Last update: October 11, 2012

LOGICAL AGENTS

CMSC 421: Chapter 7

CMSC 421: Chapter 7 1

Outline

- \diamond Knowledge-based agents
- \diamond Wumpus world
- \diamondsuit Logic in general—models and entailment
- \diamond Propositional (Boolean) logic
- \diamondsuit Equivalence, validity, satisfiability
- \diamondsuit Inference rules and theorem proving
 - forward chaining
 - backward chaining
 - resolution

Knowledge bases

- \Diamond *Knowledge base* = set of *sentences* in a **formal** language
- *Declarative* approach to building an agent (or other system):
 TELL it what it needs to know
- \diamond Then it can Ask itself what to do—answers should follow from the KB
- \diamond Agents can be viewed at the *knowledge level*
 - ♦ i.e., **what they know**, regardless of how implemented
- \diamond Or at the *implementation level*
 - $\diamond~$ i.e., data structures in KB and algorithms that manipulate them

A simple knowledge-based agent

```
\begin{aligned} & \textbf{function KB-AGENT}(\textit{percept}) \textbf{ returns an } action \\ & \textbf{static: } KB, a knowledge base \\ & t, a counter, initially 0, indicating time \\ & \textbf{TELL}(KB, \textbf{MAKE-PERCEPT-SENTENCE}(\textit{percept}, t)) \\ & action \leftarrow \textbf{ASK}(KB, \textbf{MAKE-ACTION-QUERY}(t)) \\ & \textbf{TELL}(KB, \textbf{MAKE-ACTION-SENTENCE}(action, t)) \\ & t \leftarrow t+1 \\ & \textbf{return } action \end{aligned}
```

- \diamondsuit The agent must be able to:
 - Represent states, actions, etc.
 - Incorporate new percepts
 - Update internal representations of the world
 - Deduce hidden properties of the world
 - Deduce appropriate actions

Wumpus World PEAS description

- \diamond **E**nvironment:
 - One wumpus, one heap of gold
 - P(pit) = 0.2 for each square
 - Squares next to wumpus are smelly
 - Shooting into wumpus's square kills it
 - Shooting uses up the only arrow
 - Squares next to pit are breezy
 - Glitter iff the gold is in your square
 - $\diamond~$ Grabbing picks it up
 - $\diamond~$ Releasing drops it
 - \diamond **P**erformance measure:
 - gold +1000, death -1000, -1 per step, -10 for using the arrow
 - \diamondsuit Actuators: Left turn, Right turn, Forward, Grab, Release, Shoot
 - \diamond **S**ensors: Breeze, Glitter, Smell

 \Diamond Fully observable?

- \diamondsuit Fully observable? No—only local perception
- $\Diamond \underline{Deterministic?}$

- \diamond *Fully observable?* No—only local perception
- $\Diamond \underline{Deterministic?}$ Yes—outcomes exactly specified
- $\bigcirc Episodic?$

- \diamond *Fully observable?* No—only local perception
- $\Diamond \underline{Deterministic?}$ Yes—outcomes exactly specified
- *Episodic*? No—sequential at the level of actions
- $\Diamond \underline{Static?}$

- \Diamond *Fully observable?* No—only local perception
- $\Diamond \underline{Deterministic?}$ Yes—outcomes exactly specified
- $\diamondsuit \ Episodic?$ No—sequential at the level of actions
- \diamondsuit <u>Static</u>? Yes—Wumpus, pits, and gold do not move
- $\bigcirc \underline{Discrete?}$

- \Diamond *Fully observable?* No—only local perception
- $\Diamond \underline{Deterministic?}$ Yes—outcomes exactly specified
- *Episodic*? No—sequential at the level of actions
- $\$ <u>Static</u>? Yes—Wumpus, pits, and gold do not move
- $\bigcirc \underline{Discrete?}$ Yes
- \Diamond Single-agent?

- ♦ *Fully observable*? No—only local perception
- $\Diamond \underline{Deterministic?}$ Yes—outcomes exactly specified
- *Episodic*? No—sequential at the level of actions
- \diamondsuit <u>Static</u>? Yes—Wumpus, pits, and gold do not move
- $\bigcirc \underline{Discrete?}$ Yes
- \diamond *Single-agent?* Yes—Wumpus is essentially a natural feature

OK		
OK A	OK	

B [
[OK A	OK	

Other tight spots

- - $\Pr[\text{pit in } (2,2)] \approx 0.86$
 - $\Pr[\text{pits in } (1,3) \text{ and } (3,1)) \approx 0.31$
- \diamondsuit A later chapter will discuss ways for an agent to infer this

- \diamond Smell in (1,1) \Rightarrow can't move safely
- - wumpus was there \Rightarrow dead \Rightarrow safe
 - wumpus wasn't there \Rightarrow safe

Logic in general

- \diamond *Logics* are formal languages for representing information from which conclusions can be inferred
 - *Syntax* defines the sentences in the language
 - *Semantics* define the "meaning" of sentences
 - $\diamond~$ what a sentence means will determine whether it's true or false
- \diamond E.g., the language of arithmetic
 - $x + 2 \ge y$ is a sentence
 - $x^2 + y > \text{ is not a sentence}$
 - $x+2 \ge y$ is true iff the number x+2 is at least as big as the number y
 - $x + 2 \ge y$ is true in a world where x = 7, y = 1

 $x + 2 \ge y$ is false in a world where x = 0, y = 6

Entailment

 \diamond *Entailment* means that one thing **follows from** another

- A relationship between sentences (i.e., **syntax**) that is based on **semantics**
- \diamondsuit Knowledge base KB entails sentence α
 - \diamond written $KB \models \alpha$
 - iff α is true in every world where \overline{KB} is true
- \Diamond Examples:
 - x + y = 4 entails 4 = x + y
 - KB: Maryland beat UNC and Duke beat UNC

 $\diamond~KB \models$ Maryland be at UNC or Duke beat UNC

inclusive or

Models

 \diamond Look at *possible worlds*:

- Formally structured worlds in which truth can be evaluated
- A possible world gives you a meaning for each sentence, so you can evaluate whether it is true or false
- A possible world m is a *model* of a sentence α if α is true in m
- $\diamondsuit M(\alpha)$ is the set of all models of α
 - $\diamond~$ All worlds in which α is true
 - Then $KB \models \alpha$ if and only if $M(KB) \subseteq M(\alpha)$
- \diamond Example
 - KB: Maryland beat UNC and Duke beat UNC
 - α : Maryland beat UNC

Entailment in the wumpus world

- \diamondsuit Suppose you
 - detect nothing in [1,1]
 - move right
 - feel a breeze in [2,1]
- \diamondsuit For now,
 - Ignore the wumpus and gold
 - Ignore all squares other than the **?**s
- \diamond Which **?**s are pits?

\diamond Model checking:

- 3 Boolean choices \Rightarrow 8 possible worlds
- For each one, check whether it's a model

- \Diamond *KB* = wumpus-world rules + observations
 - Eight possible combinations of pit locations
 - Which ones are models of KB?

- \Diamond *KB* = wumpus-world rules + observations
 - Three models of \overline{KB}

- \Diamond KB = wumpus-world rules + observations
 - Three models of KB
- \diamond Let $\alpha_1 =$ "[1,2] is safe"
 - Then $KB \models \alpha_1$, proved by model checking

- \Diamond KB = wumpus-world rules + observations
 - Three models of KB
- \diamond Let $\alpha_2 =$ "[2,2] is safe"
 - Then $KB \not\models \alpha_2$

Inference

- \diamond Entailment (e.g, $KB \models \alpha$) is like looking for a needle in haystack
 - Consequences of KB are the haystack α is the needle
 - Inference procedure = a procedure for finding α
- $\Diamond KB \vdash_i \alpha$ means inference procedure *i* can derive sentence α from KB
 - *Soundness*: *i* is sound if
 - \diamond whenever $KB \vdash_i \alpha$, it is also true that $KB \models \alpha$
 - *Completeness*: *i* is complete if

♦ whenever $KB \models \alpha$, it is also true that $KB \vdash_i \alpha$

- \diamond Model checking is one kind of inference procedure (not the only one)
 - It is sound
 - It is complete if the set of possible worlds is finite

Preview of where we're going

- \diamondsuit Later, we'll talk about first-order logic
 - Expressive enough to say almost anything of interest
- \diamond There are sound and complete inference procedures for first-order logic
 - Will answer any question whose answer follows from what's in the \overline{KB}
- \diamondsuit But first, let's look at propositional logic
 - The simplest logic; illustrates basic ideas

Propositional logic: Syntax

- \diamond The proposition symbols P_1 , P_2 , etc., are sentences
- \diamond If *S* is a sentence, $\neg S$ is a sentence (*negation*)
- \diamond If S_1 and S_2 are sentences, $S_1 \wedge S_2$ is a sentence (*conjunction*)
- \diamond If S_1 and S_2 are sentences, $S_1 \lor S_2$ is a sentence (*disjunction*)
- \diamond If S_1 and S_2 are sentences, $S_1 \Rightarrow S_2$ is a sentence (*implication*)
- \diamond If S_1 and S_2 are sentences, $S_1 \Leftrightarrow S_2$ is a sentence (*equivalence*)

Propositional logic: Semantics

- \diamond Each world specifies a true/false value for every proposition symbol
- \diamond Rules for evaluating truth with respect to a world w:

$\neg S$ is true	iff	S is false		
$S_1 \wedge S_2$ is true	iff	S_1 is true	and	S_2 is true
$S_1 \vee S_2$ is true	iff	S_1 is true	or	S_2 is true
$S_1 \Rightarrow S_2$ is true	iff	S_1 is false	or	S_2 is true
i.e., is false	iff	S_1 is true	and	S_2 is false
$S_1 \Leftrightarrow S_2$ is true	iff	$S_1 \Rightarrow S_2$ is true	and	$S_2 \Rightarrow S_1$ is true

 \diamondsuit Simple recursive process to evaluate an arbitrary sentence

- Consider a world in which $P_{1,2}$ is true $P_{2,2}$ is true $P_{3,1}$ is false
- Then $\neg P_{1,2} \land (P_{2,2} \lor P_{3,1})$
 - $= true \land (false \lor true)$

= true

Wumpus world sentences

- \diamond Let $B_{i,j}$ be true if there is a breeze in [i, j]
- \diamond Let $P_{i,j}$ be true if there is a pit in [i, j]
- \Diamond KB: $\neg B_{1,1}, B_{2,1}, \neg P_{1,1}, \neg P_{2,1}$
- \diamond How to represent "Pits cause breezes in adjacent squares"?

Wumpus world sentences

- \diamond Let $B_{i,j}$ be true if there is a breeze in [i, j]
- \diamond Let $P_{i,j}$ be true if there is a pit in [i, j]
- \Diamond KB: $\neg B_{1,1}, B_{2,1}, \neg P_{1,1}, \neg P_{2,1}$
- \diamond How to represent "Pits cause breezes in adjacent squares"?
 - "A square is breezy **if and only if** there is an adjacent pit"
- \diamondsuit In propositional logic, we can't write this directly
 - But we can write instantiations of it
- \diamondsuit In the example:

 $\begin{array}{lll} B_{1,1} & \Leftrightarrow & (P_{1,2} \lor P_{2,1}) \\ B_{2,1} & \Leftrightarrow & (P_{1,1} \lor P_{2,2} \lor P_{3,1}) \end{array}$

Truth tables for inference

- \diamondsuit Model checking in propositional logic = inference using truth tables
- \diamond Each row is a possible world
 - In each row where KB is true, is α true too?
- $\& KB: \neg B_{1,1}, B_{2,1}, \neg P_{1,1}, \neg P_{2,1}$

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	KB	α_1
false	false	false	false	false	false	false	false	don't care
false	false	false	false	false	false	true	false	don't care
:	:	:	•	•	•	:	•	:
false	true	false	false	false	false	false	false	don't care
false	true	false	false	false	false	true	true	true
false	\underline{true}	false	false	false	true	false	true	\underline{true}
false	\underline{true}	false	false	false	true	true	<u>true</u>	\underline{true}
false	true	false	false	true	false	false	false	don't care
•	:	:	•	•	•	:	•	:
true	true	true	true	true	true	true	false	don't care
Inference by enumeration

 \diamondsuit Depth-first enumeration of all models is sound and complete

• $O(2^n)$ for *n* symbols; problem is **co-NP-complete**

```
function TT-ENTAILS?(KB, \alpha)
```

```
symbols \leftarrow a list of the proposition symbols in KB and \alpha
return TT-CHECK-ALL(KB, \alpha, symbols, [])
```

```
function TT-CHECK-ALL(KB, \alpha, symbols, world)
```

if symbols is empty **then if** KB is true in world **then return** α 's truth value in world **else return** true

 \mathbf{else}

 $P \leftarrow \text{first symbol in } symbols$

 $rest \leftarrow$ the other symbols in *symbols*

return TT-CHECK-ALL($KB, \alpha, rest, EXTEND(P, true, world)$) and TT-CHECK-ALL($KB, \alpha, rest, EXTEND(P, false, world)$)

Proof methods

- \diamondsuit Proof methods divide into (roughly) two kinds:
 - Model checking
 - $\diamond~$ truth table enumeration (always exponential in n)
 - ♦ improved backtracking, e.g., Davis-Putnam-Logemann-Loveland
 - ♦ heuristic search in model space (sound but incomplete)
 - e.g., hill-climbing with min-conflicts
 - Application of inference rules
 - ♦ Legitimate (sound) generation of new sentences from old
 - ♦ *Proof*: a sequence of applications of inference rules
 - Use a search algorithm with inference rules as operators
 - Typically requires translation of sentences into a *normal form*

Logical equivalence

 \diamond Two sentences are *logically equivalent* iff true in same models:

• $\alpha \equiv \beta$ if and only if $\alpha \models \beta$ and $\beta \models \alpha$

$$\begin{array}{l} (\alpha \wedge \beta) \equiv (\beta \wedge \alpha) \quad \text{commutativity of } \wedge \\ (\alpha \vee \beta) \equiv (\beta \vee \alpha) \quad \text{commutativity of } \vee \\ ((\alpha \wedge \beta) \wedge \gamma) \equiv (\alpha \wedge (\beta \wedge \gamma)) \quad \text{associativity of } \wedge \\ ((\alpha \vee \beta) \vee \gamma) \equiv (\alpha \vee (\beta \vee \gamma)) \quad \text{associativity of } \vee \\ \neg (\neg \alpha) \equiv \alpha \quad \text{double-negation elimination} \\ (\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha) \quad \text{contraposition} \\ (\alpha \Rightarrow \beta) \equiv (\neg \alpha \vee \beta) \quad \text{implication elimination} \\ (\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)) \quad \text{biconditional elimination} \\ \neg (\alpha \wedge \beta) \equiv (\neg \alpha \vee \neg \beta) \quad \text{De Morgan} \\ \neg (\alpha \vee \beta) \equiv ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma)) \quad \text{distributivity of } \wedge \text{ over } \vee \\ (\alpha \vee (\beta \wedge \gamma)) \equiv ((\alpha \vee \beta) \wedge (\alpha \vee \gamma)) \quad \text{distributivity of } \vee \text{ over } \wedge \end{array}$$

Validity and satisfiability

 \diamond A sentence is *valid* if it is true in **all** possible worlds,

 $\diamond \text{ e.g., } True, A \lor \neg A, A \Rightarrow A, (A \land (A \Rightarrow B)) \Rightarrow B$

- ♦ A sentence is *unsatisfiable* if it is true in **no** possible worlds ♦ e.g., $A \land \neg A$
- \diamondsuit Satisfiability is connected to inference via the following:
 - ♦ $KB \models \alpha$ if and only if $(KB \land \neg \alpha)$ is unsatisfiable
 - \diamond i.e., prove α by *reductio ad absurdum*

Forward and backward chaining

- \diamond A *Horn clause* is one of the following:
 - proposition symbol
 - conjunction of proposition symbols \Rightarrow symbol
- ♦ *Horn form*: conjunct of Horn clauses, e.g.,

 $\diamond \ C \ \land \ (B \ \Rightarrow \ A) \ \land \ (C \land D \ \Rightarrow \ B)$

• Often just write the separate clauses:

 $\diamond \ C, \qquad B \ \Rightarrow \ A, \qquad C \wedge D \ \Rightarrow \ B$

- \diamondsuit This is a restricted subset of propositional logic
 - e.g., $A \lor B$ isn't in Horn form, and can't be translated into it
- \diamond Modus Ponens for Horn clauses: $\frac{\alpha}{2}$

$$\frac{\alpha_1, \ldots, \alpha_n, \qquad \alpha_1 \wedge \cdots \wedge \alpha_n \Rightarrow \beta}{\beta}$$

- Complete for KBs in Horn form
- Can be used with *forward chaining* or *backward chaining* These algorithms are very natural and run in **linear** time

Forward chaining

 \diamondsuit Given a query q:

- loop until q is found:
 - $\diamond\,$ apply any rule whose premises are satisfied in the KB
 - $\diamond~$ add its conclusion to the KB

Forward chaining algorithm

```
function PL-FC-ENTAILS? (KB, q)
   for every clause c in KB do
        count[c] \leftarrow number of premises of c
   for every proposition symbol p that appears anywhere in KB do
       inferred[p] \leftarrow false
   agenda \leftarrow all proposition symbols that are clauses in KB
   while agenda is not empty do
       p \leftarrow \text{POP}(agenda)
       unless inferred[p] do
            inferred[p] \leftarrow true
            for each Horn clause c that has p in its premises do
                 decrement count[c]
                 if count[c] = 0 then do
                     if \text{HEAD}[c] = q then return true
                     PUSH(HEAD[c], agenda)
  return false
```

 $\operatorname{count}[c]$ C $P \Rightarrow Q$ 1 $L \wedge M \Rightarrow P \qquad 2$ $B \wedge L \Rightarrow M$ 2 $A \wedge P \Rightarrow L \qquad 2$ $A \wedge B \Rightarrow L \qquad 2$ A0 B0 $agenda = \langle A, B \rangle$

2

B

 $\operatorname{count}[c]$ C $P \Rightarrow Q$ 1 $L \wedge M \Rightarrow P \qquad 2$ $B \wedge L \Rightarrow M$ 2 $\mathbf{A} \wedge P \Rightarrow L \qquad 1$ $\mathbf{A} \wedge B \Rightarrow L \qquad 1$ 2 A0 B0 $agenda = \langle B \rangle$

B

 $\operatorname{count}[c]$ C $P \Rightarrow Q$ 1 $\mathbf{L} \wedge M \Rightarrow P \qquad 1$ $B \wedge \mathbf{L} \Rightarrow M = 0$ $A \wedge P \Rightarrow L$ 1 $A \wedge B \Rightarrow L = 0$ 0 A0 B0 $agenda = \langle M \rangle$ В

 $agenda = \langle L, Q \rangle$

 $agenda = \langle Q \rangle$

D

В

CMSC 421: Chapter 7 51

В

Proof of completeness

FC derives every atomic sentence that is entailed by ${\cal KB}$

- 1. At *i*'th iteration of the "while" loop, can create a world m_i as follows: assign true to every atomic symbol that has been derived assign false to all other atomic symbols
- 2. There are only finitely many atomic sentences, so FC must reach a *fixed point* where no new atomic sentences are derived. Let *n* be the iteration where this happens.
- 3. Every clause in the original KB is true in m_n . Proof:
 - \diamond Suppose a clause $a_1 \land \ldots \land a_k \Rightarrow b$ is false in m_i .
 - \diamond Then $a_1 \land \ldots \land a_k$ is true in m_i and b is false in m_i .
 - ♦ Thus count(b) = 0, so b will be inferred in a future iteration, so iteration i isn't a fixed point.
 - Hence at the fixed point, m_n is a model of KB.
- 5. If q is atomic and $KB \models q$, then q is true in **every** model of KB, including m. Hence FC must have derived q.

Backward chaining

- $\diamondsuit~$ Idea: work backwards from the query q
 - To prove q by BC, either
 - \diamond Check if q is known already, or
 - $\diamond~$ Recursively call BC to prove the premises of a rule that infers q
- \diamondsuit To avoid loops: check if q is already on the recursion stack
- \diamondsuit To avoid repeated work: check if q
 - has already been proved true, or
 - has already failed

 $\mathbf{L}\wedge\mathbf{M}\ \Rightarrow\ \mathbf{P}$ $B \wedge L \Rightarrow M$ $A \wedge P \Rightarrow L$ $A \wedge B \Rightarrow L$ AB

Forward vs. backward chaining

\diamond FC is *data-driven*

- ♦ data-driven algorithms can be used for automatic, unconscious processing
- $\diamond~$ e.g., object recognition, routine decisions
- \diamondsuit May do lots of work that is irrelevant to the goal
- ♦ BC is *goal-driven*, appropriate for problem-solving,
 ♦ e.g., Where are my keys? How do I get into UMD's computer science program?
- \diamondsuit Complexity of BC can be **much less** than linear in size of KB

Resolution

Conjunctive Normal Form (CNF): conjunct of disjuncts of literals clauses

 $\diamondsuit \ \mathrm{E.g.}, \, (A \vee \neg B) \wedge (B \vee \neg C \vee \neg D)$

- $\diamondsuit Resolution inference rule: if clause C contains a literal <math>\ell$ and clause \mathcal{D} contains $\neg \ell$, then
 - infer the disjunct of all literals in \mathcal{C} and \mathcal{D} other than ℓ and $\neg \ell$

Resolution

 \diamondsuit Resolution is equivalent to Modus Ponens:

• Example of doing a resolution inference using modus ponens:

start with clauses:	$A \vee \neg B$	$B \vee \neg C \vee \neg D$
rewrite as implications:	$\neg A \Rightarrow \neg B$	$\neg B \land C \Rightarrow \neg D$
apply modus ponens:	$\neg A \land C \Rightarrow \neg D$	
rewrite as clauses:	$A \vee \neg C \vee \neg D$	

• Example of doing a modus ponens inference using resolution: start with implications: $\neg A \Rightarrow \neg B$ $\neg B \land C \Rightarrow \neg D$ rewrite as clauses: $A \lor \neg B$ $B \lor \neg C \lor \neg D$ apply resolution: $A \lor \neg C \lor \neg D$ convert back to implications: $\neg A \land C \Rightarrow \neg D$

Conversion to CNF

- \diamondsuit Resolution is sound and complete for propositional logic
 - But to use it, you first must convert all everything to CNF
- \diamond Example:
 - There's a breeze in (1,1) iff there's a pit in (1,2) or (2,1):
 - $B_{1,1} \Leftrightarrow (P_{1,2} \lor P_{2,1})$
- 1. Eliminate \Leftrightarrow , by replacing $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$: $(B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})$
- 2. Eliminate \Rightarrow , by replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$:

 $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$

3. Move \neg inwards using de Morgan's rules and double-negation:

$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1})$$

4. Apply distributivity law (\lor over \land) and flatten:

 $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})$

Resolution algorithm

 \diamond Proof by contradiction

```
function PL-RESOLUTION(KB, \alpha)

clauses \leftarrow \{\text{all clauses in the CNF representation of } KB \land \neg \alpha \}

loop

new \leftarrow \{\}

for each C_i, C_j in clauses do

resolvents \leftarrow \text{PL-RESOLVE}(C_i, C_j)

if resolvents contains the empty clause then return true

new \leftarrow new \cup resolvents

if new \subseteq clauses then return false

clauses \leftarrow clauses \cup new

function PL-RESOLVE(C_1, C_2) returns a set of clauses
```

```
resolvents \leftarrow \{\}
for each l \in C_1 and m \in C_2 such that l \equiv \neg m do
C \leftarrow disjunct of all literals in C_1 and C_2 except for l and m
resolvents \leftarrow resolvents \cup \{C\}
return resolvents
```

Resolution example

 \diamond KB:

- \diamond There's a breeze in (1,1) iff there's a pit in (1,2) or (2,1):
- \diamond There's no breeze in (1,1):
- $KB = (B_{1,1} \Leftrightarrow (P_{1,2} \lor P_{2,1})) \land \neg B_{1,1}$
- \diamond *KB* converted to CNF:

 $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1}) \land \neg B_{1,1}$

- ♦ Want to show there's no pit in (1,2): $\alpha = \neg P_{1,2}$
- $\diamondsuit \ clauses = \{ \text{all clauses in the CNF representation of } KB \land \alpha \}$ $\neg B_{1,1} \lor P_{1,2} \lor P_{2,1} \quad \neg P_{1,2} \lor B_{1,1} \quad \neg P_{2,1} \lor B_{1,1} \quad \neg B_{1,1} \quad P_{1,2}$

70

function PL-RESOLVE (C_1, C_2) returns a set of clauses $resolvents \leftarrow \{\}$ for each $l \in C_1$ and $m \in C_2$ such that $l \equiv \neg m$ do $C \leftarrow$ disjunct of all literals in C_1 and C_2 except for l and m $resolvents \leftarrow resolvents \cup \{C\}$ return resolvents

Axioms for the Wumpus world

 \diamondsuit For each square, an axiom telling whether it's breezy

- $B_{1,1} \Leftrightarrow (P_{1,2} \lor P_{2,1})$
- $B_{1,2} \Leftrightarrow (P_{1,1} \wedge P_{2,2} \wedge P_{1,3})$
- . . .
- $B_{2,2} \Leftrightarrow (P_{1,2} \lor P_{2,1} \lor P_{2,3} \lor P_{3,2})$
- . . .
- $B_{4,4} \Leftrightarrow (P_{1,1} \wedge P_{2,2} \wedge P_{1,3})$
- \diamondsuit For each square, an axiom telling whether it's smelly
 - $S_{1,1} \Leftrightarrow (W_{1,2} \lor W_{2,1})$
 - . . .

 \diamondsuit For each square, an axiom telling whether it's glittery

• . . .
Axioms for the Wumpus world

 \diamondsuit Axioms saying there's exactly one square that contains a Wumpus:

- $W_{1,1} \lor W_{1,2} \lor \ldots \lor W_{4,3} \lor W_{4,4}$
- $\neg W_{1,1} \lor \neg W_{1,2}$
- $\neg W_{1,1} \lor \neg W_{1,3}$
- ...
- $\neg W_{4,3} \lor \neg W_{4,4}$

Fluents

- \diamond Suppose the agent perceives a breeze at time t = 3and a stench at time t = 4
 - Can't just add Breeze and Stench to KB
 - $\diamond~$ They are perceived at some times but not others
 - Instead, use new propositions called fluents
 - \diamond Breeze³ and Stench⁴
- \diamondsuit Need fluents for everything that can change over time

\diamond	$L^{5}_{3,4}$	at square [3,4] at time $t = 5$
\diamond	$East^8$	facing east at time $t = 8$
\diamond	$Have_arrow^{17}$	have the arrow at time $t = 17$
\diamond	$Wumpus_alive^4$	wumpus is alive at time $t = 4$

- \diamond Need fluents like these for $t = 0, 1, 2, \ldots, t_{\max}$,
 - where t_{max} is the largest time that you'll ever need to consider

Mapping fluents to domain properties

 \diamondsuit Axioms for mapping "breeze" percepts into properties of the domain:

$$\diamond \ L_{1,1}^1 \Rightarrow (Breeze^1 \Leftrightarrow B_{1,1})$$

$$\diamond \ L_{1,2}^1 \Rightarrow (Breeze^1 \Leftrightarrow B_{1,2})$$

$$\diamond \ \dots$$

and similarly for all other time points

 $\begin{array}{l} \diamondsuit \\ \text{Similarly,} \\ \diamond & L_{1,1}^1 \Rightarrow (Stench^1 \Leftrightarrow S_{1,1}) \\ \diamond & L_{1,2}^1 \Rightarrow (Stench^1 \Leftrightarrow S_{1,2}) \\ \diamond & \dots \\ \end{array}$

and similarly for all other time points

 \diamondsuit Likewise for all of the other percepts

How to describe actions?

 \diamondsuit One way of writing axioms to describe movement:

 $\begin{array}{l} \diamond \ \ L^0_{1,1} \wedge East^0 \wedge Forward \ \Rightarrow \ (L^1_{2,1} \wedge \neg L^1_{1,1}) \\ \diamond \ \ L^0_{1,2} \wedge East^0 \wedge Forward \ \Rightarrow \ (L^1_{2,2} \wedge \neg L^1_{1,2}) \end{array}$

♦ ...

one for each possible combination of location, time point, and direction

- \diamondsuit Add similar axioms for each of the other actions
 - $Grab, Shoot, Turn_right, \ldots$
- \diamond These are called *effect* axioms
- \diamondsuit Problem: they don't represent all of the consequences of each action
 - What do they leave out?

How to describe actions?

- \diamond The *frame* problem:
 - An "effect" axiom describes the **changes** due to an action

 $L_{1,1}^0 \wedge East^0 \wedge Forward \Rightarrow (L_{2,1}^1 \wedge \neg L_{1,1}^1)$

- But it doesn't describe what **doesn't** change
- If we have the arrow and we move forward, we'll still have the arrow
 We can't infer this unless we have an axiom that says it
- \diamond *Qualification problem*: real actions require endless caveats
 - what if gold is slippery or nailed down or ...
- \Diamond *Ramification problem*: real actions have many secondary consequences
 - dust on the gold, wear and tear on gloves, ...
- \diamondsuit The Wumpus world is so simple that it's easy to specify each action's qualifications and ramifications
 - But we still need to handle the frame problem
- \diamond Instead of "effect" axioms, we'll use *successor state axioms*

Successor state axioms

- \diamond If a fluent f is true at time t + 1, then either it was true at time t or we performed an action that made it true
- \diamond If we have the arrow at time t + 1, then we had it and didn't shoot it
 - $\diamond \ HaveArrow^2 \Leftrightarrow (HaveArrow^1 \land \neg Shoot^1)$ $\diamond \ HaveArrow^3 \Leftrightarrow (HaveArrow^2 \land \neg Shoot^2)$ $\diamond \ \dots$
- \diamond If we're at location l at time t + 1, then we moved there, or we were already there and we didn't move, or we were already there and we bumped into the wall
 - $\diamond \ L_{1,1}^{t+1} \Leftrightarrow (L_{1,1}^t \wedge \neg Forward^t \vee Bump^{t+1}) \\ \vee (L_{1,2}^t \wedge South^t \wedge Forward^t) \vee (L_{2,1}^t \wedge West^t \wedge Forward^t)$
 - need one of those for each location and each value of t
- \diamondsuit Need similar axioms for all the other fluents

Inferring where it's OK to move

- $OK_{1,1}^1 \Leftrightarrow \neg P_{1,1} \land (\neg W_{1,1} \lor \neg Wumpus_Alive^1)$
- $OK_{1,2}^1 \Leftrightarrow \neg P_{1,2} \land (\neg W_{1,2} \lor \neg Wumpus_Alive^1)$
- ...
- $OK_{4,4}^1 \iff \neg P_{4,4} \land (\neg W_{4,4} \lor \neg Wumpus_Alive^1)$
- $OK_{1,1}^2 \Leftrightarrow \neg P_{1,1} \land (\neg W_{1,1} \lor \neg Wumpus_Alive^2)$
- $OK_{1,2}^2 \Leftrightarrow \neg P_{1,2} \land (\neg W_{1,2} \lor \neg Wumpus_Alive^2)$
- . . .
- $OK_{4,4}^2 \Leftrightarrow \neg P_{4,4} \land (\neg W_{4,4} \lor \neg Wumpus_Alive^2)$
- ... for each value of t ...

Inferring facts about the state of the world

- $\neg Stench^0 \land \neg Breeze^0 \land \neg Glitter^0 \land \neg Bump^0 \land \neg Scream^0$; $\neg Stench^1 \land Breeze^1 \land \neg Glitter^1 \land \neg Bump^1 \land \neg Scream^1; Turn_right^1$ $\neg Stench^2 \land Breeze^2 \land \neg Glitter^2 \land \neg Bump^2 \land \neg Scream^2; Turn_right^2$ $\neg Stench^3 \land Breeze^3 \land \neg Glitter^3 \land \neg Bump^3 \land \neg Scream^3; Forward^3$ $\neg Stench^4 \land \neg Breeze^4 \land \neg Glitter^4 \land \neg Bump^4 \land \neg Scream^4; Turn_Left^4$ $\neg Stench^5 \land \neg Breeze^5 \land \neg Glitter^5 \land \neg Bump^5 \land \neg Scream^5; Forward^5$ $Stench^6 \wedge \neg Breeze^6 \wedge \neg Glitter^6 \wedge \neg Bump^6 \wedge \neg Scream^6$
 - $Forward^0$

- With all of the axioms and a resolution theorem prover, we should be able to get
 - $ASK(KB, L_{21}^6) = true$
 - $ASK(KB, P_{1,3}) = true$
 - $ASK(KB, W_{3,1}) = true$
 - $ASK(KB, OK_{2,2}^6) = true$

Summary

- \diamond Logical agents apply *inference* to a *knowledge base*
 - to derive new information and make decisions
- \diamond Basic concepts of logic:
 - *syntax*: formal structure of *sentences*
 - *semantics*: *truth* of sentences wrt *models*
 - *entailment*: necessary truth of one sentence given another
 - *inference*: deriving sentences from other sentences
 - *soundess*: derivations produce only entailed sentences
 - *completeness*: derivations can produce all entailed sentences
- \diamondsuit Wumpus world requires representing partial and negated information, reasoning by cases, etc.
- \diamondsuit Forward and backward chaining are linear-time, complete for Horn clauses
- \diamond Resolution is complete for propositional logic
- \diamondsuit Propositional logic lacks expressive power