
Last update: October 11, 2012

Logical agents

CMSC 421: Chapter 7

CMSC 421: Chapter 7 1

Outline

♦ Knowledge-based agents

♦ Wumpus world

♦ Logic in general—models and entailment

♦ Propositional (Boolean) logic

♦ Equivalence, validity, satisfiability

♦ Inference rules and theorem proving

• forward chaining

• backward chaining

• resolution

CMSC 421: Chapter 7 2

Knowledge bases

Inference engine

Knowledge base domain−specific content

domain−independent algorithms

♦ Knowledge base = set of sentences in a formal language

♦ Declarative approach to building an agent (or other system):

� Tell it what it needs to know

♦ Then it can Ask itself what to do—answers should follow from the KB

♦ Agents can be viewed at the knowledge level

� i.e., what they know, regardless of how implemented

♦ Or at the implementation level

� i.e., data structures in KB and algorithms that manipulate them

CMSC 421: Chapter 7 3

A simple knowledge-based agent

function KB-Agent(percept) returns an action

static: KB, a knowledge base

t, a counter, initially 0, indicating time

Tell(KB,Make-Percept-Sentence(percept, t))

action ← Ask(KB,Make-Action-Query(t))

Tell(KB,Make-Action-Sentence(action, t))

t ← t + 1

return action

♦ The agent must be able to:

• Represent states, actions, etc.

• Incorporate new percepts

• Update internal representations of the world

• Deduce hidden properties of the world

• Deduce appropriate actions

CMSC 421: Chapter 7 4

Wumpus World PEAS description

♦ Environment:

• One wumpus, one heap of gold

• P (pit) = 0.2 for each square

• Squares next to wumpus are smelly

• Shooting into wumpus’s square kills it

• Shooting uses up the only arrow

• Squares next to pit are breezy

• Glitter iff the gold is in your square

� Grabbing picks it up

� Releasing drops it

Breeze Breeze

Breeze

Breeze
Breeze

Stench

Stench

Breeze
PIT

PIT

PIT

1 2 3 4

1

2

3

4

START

Gold

Stench

♦ Performance measure:

• gold +1000, death −1000, −1 per step, −10 for using the arrow

♦ Actuators: Left turn, Right turn, Forward, Grab, Release, Shoot

♦ Sensors: Breeze, Glitter, Smell

CMSC 421: Chapter 7 5

Wumpus world characterization

♦ Fully observable?

CMSC 421: Chapter 7 6

Wumpus world characterization

♦ Fully observable? No—only local perception

♦ Deterministic?

CMSC 421: Chapter 7 7

Wumpus world characterization

♦ Fully observable? No—only local perception

♦ Deterministic? Yes—outcomes exactly specified

♦ Episodic?

CMSC 421: Chapter 7 8

Wumpus world characterization

♦ Fully observable? No—only local perception

♦ Deterministic? Yes—outcomes exactly specified

♦ Episodic? No—sequential at the level of actions

♦ Static?

CMSC 421: Chapter 7 9

Wumpus world characterization

♦ Fully observable? No—only local perception

♦ Deterministic? Yes—outcomes exactly specified

♦ Episodic? No—sequential at the level of actions

♦ Static? Yes—Wumpus, pits, and gold do not move

♦ Discrete?

CMSC 421: Chapter 7 10

Wumpus world characterization

♦ Fully observable? No—only local perception

♦ Deterministic? Yes—outcomes exactly specified

♦ Episodic? No—sequential at the level of actions

♦ Static? Yes—Wumpus, pits, and gold do not move

♦ Discrete? Yes

♦ Single-agent?

CMSC 421: Chapter 7 11

Wumpus world characterization

♦ Fully observable? No—only local perception

♦ Deterministic? Yes—outcomes exactly specified

♦ Episodic? No—sequential at the level of actions

♦ Static? Yes—Wumpus, pits, and gold do not move

♦ Discrete? Yes

♦ Single-agent? Yes—Wumpus is essentially a natural feature

CMSC 421: Chapter 7 12

Exploring a wumpus world

A

OK

OKOK

CMSC 421: Chapter 7 13

Exploring a wumpus world

OK

OK OK

A

A

B

CMSC 421: Chapter 7 14

Exploring a wumpus world

OK

OK OK

A

A

B

P?

P?

CMSC 421: Chapter 7 15

Exploring a wumpus world

OK

OK OK

A

A

B

P?

P?

A

S

CMSC 421: Chapter 7 16

Exploring a wumpus world

OK

OK OK

A

A

B

P?

P?

A

S

OK

P

W

CMSC 421: Chapter 7 17

Exploring a wumpus world

OK

OK OK

A

A

B

P?

P?

A

S

OK

P

W

A

CMSC 421: Chapter 7 18

Exploring a wumpus world

OK

OK OK

A

A

B

P?

P?

A

S

OK

P

W

A

OK

OK

CMSC 421: Chapter 7 19

Exploring a wumpus world

OK

OK OK

A

A

B

P?

P?

A

S

OK

P

W

A

OK

OK

A

BGS

CMSC 421: Chapter 7 20

Other tight spots

A

B OK

OK OK

A

B

A

P?

P?
P?

P?

A

S

♦ Breeze in (1,2) and (2,1)
⇒ no safe actions

• Pr[pit in (2, 2)] ≈ 0.86

• Pr[pits in (1, 3) and (3, 1)) ≈ 0.31

♦ A later chapter will discuss ways
for an agent to infer this

♦ Smell in (1,1) ⇒ can’t move safely

♦ Can use a coercion strategy:
shoot straight ahead

• wumpus was there ⇒ dead ⇒ safe

• wumpus wasn’t there ⇒ safe

CMSC 421: Chapter 7 21

Logic in general

♦ Logics are formal languages for representing
information from which conclusions can be inferred

• Syntax defines the sentences in the language

• Semantics define the “meaning” of sentences

� what a sentence means will determine whether it’s true or false

♦ E.g., the language of arithmetic

• x + 2 ≥ y is a sentence

• x2 + y > is not a sentence

• x+ 2 ≥ y is true iff the number x+ 2 is at least as big as the number y

� x + 2 ≥ y is true in a world where x= 7, y= 1

� x + 2 ≥ y is false in a world where x= 0, y= 6

CMSC 421: Chapter 7 22

Entailment

♦ Entailment means that one thing follows from another

• A relationship between sentences (i.e., syntax)
that is based on semantics

♦ Knowledge base KB entails sentence α

� written KB |= α

• iff α is true in every world where KB is true

♦ Examples:

• x + y= 4 entails 4 =x + y

• KB: Maryland beat UNC and Duke beat UNC

� KB |= Maryland beat UNC or Duke beat UNC
↖
inclusive or

CMSC 421: Chapter 7 23

Models

♦ Look at possible worlds:

• Formally structured worlds in which truth can be evaluated

• A possible world gives you a meaning for each sentence,
so you can evaluate whether it is true or false

• A possible world m is a model of a sentence α if α is true in m

M()

M(KB)

x

x

x

x

x

x

x x

x

x

x
x

xx
x

x
x

x

x
xx

xx

x x
xx

x
x x

x

x
x

x x x
x

xx

x

x

x

x

x

x

x

x

M(α)

M(KB)

♦ M(α) is the set of all models of α

� All worlds in which α is true

• Then KB |= α if and only if M(KB) ⊆M(α)

♦ Example

• KB: Maryland beat UNC and Duke beat UNC

• α: Maryland beat UNC

CMSC 421: Chapter 7 24

Entailment in the wumpus world

♦ Suppose you

• detect nothing in [1,1]

• move right

• feel a breeze in [2,1]

♦ For now,

• Ignore the wumpus and gold

• Ignore all squares other than the ?s

♦ Which ?s are pits? AA

B

?
?

?

♦ Model checking:

• 3 Boolean choices ⇒ 8 possible worlds

• For each one, check whether it’s a model

CMSC 421: Chapter 7 25

Wumpus models

AA

B

?
?

?
1 2 3

1

2

Breeze

PIT

1 2 3

1

2

Breeze

PIT

1 2 3

1

2

Breeze

PIT PIT

PIT

1 2 3

1

2

Breeze

PIT

PIT

1 2 3

1

2

Breeze
PIT

1 2 3

1

2

Breeze

PIT

PIT

1 2 3

1

2

Breeze

PIT PIT

1 2 3

1

2

Breeze

♦ KB = wumpus-world rules + observations

• Eight possible combinations of pit locations

• Which ones are models of KB?

CMSC 421: Chapter 7 26

Wumpus models

AA

B

?
?

?
1 2 3

1

2

Breeze

PIT

1 2 3

1

2

Breeze

PIT

1 2 3

1

2

Breeze

PIT PIT

PIT

1 2 3

1

2

Breeze

PIT

PIT

1 2 3

1

2

Breeze
PIT

1 2 3

1

2

Breeze

PIT

PIT

1 2 3

1

2

Breeze

PIT PIT

1 2 3

1

2

Breeze

KB

♦ KB = wumpus-world rules + observations

• Three models of KB

CMSC 421: Chapter 7 27

Wumpus models

AA

B

?
?

?
1 2 3

1

2

Breeze

PIT

1 2 3

1

2

Breeze

PIT

1 2 3

1

2

Breeze

PIT PIT

PIT

1 2 3

1

2

Breeze

PIT

PIT

1 2 3

1

2

Breeze
PIT

1 2 3

1

2

Breeze

PIT

PIT

1 2 3

1

2

Breeze

PIT PIT

1 2 3

1

2

Breeze

KB
1

♦ KB = wumpus-world rules + observations

• Three models of KB

♦ Let α1 = “[1,2] is safe”

• Then KB |= α1, proved by model checking

CMSC 421: Chapter 7 28

Wumpus models

AA

B

?
?

?
1 2 3

1

2

Breeze

PIT

1 2 3

1

2

Breeze

PIT

1 2 3

1

2

Breeze

PIT PIT

PIT

1 2 3

1

2

Breeze

PIT

PIT

1 2 3

1

2

Breeze
PIT

1 2 3

1

2

Breeze

PIT

PIT

1 2 3

1

2

Breeze

PIT PIT

1 2 3

1

2

Breeze

KB
2

♦ KB = wumpus-world rules + observations

• Three models of KB

♦ Let α2 = “[2,2] is safe”

• Then KB 6|= α2

CMSC 421: Chapter 7 29

Inference

♦ Entailment (e.g, KB |= α) is like looking for a needle in haystack

• Consequences of KB are the haystack α is the needle

• Inference procedure = a procedure for finding α

♦ KB `i α means inference procedure i can derive sentence α from KB

• Soundness: i is sound if

� whenever KB `i α, it is also true that KB |= α

• Completeness: i is complete if

� whenever KB |= α, it is also true that KB `i α

♦ Model checking is one kind of inference procedure (not the only one)

• It is sound

• It is complete if the set of possible worlds is finite

CMSC 421: Chapter 7 30

Preview of where we’re going

♦ Later, we’ll talk about first-order logic

• Expressive enough to say almost anything of interest

♦ There are sound and complete inference procedures for first-order logic

• Will answer any question whose answer follows from what’s in the KB

♦ But first, let’s look at propositional logic

• The simplest logic; illustrates basic ideas

CMSC 421: Chapter 7 31

Propositional logic: Syntax

♦ The proposition symbols P1, P2, etc., are sentences

♦ If S is a sentence, ¬S is a sentence (negation)

♦ If S1 and S2 are sentences, S1 ∧ S2 is a sentence (conjunction)

♦ If S1 and S2 are sentences, S1 ∨ S2 is a sentence (disjunction)

♦ If S1 and S2 are sentences, S1 ⇒ S2 is a sentence (implication)

♦ If S1 and S2 are sentences, S1 ⇔ S2 is a sentence (equivalence)

CMSC 421: Chapter 7 32

Propositional logic: Semantics

♦ Each world specifies a true/false value for every proposition symbol

♦ Rules for evaluating truth with respect to a world w:

¬S is true iff S is false
S1 ∧ S2 is true iff S1 is true and S2 is true
S1 ∨ S2 is true iff S1 is true or S2 is true
S1 ⇒ S2 is true iff S1 is false or S2 is true

i.e., is false iff S1 is true and S2 is false
S1 ⇔ S2 is true iff S1 ⇒ S2 is true and S2 ⇒ S1 is true

♦ Simple recursive process to evaluate an arbitrary sentence

• Consider a world in which P1,2 is true
P2,2 is true
P3,1 is false

• Then ¬P1,2 ∧ (P2,2 ∨ P3,1)

= true ∧ (false ∨ true)
= true

CMSC 421: Chapter 7 33

Wumpus world sentences

♦ Let Bi,j be true if there is a breeze in [i, j]

♦ Let Pi,j be true if there is a pit in [i, j]

♦ KB: ¬B1,1, B2,1, ¬P1,1, ¬P2,1

AA

B

?
?

?

♦ How to represent “Pits cause breezes in adjacent squares”?

CMSC 421: Chapter 7 34

Wumpus world sentences

♦ Let Bi,j be true if there is a breeze in [i, j]

♦ Let Pi,j be true if there is a pit in [i, j]

♦ KB: ¬B1,1, B2,1, ¬P1,1, ¬P2,1

AA

B

?
?

?

♦ How to represent “Pits cause breezes in adjacent squares”?

• “A square is breezy if and only if there is an adjacent pit”

♦ In propositional logic, we can’t write this directly

• But we can write instantiations of it

♦ In the example:

B1,1 ⇔ (P1,2 ∨ P2,1)

B2,1 ⇔ (P1,1 ∨ P2,2 ∨ P3,1)

CMSC 421: Chapter 7 35

Truth tables for inference

♦ Model checking in propositional logic = inference using truth tables

♦ Each row is a possible world

• In each row where KB is true, is α true too?

♦ KB: ¬B1,1, B2,1, ¬P1,1, ¬P2,1

B1,1 B2,1 P1,1 P1,2 P2,1 P2,2 P3,1 KB α1

false false false false false false false false don’t care

false false false false false false true false don’t care
...

false true false false false false false false don’t care

false true false false false false true true true

false true false false false true false true true

false true false false false true true true true

false true false false true false false false don’t care
...

true true true true true true true false don’t care

CMSC 421: Chapter 7 36

Inference by enumeration

♦ Depth-first enumeration of all models is sound and complete

• O(2n) for n symbols; problem is co-NP-complete

function TT-Entails?(KB,α)

symbols ← a list of the proposition symbols in KB and α

return TT-Check-All(KB,α, symbols, [])

function TT-Check-All(KB,α, symbols, world)

if symbols is empty then

if KB is true in world then return α’s truth value in world

else return true

else

P ← first symbol in symbols

rest ← the other symbols in symbols

return TT-Check-All(KB,α, rest,Extend(P , true,world)) and

TT-Check-All(KB,α, rest,Extend(P , false,world))

CMSC 421: Chapter 7 37

Proof methods

♦ Proof methods divide into (roughly) two kinds:

• Model checking

� truth table enumeration (always exponential in n)

� improved backtracking, e.g., Davis-Putnam-Logemann-Loveland

� heuristic search in model space (sound but incomplete)

− e.g., hill-climbing with min-conflicts

• Application of inference rules

� Legitimate (sound) generation of new sentences from old

� Proof: a sequence of applications of inference rules

− Use a search algorithm with inference rules as operators

− Typically requires translation of sentences into a normal form

CMSC 421: Chapter 7 38

Logical equivalence

♦ Two sentences are logically equivalent iff true in same models:

• α ≡ β if and only if α |= β and β |= α

(α ∧ β) ≡ (β ∧ α) commutativity of ∧
(α ∨ β) ≡ (β ∨ α) commutativity of ∨

((α ∧ β) ∧ γ) ≡ (α ∧ (β ∧ γ)) associativity of ∧
((α ∨ β) ∨ γ) ≡ (α ∨ (β ∨ γ)) associativity of ∨

¬(¬α) ≡ α double-negation elimination
(α ⇒ β) ≡ (¬β ⇒ ¬α) contraposition
(α ⇒ β) ≡ (¬α ∨ β) implication elimination
(α ⇔ β) ≡ ((α ⇒ β) ∧ (β ⇒ α)) biconditional elimination
¬(α ∧ β) ≡ (¬α ∨ ¬β) De Morgan
¬(α ∨ β) ≡ (¬α ∧ ¬β) De Morgan

(α ∧ (β ∨ γ)) ≡ ((α ∧ β) ∨ (α ∧ γ)) distributivity of ∧ over ∨
(α ∨ (β ∧ γ)) ≡ ((α ∨ β) ∧ (α ∨ γ)) distributivity of ∨ over ∧

CMSC 421: Chapter 7 39

Validity and satisfiability

♦ A sentence is valid if it is true in all possible worlds,

� e.g., True, A ∨ ¬A, A ⇒ A, (A ∧ (A ⇒ B)) ⇒ B

♦ Validity is connected to inference via the Deduction Theorem:

� KB |= α if and only if (KB ⇒ α) is valid

♦ A sentence is satisfiable if it is true in at least one possible world

� e.g., A ∨B, C

♦ A sentence is unsatisfiable if it is true in no possible worlds

� e.g., A ∧ ¬A

♦ Satisfiability is connected to inference via the following:

� KB |= α if and only if (KB ∧ ¬α) is unsatisfiable

� i.e., prove α by reductio ad absurdum

CMSC 421: Chapter 7 40

Forward and backward chaining

♦ A Horn clause is one of the following:

• proposition symbol

• conjunction of proposition symbols ⇒ symbol

♦ Horn form: conjunct of Horn clauses, e.g.,

� C ∧ (B ⇒ A) ∧ (C ∧D ⇒ B)

• Often just write the separate clauses:

� C, B ⇒ A, C ∧D ⇒ B

♦ This is a restricted subset of propositional logic

• e.g., A ∨B isn’t in Horn form, and can’t be translated into it

♦ Modus Ponens for Horn clauses:
α1, . . . , αn, α1 ∧ · · · ∧ αn ⇒ β

β
• Complete for KBs in Horn form

• Can be used with forward chaining or backward chaining

� These algorithms are very natural and run in linear time

CMSC 421: Chapter 7 41

Forward chaining

♦ Given a query q:

• loop until q is found:

� apply any rule whose premises are satisfied in the KB

� add its conclusion to the KB

P ⇒ Q

L ∧M ⇒ P

B ∧ L ⇒ M

A ∧ P ⇒ L

A ∧B ⇒ L

A

B

Q

P

M

L

BA

CMSC 421: Chapter 7 42

Forward chaining algorithm

function PL-FC-Entails?(KB, q)

for every clause c in KB do

count[c] ← number of premises of c

for every proposition symbol p that appears anywhere in KB do

inferred[p] ← false

agenda ← all proposition symbols that are clauses in KB

while agenda is not empty do

p ← Pop(agenda)

unless inferred[p] do

inferred[p] ← true

for each Horn clause c that has p in its premises do

decrement count[c]

if count[c] = 0 then do

if Head[c] = q then return true

Push(Head[c], agenda)

return false

CMSC 421: Chapter 7 43

Forward chaining example

c count[c]

P ⇒ Q 1

L ∧M ⇒ P 2

B ∧ L ⇒ M 2

A ∧ P ⇒ L 2

A ∧B ⇒ L 2

A 0

B 0

agenda = 〈A,B〉

Q

P

M

L

BA

2 2

2

2

1

CMSC 421: Chapter 7 44

Forward chaining example

c count[c]

P ⇒ Q 1

L ∧M ⇒ P 2

B ∧ L ⇒ M 2

A ∧ P ⇒ L 1

A ∧B ⇒ L 1

A 0

B 0

agenda = 〈B〉

Q

P

M

L

B

2

1

A

1 1

2

CMSC 421: Chapter 7 45

Forward chaining example

c count[c]

P ⇒ Q 1

L ∧M ⇒ P 2

B ∧ L ⇒ M 1

A ∧ P ⇒ L 1

A ∧B ⇒ L 0

A 0

B 0

agenda = 〈L〉

Q

P

M

2

1

A

1

B

0

1
L

CMSC 421: Chapter 7 46

Forward chaining example

c count[c]

P ⇒ Q 1

L ∧M ⇒ P 1

B ∧ L ⇒ M 0

A ∧ P ⇒ L 1

A ∧B ⇒ L 0

A 0

B 0

agenda = 〈M〉

Q

P

M

1

A

1

B

0

L
0

1

CMSC 421: Chapter 7 47

Forward chaining example

c count[c]

P ⇒ Q 1

L ∧M ⇒ P 0

B ∧ L ⇒ M 0

A ∧ P ⇒ L 1

A ∧B ⇒ L 0

A 0

B 0

agenda = 〈P 〉

Q

1

A

1

B

0

L
0

M

0

P

CMSC 421: Chapter 7 48

Forward chaining example

c count[c]

P ⇒ Q 0

L ∧M ⇒ P 0

B ∧ L ⇒ M 0

A ∧P ⇒ L 0

A ∧B ⇒ L 0

A 0

B 0

agenda = 〈L,Q〉

Q

A B

0

L
0

M

0

P

0

0

CMSC 421: Chapter 7 49

Forward chaining example

c count[c]

P ⇒ Q 0

L ∧M ⇒ P 0

B ∧ L ⇒ M 0

A ∧ P ⇒ L 0

A ∧B ⇒ L 0

A 0

B 0

agenda = 〈Q〉

Q

A B

0

L
0

M

0

P

0

0

CMSC 421: Chapter 7 50

Forward chaining example

c count[c]

P ⇒ Q 0

L ∧M ⇒ P 0

B ∧ L ⇒ M 0

A ∧ P ⇒ L 0

A ∧B ⇒ L 0

A 0

B 0

agenda = 〈〉
A B

0

L
0

M

0

P

0

0

Q

CMSC 421: Chapter 7 51

Proof of completeness

FC derives every atomic sentence that is entailed by KB

1. At i’th iteration of the “while” loop, can create a world mi as follows:
assign true to every atomic symbol that has been derived
assign false to all other atomic symbols

2. There are only finitely many atomic sentences, so FC must reach a
fixed point where no new atomic sentences are derived. Let n be the
iteration where this happens.

3. Every clause in the original KB is true in mn. Proof:

� Suppose a clause a1 ∧ . . . ∧ ak ⇒ b is false in mi.

� Then a1 ∧ . . . ∧ ak is true in mi and b is false in mi.

� Thus count(b) = 0, so b will be inferred in a future iteration,
so iteration i isn’t a fixed point.

• Hence at the fixed point, mn is a model of KB.

5. If q is atomic and KB |= q, then q is true in every model of KB,
including m. Hence FC must have derived q.

CMSC 421: Chapter 7 52

Backward chaining

♦ Idea: work backwards from the query q

• To prove q by BC, either

� Check if q is known already, or

� Recursively call BC to prove the premises of a rule that infers q

♦ To avoid loops: check if q is already on the recursion stack

♦ To avoid repeated work: check if q

• has already been proved true, or

• has already failed

CMSC 421: Chapter 7 53

Backward chaining example

P ⇒ Q

L ∧M ⇒ P

B ∧ L ⇒ M

A ∧ P ⇒ L

A ∧B ⇒ L

A

B

Q

P

M

L

A B

CMSC 421: Chapter 7 54

Backward chaining example

P ⇒ Q

L ∧M ⇒ P

B ∧ L ⇒ M

A ∧ P ⇒ L

A ∧B ⇒ L

A

B

P

M

L

A

Q

B

CMSC 421: Chapter 7 55

Backward chaining example

P ⇒ Q

L ∧M ⇒ P

B ∧ L ⇒ M

A ∧ P ⇒ L

A ∧B ⇒ L

A

B

M

L

A

Q

P

B

CMSC 421: Chapter 7 56

Backward chaining example

P ⇒ Q

L ∧M ⇒ P

B ∧ L ⇒ M

A ∧P ⇒ L

A ∧B ⇒ L

A

B

M

A

Q

P

L

B

CMSC 421: Chapter 7 57

Backward chaining example

P ⇒ Q

L ∧M ⇒ P

B ∧ L ⇒ M

A ∧ P ⇒ L

A ∧B ⇒ L

A

B

M

L

A

Q

P

B

CMSC 421: Chapter 7 58

Backward chaining example

P ⇒ Q

L ∧M ⇒ P

B ∧ L ⇒ M

A ∧ P ⇒ L

A ∧B ⇒ L

A

B

M

A

Q

P

L

B

CMSC 421: Chapter 7 59

Backward chaining example

P ⇒ Q

L ∧M ⇒ P

B ∧ L ⇒ M

A ∧ P ⇒ L

A ∧B ⇒ L X

A

B

M

A

Q

P

L

B

CMSC 421: Chapter 7 60

Backward chaining example

P ⇒ Q

L ∧M ⇒ P

B ∧ L ⇒ M

A ∧ P ⇒ L

A ∧B ⇒ L X

A

B

A

Q

P

L

B

M

CMSC 421: Chapter 7 61

Backward chaining example

P ⇒ Q

L ∧M ⇒ P

B ∧ L ⇒ M X

A ∧ P ⇒ L

A ∧B ⇒ L X

A

B

A

Q

P

L

B

M

CMSC 421: Chapter 7 62

Backward chaining example

P ⇒ Q

L ∧M ⇒ P X

B ∧ L ⇒ M X

A ∧ P ⇒ L

A ∧B ⇒ L X

A

B

A

Q

P

L

B

M

CMSC 421: Chapter 7 63

Backward chaining example

P ⇒ Q X

L ∧M ⇒ P X

B ∧ L ⇒ M X

A ∧ P ⇒ L

A ∧B ⇒ L X

A

B

A

Q

P

L

B

M

CMSC 421: Chapter 7 64

Forward vs. backward chaining

♦ FC is data-driven

� data-driven algorithms can be used for automatic,
unconscious processing

� e.g., object recognition, routine decisions

♦ May do lots of work that is irrelevant to the goal

♦ BC is goal-driven, appropriate for problem-solving,

� e.g., Where are my keys? How do I get into UMD’s
computer science program?

♦ Complexity of BC can be much less than linear in size of KB

CMSC 421: Chapter 7 65

Resolution

Conjunctive Normal Form (CNF): conjunct of disjuncts of literals︸ ︷︷ ︸
clauses

♦ E.g., (A ∨ ¬B) ∧ (B ∨ ¬C ∨ ¬D)

♦ Resolution inference rule: if clause C contains a literal ` and clause D
contains ¬`, then

• infer the disjunct of all literals in C and D other than ` and ¬`

OK

OK OK

A

A

B

P?

P?

A

S

♦ E.g.,
A ∨ ¬B B ∨ ¬C ∨ ¬D

A ∨ ¬C ∨ ¬D

♦ Wumpus world:
P1,3 ∨ P2,2 ¬P2,2

P1,3

♦ Proof by contradication:
P ¬P
�

CMSC 421: Chapter 7 66

Resolution

♦ Resolution is equivalent to Modus Ponens:

• Example of doing a resolution inference using modus ponens:

start with clauses: A ∨ ¬B B ∨ ¬C ∨ ¬D
rewrite as implications: ¬A ⇒ ¬B ¬B ∧ C ⇒ ¬D

apply modus ponens: ¬A ∧ C ⇒ ¬D
rewrite as clauses: A ∨ ¬C ∨ ¬D

• Example of doing a modus ponens inference using resolution:

start with implications: ¬A ⇒ ¬B ¬B ∧ C ⇒ ¬D
rewrite as clauses: A ∨ ¬B B ∨ ¬C ∨ ¬D

apply resolution: A ∨ ¬C ∨ ¬D
convert back to implications: ¬A ∧ C ⇒ ¬D

CMSC 421: Chapter 7 67

Conversion to CNF

♦ Resolution is sound and complete for propositional logic

• But to use it, you first must convert all everything to CNF

♦ Example:

• There’s a breeze in (1,1) iff there’s a pit in (1,2) or (2,1):

• B1,1 ⇔ (P1,2 ∨ P2,1)

1. Eliminate ⇔, by replacing α⇔ β with (α ⇒ β) ∧ (β ⇒ α):

(B1,1 ⇒ (P1,2 ∨ P2,1)) ∧ ((P1,2 ∨ P2,1) ⇒ B1,1)

2. Eliminate ⇒, by replacing α⇒ β with ¬α ∨ β:

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬(P1,2 ∨ P2,1) ∨B1,1)

3. Move ¬ inwards using de Morgan’s rules and double-negation:

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ ((¬P1,2 ∧ ¬P2,1) ∨B1,1)

4. Apply distributivity law (∨ over ∧) and flatten:

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬P1,2 ∨B1,1) ∧ (¬P2,1 ∨B1,1)

CMSC 421: Chapter 7 68

Resolution algorithm

♦ Proof by contradiction

function PL-Resolution(KB,α)

clauses ← {all clauses in the CNF representation of KB ∧ ¬α}
loop

new ← {}
for each Ci, Cj in clauses do

resolvents ← PL-Resolve(Ci,Cj)

if resolvents contains the empty clause then return true

new ← new ∪ resolvents

if new ⊆ clauses then return false

clauses ← clauses ∪ new

function PL-Resolve(C1,C2) returns a set of clauses

resolvents ← {}
for each l ∈ C1 and m ∈ C2 such that l ≡ ¬ m do

C ← disjunct of all literals in C1 and C2 except for l and m

resolvents ← resolvents ∪ {C}
return resolvents

CMSC 421: Chapter 7 69

Resolution example

OK

OK OK

A

A

B

♦ KB:

� There’s a breeze in (1,1)
iff there’s a pit in (1,2) or (2,1):

� There’s no breeze in (1,1):

• KB = (B1,1 ⇔ (P1,2 ∨ P2,1)) ∧ ¬B1,1

♦ KB converted to CNF:

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬P1,2 ∨B1,1) ∧ (¬P2,1 ∨B1,1) ∧ ¬B1,1

♦ Want to show there’s no pit in (1,2): α = ¬P1,2

♦ clauses = {all clauses in the CNF representation of KB ∧ α}
¬B1,1 ∨ P1,2 ∨ P2,1 ¬P1,2 ∨B1,1 ¬P2,1 ∨B1,1 ¬B1,1 P1,2

CMSC 421: Chapter 7 70

function PL-Resolution(KB,α)

clauses ← {all clauses in the CNF representation of KB ∧ ¬α}
loop

new ← {}
for each Ci, Cj in clauses do

resolvents ← PL-Resolve(Ci,Cj)

if resolvents contains the empty clause then return true

new ← new ∪ resolvents

if new ⊆ clauses then return false

clauses ← clauses ∪ new

function PL-Resolve(C1,C2) returns a set of clauses

resolvents ← {}
for each l ∈ C1 and m ∈ C2 such that l ≡ ¬ m do

C ← disjunct of all literals in C1 and C2 except for l and m

resolvents ← resolvents ∪ {C}
return resolvents

CMSC 421: Chapter 7 71

Axioms for the Wumpus world

♦ For each square, an axiom telling whether it’s breezy

• B1,1 ⇔ (P1,2 ∨ P2,1)

• B1,2 ⇔ (P1,1 ∧ P2,2 ∧ P1,3)

• . . .

• B2,2 ⇔ (P1,2 ∨ P2,1 ∨ P2,3 ∨ P3,2)

• . . .

• B4,4 ⇔ (P1,1 ∧ P2,2 ∧ P1,3)

♦ For each square, an axiom telling whether it’s smelly

• S1,1 ⇔ (W1,2 ∨W2,1)

• . . .

♦ For each square, an axiom telling whether it’s glittery

• . . .

CMSC 421: Chapter 7 72

Axioms for the Wumpus world

♦ Axioms saying there’s exactly one square that contains a Wumpus:

• W1,1 ∨W1,2 ∨ . . . ∨W4,3 ∨W4,4

• ¬W1,1 ∨ ¬W1,2

• ¬W1,1 ∨ ¬W1,3

• . . .

• ¬W4,3 ∨ ¬W4,4

CMSC 421: Chapter 7 73

Fluents

♦ Suppose the agent perceives a breeze at time t = 3
and a stench at time t = 4

• Can’t just add Breeze and Stench to KB

� They are perceived at some times but not others

• Instead, use new propositions called fluents

� Breeze3 and Stench4

♦ Need fluents for everything that can change over time

� L5
3,4 at square [3,4] at time t = 5

� East8 facing east at time t = 8

� Have arrow17 have the arrow at time t = 17

� Wumpus alive4 wumpus is alive at time t = 4

♦ Need fluents like these for t = 0, 1, 2, . . . , tmax,

• where tmax is the largest time that you’ll ever need to consider

CMSC 421: Chapter 7 74

Mapping fluents to domain properties

♦ Axioms for mapping “breeze” percepts into properties of the domain:

� L1
1,1 ⇒ (Breeze1 ⇔ B1,1)

� L1
1,2 ⇒ (Breeze1 ⇔ B1,2)

� . . .

and similarly for all other time points

♦ Similarly,

� L1
1,1 ⇒ (Stench1 ⇔ S1,1)

� L1
1,2 ⇒ (Stench1 ⇔ S1,2)

� . . .

and similarly for all other time points

♦ Likewise for all of the other percepts

CMSC 421: Chapter 7 75

How to describe actions?

♦ One way of writing axioms to describe movement:

� L0
1,1 ∧ East0 ∧ Forward ⇒ (L1

2,1 ∧ ¬L1
1,1)

� L0
1,2 ∧ East0 ∧ Forward ⇒ (L1

2,2 ∧ ¬L1
1,2)

� . . .

one for each possible combination of location, time point, and direction

♦ Add similar axioms for each of the other actions

• Grab, Shoot, Turn right, . . .

♦ These are called effect axioms

♦ Problem: they don’t represent all of the consequences of each action

• What do they leave out?

CMSC 421: Chapter 7 76

How to describe actions?

♦ The frame problem:

• An “effect” axiom describes the changes due to an action

L0
1,1 ∧ East0 ∧ Forward ⇒ (L1

2,1 ∧ ¬L1
1,1)

• But it doesn’t describe what doesn’t change

• If we have the arrow and we move forward, we’ll still have the arrow

� We can’t infer this unless we have an axiom that says it

♦ Qualification problem: real actions require endless caveats

• what if gold is slippery or nailed down or . . .

♦ Ramification problem: real actions have many secondary consequences

• dust on the gold, wear and tear on gloves, . . .

♦ The Wumpus world is so simple that it’s easy to specify each action’s
qualifications and ramifications

• But we still need to handle the frame problem

♦ Instead of “effect” axioms, we’ll use successor state axioms

CMSC 421: Chapter 7 77

Successor state axioms

♦ If a fluent f is true at time t + 1, then either it was true at time t
or we performed an action that made it true

♦ If we have the arrow at time t + 1, then we had it and didn’t shoot it

� HaveArrow2 ⇔ (HaveArrow1 ∧ ¬Shoot1)
� HaveArrow3 ⇔ (HaveArrow2 ∧ ¬Shoot2)
� . . .

♦ If we’re at location l at time t + 1, then we moved there,
or we were already there and we didn’t move,
or we were already there and we bumped into the wall

� Lt+1
1,1 ⇔ (Lt1,1 ∧ ¬Forwardt ∨Bumpt+1)

∨(Lt1,2 ∧ Southt ∧ Forwardt) ∨ (Lt2,1 ∧Westt ∧ Forwardt)
• need one of those for each location and each value of t

♦ Need similar axioms for all the other fluents

CMSC 421: Chapter 7 78

Inferring where it’s OK to move

• OK1
1,1 ⇔ ¬P1,1 ∧ (¬W1,1 ∨ ¬Wumpus Alive1)

• OK1
1,2 ⇔ ¬P1,2 ∧ (¬W1,2 ∨ ¬Wumpus Alive1)

• . . .

• OK1
4,4 ⇔ ¬P4,4 ∧ (¬W4,4 ∨ ¬Wumpus Alive1)

• OK2
1,1 ⇔ ¬P1,1 ∧ (¬W1,1 ∨ ¬Wumpus Alive2)

• OK2
1,2 ⇔ ¬P1,2 ∧ (¬W1,2 ∨ ¬Wumpus Alive2)

• . . .

• OK2
4,4 ⇔ ¬P4,4 ∧ (¬W4,4 ∨ ¬Wumpus Alive2)

• . . . for each value of t . . .

CMSC 421: Chapter 7 79

Inferring facts about the state of the world

¬Stench0 ∧ ¬Breeze0 ∧ ¬Glitter0 ∧ ¬Bump0 ∧ ¬Scream0; Forward0

¬Stench1 ∧ Breeze1 ∧ ¬Glitter1 ∧ ¬Bump1 ∧ ¬Scream1; Turn right1

¬Stench2 ∧ Breeze2 ∧ ¬Glitter2 ∧ ¬Bump2 ∧ ¬Scream2; Turn right2

¬Stench3 ∧ Breeze3 ∧ ¬Glitter3 ∧ ¬Bump3 ∧ ¬Scream3; Forward3

¬Stench4 ∧ ¬Breeze4 ∧ ¬Glitter4 ∧ ¬Bump4 ∧ ¬Scream4; Turn Left4

¬Stench5 ∧ ¬Breeze5 ∧ ¬Glitter5 ∧ ¬Bump5 ∧ ¬Scream5; Forward5

Stench6 ∧ ¬Breeze6 ∧ ¬Glitter6 ∧ ¬Bump6 ∧ ¬Scream6

OK

OK OK

A

A

B

P?

P?

A

S

OK

P

W

♦ With all of the axioms and a resolution
theorem prover, we should be able to get

• ASK(KB,L6
2,1) = true

• ASK(KB,P1,3) = true

• ASK(KB,W3,1) = true

• ASK(KB,OK6
2,2) = true

CMSC 421: Chapter 7 80

Summary

♦ Logical agents apply inference to a knowledge base

• to derive new information and make decisions

♦ Basic concepts of logic:

• syntax: formal structure of sentences

• semantics: truth of sentences wrt models

• entailment: necessary truth of one sentence given another

• inference: deriving sentences from other sentences

• soundess: derivations produce only entailed sentences

• completeness: derivations can produce all entailed sentences

♦ Wumpus world requires representing partial and negated information,
reasoning by cases, etc.

♦ Forward and backward chaining are linear-time, complete for Horn clauses

♦ Resolution is complete for propositional logic

♦ Propositional logic lacks expressive power

CMSC 421: Chapter 7 81

