Last update: October 11, 2012

LOGICAL AGENTS

CMSC 421: CHAPTER 7

CMSC 421: Chapter 7 1



S SIS SO O

Outline

Knowledge-based agents

Wumpus world

Logic in general-—models and entailment
Propositional (Boolean) logic
Equivalence, validity, satisfiability

Inference rules and theorem proving
e forward chaining
e backward chaining

e resolution

CMSC 421: Chapter 7

2



Knowledge bases

Inference engine

-«e———— domain-independent algorithms

Knowledge base

-e————domain-specific content

& Knowledge base = set of sentences in a formal language

{ Declarative approach to building an agent (or other system):

¢ 'T'ELL 1t what it needs to know

> Then it can AsK itself what to do—answers should follow from the KB

¢ Agents can be viewed at the knowledge level

¢ l.e., what they know, regardless of how implemented

& Or at the implementation level

¢ l.e., data structures in KB and algorithms that manipulate them

CMSC 421: Chapter 7

3



A simple knowledge-based agent

function KB-AGENT( percept) returns an action
static: A5, a knowledge base
t, a counter, initially 0, indicating time

TELL( KB, MAKE-PERCEPT-SENTENCE( percept, t))
action <— ASK(K B, MAKE-ACTION-QUERY(?))
TELL(K B, MAKE- ACTION-SENTENCE( action, t))
L t+1

return action

¢ The agent must be able to:
e Represent states, actions, etc.
e I[ncorporate new percepts
e Update internal representations of the world
e Deduce hidden properties of the world

e Deduce appropriate actions

CMSC 421: Chapter 7 4



Wumpus World PEAS description

& Environment:

'S SSSS Eraase”
e One wumpus, one heap of gold 4 Stench > SBreee =
e P(pit) = 0.2 for each square
e Squares next to wumpus are smelly 5 s ees ~Breeze =
Ster|1ch> PIT
. . . . | I
e Shooting into wumpus’s square kills it ~ G
e Shooting uses up the only arrow , LS Z Bredze —
e Squares next to pit are breezy
o Glitter iff the gold is in your square CErcere = Cosere
Crabb s it 1 — G —
¢ Grabbing picks it u
g p p START
¢ Releasing drops it . , . .

 Performance measure:

e gold 41000, death —1000, —1 per step, —10 for using the arrow
& Actuators: Left turn, Right turn, Forward, Grab, Release, Shoot
> Sensors: Breeze, Glitter, Smell

CMSC 421: Chapter 7 5



Wumpus world characterization

& Fully observable?

CMSC 421: Chapter 7 6



Wumpus world characterization

& Fully observable? No—only local perception

& Determinastic?

CMSC 421: Chapter 7 7



Wumpus world characterization

& Fully observable? No—only local perception

& Deterministic? Yes—outcomes exactly specified

> Episodic?

CMSC 421: Chapter 7 8



Wumpus world characterization

& Fully observable? No—only local perception

& Deterministic? Yes—outcomes exactly specified

& Episodic? No—sequential at the level of actions
& Static?

CMSC 421: Chapter 7 9



Wumpus world characterization

& Fully observable? No—only local perception

& Deterministic? Yes—outcomes exactly specified

& Episodic? No—sequential at the level of actions

& Static? Yes—Wumpus, pits, and gold do not move
O Discrete?

CMSC 421: Chapter 7

10



S S S S SO

Wumpus world characterization

Fully observable? No—only local perception

Deterministic? Yes—outcomes exactly specified

FEpisodic? No—sequential at the level of actions

Static? Yes—Wumpus, pits, and gold do not move

Discrete? Yes

Single-agent?

CMSC 421: Chapter 7

11



S S S S SO

Wumpus world characterization

Fully observable? No—only local perception

Deterministic? Yes—outcomes exactly specified

Episodic? No—sequential at the level of actions

Static? Yes—Wumpus, pits, and gold do not move

Discrete? Yes

Single-agent? Yes—Wumpus is essentially a natural feature

CMSC 421: Chapter 7

12



Exploring a wumpus world

OK

OK

OK

CMSC 421: Chapter 7

13



Exploring a wumpus world

CMSC 421: Chapter 7 14



Exploring a wumpus world

CMSC 421: Chapter 7 15



Exploring a wumpus world

CMSC 421: Chapter 7 16



Exploring a wumpus world

CMSC 421: Chapter 7 17



Exploring a wumpus world

CMSC 421: Chapter 7 18



Exploring a wumpus world

CMSC 421: Chapter 7 19



Exploring a wumpus world

CMSC 421: Chapter 7 20



P?

P?
p?

Other tight spots

Breeze in (1,2) and (2,1)
= no safe actions

e Pripit in (2,2)] ~ 0.86
e Pripitsin (1,3) and (3,1)) ~ 0.31

& A later chapter will discuss ways
for an agent to infer this

<>

Smell in (1,1) = can’t move safely

<>

Can use a coercion strategy:
shoot straight ahead

e wumpus was there = dead = safe

e wumpus wasn't there = safe

CMSC 421: Chapter 7 21



Logic in general

 Logics are formal languages for representing
information from which conclusions can be inferred

e Syntax defines the sentences in the language
e Semantics define the “meaning” of sentences

¢ what a sentence means will determine whether it’s true or false

¢ E.g., the language of arithmetic
e 1+ 2 > 1 1s asentence
e 12+ 1y > 1is not a sentence
e 1+ 2 > yistrue iff the number x + 2 is at least as big as the number y
& x+2 > yistrue in a world where 1 =7, y=1

o x+ 2 >y is false in a world where £ =0, y =0

CMSC 421: Chapter 7 22



Entailment

$  Entailment means that one thing follows from another
e A relationship between sentences (i.e., syntax)
that is based on semantics

¢ Knowledge base K B entails sentence o
o written KB = «

e iff o is true in every world where /B is true

> Examples:
o r+y=4dentailsd=z+1y
e /< B: Maryland beat UNC and Duke beat UNC

o KB = Maryland beat UNC or Duke beat UNC
N

inclusive or

CMSC 421: Chapter 7 23



Models

{ Look at possible worlds:
e Formally structured worlds in which truth can be evaluated

e A possible world gives you a meaning for each sentence,
so you can evaluate whether it is true or false

e A possible world m is a model of a sentence « if o is true in m

& M) is the set of all models of a
¢ All worlds in which « is true
e Then KB = o if and only if M(KB) C M(«)

& Example
e /X B: Maryland beat UNC and Duke beat UNC
e «: Maryland beat UNC

CMSC 421: Chapter 7 24



Entailment in the wumpus world

< Suppose you
e detect nothing in |1,1]

e move right

e fecl a breeze in |2,1]

> For now,

e [gnore the wumpus and gold ? ?
e Ignore all squares other than the ?s =
f?
¢ Which ?s are pits? Al o [A -

> Model checking:

e 3 Boolean choices = 8 possible worlds

e For each one, check whether it’s a model

CMSC 421: Chapter 7 25



Wumpus models

"] ? L@
(Al -[A] | 1 e
1 2 3

$ KB = wumpus-world rules + observations

e LKight possible combinations of pit locations
e Which ones are models of K B7

CMSC 421: Chapter 7 26



Wumpus models

$ KB = wumpus-world rules + observations
e Three models of KB

CMSC 421: Chapter 7 27



Wumpus models

$ KB = wumpus-world rules + observations
e Three models of KB

O Let ap = “[1,2] is safe”
e Then K'B = ay, proved by model checking

CMSC 421: Chapter 7 28



Wumpus models

$ KB = wumpus-world rules + observations
e Three models of KB

O Let an = “[2,2] is safe”
o Then KB |~ an

CMSC 421: Chapter 7 29



Inference

¢ Entailment (e.g, KB = «) is like looking for a needle in haystack

e Consequences of /X' B are the haystack « is the needle

e Inference procedure = a procedure for finding o

{ KB F; o means inference procedure ¢ can derive sentence o from K B
e Soundness: 1 1s sound if

o whenever K B F; «, it is also true that KB = «
e (Completeness: 1 is complete if

o whenever K B |= «, it is also true that KB F; o
¢ Model checking is one kind of inference procedure (not the only one)

e [t is sound

e [t is complete if the set of possible worlds is finite

CMSC 421: Chapter 7 30



Preview of where we’re going

 Later, we'll talk about first-order logic

e [Expressive enough to say almost anything of interest

> There are sound and complete inference procedures for first-order logic

e Will answer any question whose answer follows from what’s in the K B

& But first, let’s look at propositional logic

e The simplest logic; illustrates basic ideas

CMSC 421: Chapter 7 31



S S S S SO

Propositional logic: Syntax

The proposition symbols P, P, etc., are sentences

If S'is a sentence, =S is a sentence (negation)

If S and S5 are sentences, S7 A Sy is a sentence (conjunction)
If S and S5 are sentences, S1 V 59 is a sentence (disjunction)
If 57 and S are sentences, S = 55 is a sentence (implication)

If S) and S, are sentences, S| < 55 is a sentence (equivalence)

CMSC 421: Chapter 7

32



Propositional logic: Semantics

& FEach world specifies a true/false value for every proposition symbol

< Rules for evaluating truth with respect to a world w:

-5 18 true

S1 A Sy 18 true
S1 VS5 18 true
S1 = 55 18 true
i.e., is false

S| < 5518 true

iff
iff
iff
iff
iff

S is false
Sy 1s true
S 1s true
Sy 1s false
S 1s true

and
or
or

and

iff S| = S5,1is true and

S5 1s true
S5 1s true
So 1S true
S5 1s false
Sy = 57 1s true

> Simple recursive process to evaluate an arbitrary sentence

e Consider a world in which P15 is true
P9 1s true
Psq is false

e Then =Py N (FPs V Psy)
= true A (false V true)

= true

CMSC 421: Chapter 7

33



Wumpus world sentences

{ Let B, be true if there is a breeze in [i, j|
{ Let P, be true if there is a pit in [7, j]
¢ KB: =B, By, P, Py

> How to represent “Pits cause breezes in adjacent squares”?

CMSC 421: Chapter 7

34




S S S 5

<>

Wumpus world sentences

Let B, ; be true if there is a breeze in [i, j|
Let P, ; be true if there is a pit in [z, J]
KB: —Bi1, By, —Pii, Py

How to represent “Pits cause breezes in adjacent squares”?

e “A square is breezy if and only if there is an adjacent pit”

In propositional logic, we can’t write this directly

e But we can write instantiations of it

In the example:

B, & (PiaV Pyy)

Byy & (Pi1V PV Pyy)

B
| ?

CMSC 421: Chapter 7

35




Truth tables for inference

> Model checking in propositional logic = inference using truth tables

$ Each row is a possible world

e In each row where K B is true, is «v true too?

O KB: =By, By, =P, =P

Bip | Beg | Pii | Pip | o1 | o | P31 | KB o7
false | false | false | false | false | false | false | false |don’t care
false | false | false | false | false | false | true | false |don’t care
false | true | false | false | false | false | false | false |don’t care
false | true | false | false | false | false | true | true true
false | true | false | false | false | true | false || true true
false | true | false | false | false | true | true | true true
false | true | false | false | true | false | false | false |don’t care
true | true | true | true | true | true | true | false | don’t care

CMSC 421: Chapter 7

36



Inference by enumeration

> Depth-first enumeration of all models is sound and complete

e ((2") for n symbols; problem is co-NP-complete

function TT-ENTAILS? (KB, «)

symbols < a list of the proposition symbols in A5 and o
return TT-CHECK-ALL(A B, «v, symbols, [])

function TT-CHECK-ALL(KB, cv, symbols, world)

if symbols is empty then
if A B is true in world then return o’s truth value in world
else return true

else
P < first symbol in symbols
rest <— the other symbols in symbols
return TT-CHECK-ALL( KB, «, rest, EXTEND(P, true, world)) and

TT-CHECK-ALL( KB, a, rest, EXTEND( P, false, world))

CMSC 421: Chapter 7

37



Proof methods
{ Proof methods divide into (roughly) two kinds:

e Model checking
o truth table enumeration (always exponential in n)

¢ improved backtracking, e.g., Davis-Putnam-Logemann-Loveland
o heuristic search in model space (sound but incomplete)

— e.g., hill-climbing with min-conflicts

e Application of inference rules

o Legitimate (sound) generation of new sentences from old
o Proof. a sequence of applications of inference rules
— Use a search algorithm with inference rules as operators

— Typically requires translation of sentences into a normal form

CMSC 421: Chapter 7 38



Logical equivalence

& Two sentences are logically equivalent iff true in same models:

e o= fifandonlyif o = f and = «

(aAB) = (BA«) commutativity of A
(aVp) = (BVa) commutativity of V
(aAB)ANv) = (aAN(BA7y)) associativity of A
(aVB)Vy) = (aV(BVy)) associativity of V
—(—a) = «a double-negation elimination
( = B) = (=8 = —a) contraposition
(« = B) = (—aV ) implication elimination
(a & B) = ((a = B)A (B = «)) biconditional elimination
—(aAfB) = (—aV -8) De Morgan
—(aV ) = (—a A=) De Morgan
(aAN(BVY) = (aAP)V(aAy)) dstributivity of A over V
(aV(BAY) = (aVP)A(aVy)) dstributivity of V over A

CMSC 421: Chapter 7 39



Validity and satisfiability

A sentence is walid if it is true in all possible worlds,
o eg., True, AV-A A=A (ANA= B)) = B

¢ Validity is connected to inference via the Deduction Theorem:
o KB = «aifand only if (KB = «) is valid

& A sentence is satisfiable if it is true in at least one possible world
o eg., AV B, C
& A sentence is unsatisfiable if it is true in no possible worlds

o eg, AN-A

> Satisfiability is connected to inference via the following:
o KB |= «aif and only if (KB A =) is unsatisfiable

& l.e., prove o by reductio ad absurdum

CMSC 421: Chapter 7 40



Forward and backward chaining

& A Horn clause is one of the following:
e proposition symbol

e conjunction of proposition symbols = symbol

& Horn form: conjunct of Horn clauses, e.g.,
o C AN (B= A N((CAND = B)

e Often just write the separate clauses:

o C, B=A (CAND =B

> This is a restricted subset of propositional logic

e cg., AV Bisn't in Horn form, and can’t be translated into it

a1, ..., Qpn, &1AA&n:>5

B

> Modus Ponens for Horn clauses:

e Complete for KBs in Horn form
e Can be used with forward chaining or backward chaining

¢ These algorithms are very natural and run in linear time

CMSC 421: Chapter 7 41



Forward chaining

¢ Given a query q:
e loop until ¢ is found:
¢ apply any rule whose premises are satisfied in the A'B
¢ add its conclusion to the KB
Q

P = Q@
LANM = P P
BANL = M
AANP = L M
ANB = L
A
B

CMSC 421: Chapter 7 42



Forward chaining algorithm

function PL-FC-ENTAILS? (KB, q)

for every clause cin A5 do
count|c] <= number of premises of ¢
for every proposition symbol p that appears anywhere in A5 do
inferred|p] < false
agenda <— all proposition symbols that are clauses in KB
while agenda is not empty do
p < Pop(agenda)
unless inferred[p] do
inferred|p] < true
for each Horn clause ¢ that has p in its premises do
decrement count|c]|
if count|c] = 0 then do
if HEAD[¢] = ¢ then return true
PuUsH(HEAD|(], agenda)
return false

CMSC 421: Chapter 7

43



Forward chaining example

c count|c]

P = Q 1
LANM = P
BANL = M
ANP = L
ANB = L
A

B

O OO DD DD

agenda = (A, B)

CMSC 421: Chapter 7 44



Forward chaining example

c count|c]

P = Q 1
LANM = P
BANL = M
AANP = L
AANB = L

O O = =N N

agenda = (B)

CMSC 421: Chapter 7 45



Forward chaining example

c count|c]

P = Q 1
LANM = P
BANL = M
ANP = L
ANB = L

o O O = =N

agenda = (L)

CMSC 421: Chapter 7 46



Forward chaining example

Q
c count|c] 1
P = Q 1
LAM = P 1
BANL = M 0
AANP = L 1
ANB = L 0
A 0
B 0

CMSC 421: Chapter 7 47



Forward chaining example

c count|c]

P = Q 1
LAM = P
BANL = M
ANP = L
ANB = L

o O O = O O

agenda = (P)

CMSC 421: Chapter 7 48



Forward chaining example

c count|c]

LANM = P
BANL = M
ANP = L
ANB = L
A
B

o O O O o O

agenda = (L, Q)

CMSC 421: Chapter 7 49



Forward chaining example

c count|c]
P = Q 0

LANM = P
BANL = M
ANP = L
ANB = L

o O O O o O

agenda = (Q)

CMSC 421: Chapter 7 50



Forward chaining example

c count|c]
P = Q 0

LANM = P
BANL = M
ANP = L
ANB = L

o O O O o O

agenda = ()

CMSC 421: Chapter 7 51



Proof of completeness
FC derives every atomic sentence that is entailed by A B

1. At ¢’th iteration of the “while” loop, can create a world m; as follows:
assign true to every atomic symbol that has been derived
assign false to all other atomic symbols

2. There are only finitely many atomic sentences, so FC must reach a
fized point where no new atomic sentences are derived. Let n be the
iteration where this happens.

3. Every clause in the original A B is true in m,,. Proof:

& Suppose a clause a; A ... A ap = b is false in m;.
o Then a; A ... A ap is true in m; and b is false in m,.

o Thus count(b) = 0, so b will be inferred in a future iteration,
so iteration 7 isn't a fixed point.

e Hence at the fixed point, m,, is a model of K B.

5. If ¢ is atomic and KB |= ¢, then ¢ is true in every model of K B,
including m. Hence FC must have derived g¢.

CMSC 421: Chapter 7 52



Backward chaining

< Idea: work backwards from the query ¢
e To prove g by BC, either
¢ Check if ¢ is known already, or

¢ Recursively call BC to prove the premises of a rule that infers ¢
& To avoid loops: check if ¢ is already on the recursion stack

& To avoid repeated work: check if ¢
e has already been proved true, or

e has already failed

CMSC 421: Chapter 7 53



Backward chaining example

CMSC 421: Chapter 7 54



Backward chaining example

CMSC 421: Chapter 7 55



Backward chaining example

Q
P = Q l
LAM = P
BANL = M
ANP = L
ANB = L
A

CMSC 421: Chapter 7 56



Backward chaining example

CMSC 421: Chapter 7 57



Backward chaining example

Q
P = Q l
LAM = P
BANL = M
ANP = L
ANB = L
A

CMSC 421: Chapter 7 58



Backward chaining example

CMSC 421: Chapter 7 59



Backward chaining example

CMSC 421: Chapter 7 60



Backward chaining example

CMSC 421: Chapter 7 61



Backward chaining example

CMSC 421: Chapter 7 62



Backward chaining example

P = Q
LAM =PV
BAL = MV
ANP = L
AANB = LV

Q

©

CMSC 421: Chapter 7 63



Backward chaining example

P=QV
LAM = PV
BAL = MV
ANP = L
AANB = LV

©

&
i
1)
.‘4»

A)

©

CMSC 421: Chapter 7

64



Forward vs. backward chaining

& FC is data-driven

¢ data-driven algorithms can be used for automatic,
UNCONSCIOUS Processing

¢ e.g., object recognition, routine decisions

¢ May do lots of work that is irrelevant to the goal

& BC is goal-driven, appropriate for problem-solving,

o e.g., Where are my keys? How do I get into UMD’s
computer science program?

$ Complexity of BC can be much less than linear in size of KB

CMSC 421: Chapter 7 65



Resolution

Conjunctive Normal Form (CNF): conjunct of disjuncts of literals
clauses

& Eg., (AV-B)A(BV-CV-D)

& Resolution inference rule: if clause C contains a literal ¢ and clause D
contains —/, then

e infer the disjunct of all literals in C and D other than ¢ and —/

o B AV -—-B BY-CV-=D
5 AV =CV =D
P?
PV P - P,
& Wumpus world: 1,3 2,2 2,2 \\
PL?) B OK P?
A
[y
P - P lok|[s ok
{ Proof by contradication: = |x A

CMSC 421: Chapter 7 66



Resolution

> Resolution is equivalent to Modus Ponens:

e Example of doing a resolution inference using modus ponens:

start with clauses: AV -B Bv-CV-D
rewrite as implications: -A = -B -BANC = =D
apply modus ponens: —“ANC = =D
rewrite as clauses: AV -CV-D

e Example of doing a modus ponens inference using resolution:
start with implications: -A = -B -BNC = =D
rewrite as clauses: AV -B Bv-CV-D

apply resolution: AV -CV-D
convert back to implications: —“ANC = D

CMSC 421: Chapter 7 67



Conversion to CNF

> Resolution is sound and complete for propositional logic

e But to use it, you first must convert all everything to CNF
& Example:
e There’s a breeze in (1,1) iff there’s a pit in (1,2) or (2,1):
o B, (PaV Pyy)
1. Eliminate <, by replacing o < § with (o = [B) A (8 = «):
(Big = (PiaV ) AN(PigV Py) = By
2. Eliminate =, by replacing o« = [ with —a V [3:
(—B11V PioV Por) AN(—(Pia2V Pyy)V By )
3. Move — inwards using de Morgan’s rules and double-negation:
(mB1aV PiaV Poy) AN((mPiaA—Pa1)V Brg)
4. Apply distributivity law (V over A) and flatten:
(mB1aV PiaV Poy) AN (mPioV Bii) A (P11 V By )

CMSC 421: Chapter 7 68



Resolution algorithm

> Proof by contradiction

function PL-RESOLUTION(KB, «)
clauses <— {all clauses in the CNF representation of KB A —a}
loop
new < { }
for each C;, C; in clauses do
resolvents <— PL-RESOLVE(C}, C))
if resolvents contains the empty clause then return true
new <— new U resolvents
if new C clauses then return false
clauses <— clauses U new

function PL-RESOLVE(C, () returns a set of clauses
resolvents < { }
for each [ € C; and m € (), such that [ = = m do
(' <+ disjunct of all literals in C'; and € except for [ and m
resolvents <— resolvents U {C'}
return resolvents

CMSC 421: Chapter 7 69



Resolution example

O KB:
o There’s a breeze in (1,1)
iff there’s a pit in (1,2) or (2,1):
o There’s no breeze in (1,1):
e K\B=(B11 & (PaVP,)) N By,

{ KB converted to CNF:

B

1
|OK

OK

(mB11V PiaV Po1) AN (mPiaV Bii) N (mPy1V Big) A —Bypg

{ Want to show there’s no pit in (1,2): o = =P,

& clauses = {all clauses in the CNF representation of KB A o'}
—B11VPiaV Py — P2V By =51V By

=B

CMSC 421: Chapter 7

P

70



_‘Pz,l\/ B1,1 _‘Bl,l\/ Pl,z\/ P2,1 _'Pl,z\/ B1,1 _‘B1,1 P1,2

/

\\
- B,V P,VB, |P1 VP, —|P12| B,V P, VB, I

: P1,2\/ Pz,l\/ _‘P2,1

function PL-RESOLUTION(KB, «)

clauses < {all clauses in the CNF representation of KB A =}
loop

new — { }
for each C;, C; in clauses do
resolvents <— PL-RESOLVE(C}, C))

if resolvents contains the empty clause then return true
new <— new U resolvents

if new C clauses then return false

clauses < clauses U new

function PL-RESOLVE(C, () returns a set of clauses
resolvents < { }

for each [ € (; and m € C, such that [ = = m do

(' < disjunct of all literals in C'; and ) except for [ and m
resolvents < resolvents U {C'}
return resolvents

CMSC 421: Chapter 7 71




Axioms for the Wumpus world

> For each square, an axiom telling whether it’s breezy
e B & (PLQ V P271)
e By & (Pl,l AV ETYA P 3)
o ...
o Byy & (PiaVP1VEP3V P
o ...

® B4’4 a— (Pl,l /\ P272 A\ Pl’g)

» For each square, an axiom telling whether it’s smelly
o S11 & (WiaVWy,)

{ For each square, an axiom telling whether it’s glittery

CMSC 421: Chapter 7 72



Axioms for the Wumpus world

¢ Axioms saying there’s exactly one square that contains a Wumpus:

Wl,l V WLQ V.
WiV =Wy
WiV =Wis

Wiz V=aWyy

oV W4’3 V W474

CMSC 421: Chapter 7

73



Fluents

> Suppose the agent perceives a breeze at time ¢t = 3
and a stench at time ¢t = 4

e Can't just add Breeze and Stench to KB
¢ They are perceived at some times but not others
e Instead, use new propositions called fluents

o Breeze? and Stench?

> Need fluents for everything that can change over time
o L3, at square [3,4] at time £ = 5
o Fast® facing east at time ¢ = 8

17

o Have_arrow have the arrow at time ¢ = 17

o Wumpus._alive® wumpus is alive at time ¢t = 4

{ Need fluents like these for ¢ =0, 1,2, ..., tax.

e where 7,,,, is the largest time that you'll ever need to consider

CMSC 421: Chapter 7 74



Mapping fluents to domain properties

& Axioms for mapping “breeze” percepts into properties of the domain:
o Ly, = (Breeze' & By,)
o Li, = (Breeze' & Bjp)
o L

and similarly for all other time points

¢ Similarly,
o Ly, = (Stench' & Si))
o Liy, = (Stench' & Si,)
o ...

and similarly for all other time points

& Likewise for all of the other percepts

CMSC 421: Chapter 7 75



How to describe actions?

¢ One way of writing axioms to describe movement:
o L(1),1 A East’ A Forward = <L%71 A ﬂLh)
o L?)Q A East’ A Forward = <L%,2 A ﬂLiQ)
O ...

one for each possible combination of location, time point, and direction

> Add similar axioms for each of the other actions
e Grab, Shoot, T'urn_right, ...

> These are called effect axioms

> Problem: they don’t represent all of the consequences of each action
e What do they leave out?

CMSC 421: Chapter 7 76



How to describe actions?
< The frame problem:

e An “effect” axiom describes the changes due to an action
LY | A East’ A Forward = (L3, A —Lq )
e DBut it doesn’t describe what doesn’t change
e If we have the arrow and we move forward, we’ll still have the arrow

¢ We can’t infer this unless we have an axiom that says it

& Qualification problem: real actions require endless caveats

e what if gold is slippery or nailed down or . ..

& Ramification problem: real actions have many secondary consequences

e dust on the gold, wear and tear on gloves, ...

¢ The Wumpus world is so simple that it’s easy to specify each action’s
qualifications and ramifications

e DBut we still need to handle the frame problem

> Instead of “effect” axioms, we'll use successor state axioms

CMSC 421: Chapter 7

"



Successor state axioms

If a fluent f is true at time ¢ + 1, then either it was true at time ¢

or we performed an action that made it true

[f we have the arrow at time ¢ + 1, then we had it and didn’t shoot it
o HaveArrow* < (HaveArrow' A =Shoot!)
o HaveArrow’ < (HaveArrow? A —Shoot?)
oL,

If we're at location [ at time ¢ + 1, then we moved there,

or we were already there and we didn’t move,
or we were already there and we bumped into the wall

o LU & (Lt A—Forward v Bump'™)
V(L y A South® A Forward') v (L5, A West' A Forward")

e neced one of those for each location and each value of ¢

Need similar axioms for all the other fluents

CMSC 421: Chapter 7

78



Inferring where it’s OK to move

OK|
OK{,

& =Py A (=W V =Wumpus_Alive')
& =Py A (=Wia V =Wumpus_Alive')
OKiA & =Py A (=Wyy V -Wumpus_Alive')

=Py A (=Wig V =Wumpus_Alive?)
=Py A (=WiaV =Wumpus_Alive?)

OK?

&
OKi,

OKEA & =Py N (=Wyy V -Wumpus_Alive?)

. for each value of t ...

CMSC 421: Chapter 7 79



Inferring facts about the state of the world

—Stench! A =Breeze® A =Glitter’ A =Bump® A ~Scream?;  Forward’
—Stench! A Breeze' A ~Glitter' A =Bump' A =Scream'; Turn_right!
—Stench? N Breeze* A ~Glitter? A =Bump?* A\ =Scream?; Turn_right?
—Stench® A Breeze’ \ =Glitter? A ~Bump® A =~ Scream?; Forward®
—Stench* A =Breeze* A =Glitter* A ~Bump* A ~Scream®*; Turn_Left*
—Stench® A\ =Breeze® A =Glitter® A ~Bump® A ~Scream®; Forward®

Stench® A ~Breeze® A =Glitter® A =~ Bump® A ~Scream’

& With all of the axioms and a resolution

theorem prover, we should be able to get =

o ASK(KB,Lj,)=true P

o ASK(KB, P 3)=true 5 o 3%
o ASK(KB,Ws5;)=1true

o ASK(KB, OK2672) = true Tox[s oK

W

?
!

CMSC 421: Chapter 7 80



Summary

{ Logical agents apply inference to a knowledge base

e to derive new information and make decisions

> Basic concepts of logic:

< <5

syntar: formal structure of sentences

semantics: truth of sentences wrt models

entatlment: necessary truth of one sentence given another
inference: deriving sentences from other sentences
soundess: derivations produce only entailed sentences

completeness: derivations can produce all entailed sentences

Wumpus world requires representing partial and negated information,
reasoning by cases, etc.

Forward and backward chaining are linear-time, complete for Horn clauses

Resolution is complete for propositional logic

Propositional logic lacks expressive power

CMSC 421: Chapter 7 81



