Last update: October 16, 2012

REVIEW FOR THE MIDTERM EXAM

CMSC 421: MIDTERM REVIEW

Midterm Exam

- ♦ Scope: Chapters 1–6, and elementary Python
- ♦ Closed book, no electronic devices
- ♦ You may bring one sheet of notes; OK to write on both sides
- ♦ To help you prepare, the "resources" page has the midterm and final exams for the last three times I taught the course
 - Both with and without answers
- \diamondsuit To see all of them:
 - Go to the bottom of the page and click on "show all resources"

Chapter 1: Introduction

- ♦ What AI is:
 - thinking versus acting
 - humanly versus rationally

Chapter 2: Intelligent Agents

- ♦ Agents and environments
 - Rationality
 - PEAS (Performance measure, Environment, Actuators, Sensors)
 - Environment types
 - Agent types
- ♦ I won't ask any questions about Chapters 1 and 2

Chapter 3: Search

- ♦ Problem types:
 - deterministic, nondeterministic,
 - fully observable, partially observable, non-observable
 - example: vacuum world
- ♦ Tree-search algorithms
 - Breadth-first search
 - Uniform-cost search
 - Depth-first search
 - Depth-limited search
 - Iterative deepening
- \diamondsuit tree search versus graph search

Chapter 3 (continued)

- ♦ Heuristic search algorithms
 - Greedy search
 - A* on trees or on graphs with consistent heuristics
 - A* on graphs with inconsistent heuristics
- ♦ Heuristic functions
 - admissibility, consistency, dominance
 - problem relaxation
- \Diamond Not on the exam:
 - IDA*
 - continuous spaces

Chapter 4: Beyond Classical Search

- ♦ Local search algorithms
 - Hill climbing
 - simulated annealing
- \Diamond Not on the exam:
 - beam search
 - genetic algorithms

Elementary Python

- ♦ You should know the basics
- ♦ And I hope you've picked up some ideas about Python programming style
- ♦ But I'll keep it simple!

Chapter 5: Adversarial Search

- \diamondsuit What type of game:
 - two-player, perfect information, zero sum
- ♦ Game trees, minimax values
- ♦ Alpha-beta pruning
- Depth-bounded search, static evaluation functions
- ♦ Node ordering
- ♦ Nondeterministic game trees (e.g., backgammon)
 - expectiminimax

Chapter 6: Constraint Satisfaction

- ♦ Variables, constraints, constraint graphs, backtracking search
- ♦ Variable selection heuristics:
 - MRV (minimum remaining values)
 - degree (most constraints on remaining variables)
- ♦ Value selection heuristic: least constraining value
- ♦ Pruning techniques
 - forward checking
 - arc consistency (constraint propagation)
- \Diamond Problem structure:
 - independent subproblems
 - tree-structured CSPs
 - cutset conditioning