraint c ≥ b

• Better pruning in the 2nd tree

a

b

c

a

b

c

… …… … … … … …

♦ Australia example: SA instead of WA

CMSC 421, Chapter 6 19

2. In what order to try a variable’s values

♦ Once you’ve selected a variable, what value to choose for it?

♦ Least constraining value: the one that rules out the fewest values in
the remaining variables

♦ Example: a, b, c, . . . ∈ {1, 2, 3},
a unconstrained, constraint c ≥ b

• b = 1 is more likely to lead to a
solution: a

b

c

… … … … … … … … … … … …… … … … … …

♦ Australia example:

Allows 1 value for SA

Allows 0 values for SA

♦ Combining the three heuristics makes 1000 queens feasible

CMSC 421, Chapter 6 20

3. Detecting inevitable failures early

♦ Forward checking

• Keep track of remaining legal values for unassigned variables

• Terminate search when any variable has no legal values

WA NT Q NSW V SA T

CMSC 421, Chapter 6 21

3. Detecting inevitable failures early

♦ Forward checking

• Keep track of remaining legal values for unassigned variables

• Terminate search when any variable has no legal values

WA NT Q NSW V SA T

CMSC 421, Chapter 6 22

3. Detecting inevitable failures early

♦ Forward checking

• Keep track of remaining legal values for unassigned variables

• Terminate search when any variable has no legal values

WA NT Q NSW V SA T

CMSC 421, Chapter 6 23

3. Detecting inevitable failures early

♦ Forward checking

• Keep track of remaining legal values for unassigned variables

• Terminate search when any variable has no legal values

WA NT Q NSW V SA T

CMSC 421, Chapter 6 24

3. Detecting inevitable failures early

♦ Forward checking detects when a variable has no remaining legal values

• But sometimes we can detect even earlier that a failure is inevitable

♦ E.g., NT and SA cannot both be blue!

WA NT Q NSW V SA T

♦ To detect this, use constraint propagation

• repeated local enforcement of constraints

CMSC 421, Chapter 6 25

Constraint propagation

♦ Arc consistency: For each constraint on X and Y , consider two arcs:

� X → Y and Y → X

• X → Y is consistent iff for every value x of X ,
there exists an allowed value of Y

• Make X → Y consistent by removing the “bad” values of X

WA NT Q NSW V SA T

CMSC 421, Chapter 6 26

Constraint propagation

♦ Arc consistency: For each constraint on X and Y , consider two arcs:

� X → Y and Y → X

• X → Y is consistent iff for every value x of X ,
there exists an allowed value of Y

• Make X → Y consistent by removing the “bad” values of X

WA NT Q NSW V SA T

CMSC 421, Chapter 6 27

Constraint propagation

♦ Arc consistency: For each constraint on X and Y , consider two arcs:

� X → Y and Y → X

• X → Y is consistent iff for every value x of X ,
there exists an allowed value of Y

• Make X → Y consistent by removing the “bad” values of X

WA NT Q NSW V SA T

• If X loses a value, every arc W → X needs to be rechecked

CMSC 421, Chapter 6 28

Constraint propagation

♦ Arc consistency: For each constraint on X and Y , consider two arcs:

� X → Y and Y → X

• X → Y is consistent iff for every value x of X ,
there exists an allowed value of Y

• Make X → Y consistent by removing the “bad” values of X

WA NT Q NSW V SA T

♦ In general, finds failures earlier than forward-checking

• Finds all the failures forward-checking would find, plus more

• Doesn’t find all failures – that’s NP-hard

CMSC 421, Chapter 6 29

Arc consistency algorithm

function AC-3(CSP)

queue ← a queue containing all the arcs in CSP

while queue is not empty

remove the first arc (X ,Y) from queue

if Remove-Inconsistent-Values(X ,Y) then

for each neighbor W of X , add (W ,X) to queue

function Remove-Inconsistent-Values(X ,Y)

for each x in Domain[X]

if there’s no y in Domain[Y] such that (x,y) satisfies the constraint on (X ,Y)

then delete x from Domain[X]

if anything was deleted then return true

else return false

• O(n2d3), can be reduced to O(n2d2)

• Can run as preprocessor, or after each assignment

♦ Example: W,X, Y ∈ {1, 2, 3}, X > W, Y > X

• queue = 〈(W → X), (X → Y), . . .〉

CMSC 421, Chapter 6 30

4. Taking advantage of problem structure

Victoria

WA

NT

SA

Q

NSW

V

T
♦ Worst-case number of leaf nodes is 37

♦ But Tasmania and mainland are independent subproblems

• Identifiable as connected components of constraint graph

♦ Handle them separately ⇒
• one tree with at most 36 leaves, one with at most 3 leaves

♦ Can solve this nearly 3 times as fast

CMSC 421, Chapter 6 31

4. Taking advantage of problem structure

♦ Abstract example: 6 binary variables a, b, c, d, e, f

• Worst-case number of leaf nodes is 26 = 64

a

b

c

d

Constraint
graph:

e

f

c

b

a

d

e

f

♦ Constraint graph shows there are three independent subproblems

• Handle separately ⇒ 3 trees, 12 leaf nodes

• Can solve more than 5 times as fast
ca

b d

e

f

CMSC 421, Chapter 6 32

4. Taking advantage of problem structure

♦ With n variables, each having d possible values,

• worst-case number of leaf nodes is dn, exponential in n

♦ Suppose we can divide into n/c independent subproblems,

• each with c variables

♦ Then the worst-case number of leaf nodes is (n/c)dc

• linear in n

♦ E.g., n= 80, d= 2, c= 20, n/c = 4, at 10 million nodes/sec

• 280 = 4 billion years

• 4× 220 = 0.4 seconds

CMSC 421, Chapter 6 33

Tree-structured CSPs

 x1

 x2

 x3

 x4

 x5

 x6

♦ Theorem: if the constraint graph has no loops, the CSP can be
solved in O(nd2) time

♦ Compare to general CSPs, where worst-case time is O(dn)

♦ This property also applies to logical and probabilistic reasoning

• good example of the relation between syntactic restrictions

• and the complexity of reasoning.

CMSC 421, Chapter 6 34

Algorithm for tree-structured CSPs

♦ Three steps:

1. Choose a variable as root, order variables from root to leaves
so that every node’s parent precedes it in the ordering

� Like a topological sort

 x1

 x2

 x3

 x4

 x5

 x6

 x5 x6 x1 x2 x3 x4

� Now the arcs only point one way

2. For j from n down to 2, apply arc-consistency

� Remove-Inconsistent-Values(Parent(Xj), Xj)

� Now we know that for each of a node’s values,
there are consistent values for its children

3. For j from 1 to n, assign Xj consistently with Parent(Xj)

CMSC 421, Chapter 6 35

Nearly tree-structured CSPs

♦ Conditioning: instantiate a variable (in all possible ways)

• For each instantiation, prune its neighbors’ domains

Victoria

WA

NT
Q

NSW

V

TT

Victoria

WA

NT

SA

Q

NSW

V

♦ Cutset conditioning: instantiate a set of variables such that the
remaining constraint graph is a tree

• Then run the algorithm for tree-structured CSPs

♦ Cutset size c ⇒ runtime O(dc(n− c)d2)

• very fast for small c

CMSC 421, Chapter 6 36

Iterative algorithms for CSPs

♦ Hill-climbing, simulated annealing typically work with
“complete” states, i.e., all variables assigned

♦ To apply them to CSPs,

• allow complete states to have unsatisfied constraints

♦ Examples:

• Start with an arbitrary color for each Australian territory

• Start n-queens with each queen in an arbitrary row

♦ Operators reassign variable values

• e.g., change what row a queen is in:

h = 5 h = 2 h = 0
CMSC 421, Chapter 6 37

Iterative algorithms for CSPs

♦ Variable selection: randomly select any conflicted variable

♦ Value selection by min-conflicts heuristic:

• choose value that violates the fewest constraints

• i.e., hill-climbing with h(n) = total number of violated constraints

♦ Example: 4-queens problem

• States: 4 queens in 4 columns (44 = 256 states)

• Operators: move queen in column

• Goal test: no attacks

• Evaluation: h(n) = number of attacks

h = 5 h = 2 h = 0

CMSC 421, Chapter 6 38

Performance of min-conflicts

♦ Given a random initial state, can solve n-queens in almost constant time
for arbitrary n with high probability (e.g., n = 10,000,000)

♦ The same appears to be true for any randomly-generated CSP,
except in a narrow range of the ratio

R = number of constraints/number of variables

R

CPU
time

critical
 ratio

♦ More information at

• http://www.cs.cornell.edu/selman/papers/pdf/99.nature.phase.pdf

CMSC 421, Chapter 6 39

http://www.cs.cornell.edu/selman/papers/pdf/99.nature.phase.pdf

Summary

♦ CSPs: special kind of search problem

• state = set of assignments to a fixed set of variables

• goal test = whether the constraints are satisfied

♦ Backtracking = depth-first search, assign one variable at each node

♦ Ways to improve efficiency:

• Variable ordering and value selection

• Forward checking - detect inconsistencies that guarantee later failure

• Constraint propagation (e.g., arc consistency) - additional work

• to constrain values and detect inconsistencies

♦ Problem structure:

• Independent subproblems

• Tree-structured CSPs can be solved in linear time

♦ Can use iterative algorithms such as hill-climbing

• min-conflicts heuristic often works well

CMSC 421, Chapter 6 40

Revisions to Homework 3

♦ I had assigned three problems from chapter 5: 5.1, 5.9, 5.16

♦ I want to add two more from chapter 6, and extend the due date

• Additional problems: 6.5, 6.11

• New due date: Thursday, October 11

• New late date: Tuesday, October 16

CMSC 421, Chapter 6 41

