Last update: October 25, 2012

GAME THEORY

CMSC 421, Section 17.5

CMSC 421, Section 17.5 1

Chapter 17, Section 5: Game theory

- \diamondsuit In Chapter 5 we looked at 2-player perfect-information zero-sum games
- \diamondsuit We'll now look at games that might have one or more of the following:
 - more than 2 players
 - imperfect information
 - nonzero-sum outcomes
- \diamond Recall that an agent's *strategy* is a specification of what the agent will do in every game state where it's the agent's move.

The Prisoner's Dilemma

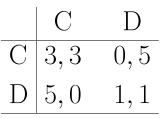
- \diamondsuit Scenario: The police have arrested two suspects for a crime.
- \diamondsuit They tell each prisoner they'll reduce his/her prison sentence if he/she betrays the other prisoner
- \diamondsuit Each prisoner must choose between two actions:
 - \diamond cooperate with the other prisoner, i.e., don't be tray him
 - \diamond defect (betray the other prisoner).
- \diamond Years in prison, represented as negative utility values:

$$P_{1} \begin{array}{c|cccc} & P_{2} \\ \hline Cooperate & Defect \\ \hline P_{1} \end{array} \begin{array}{c} Cooperate & P_{1}: -2, P_{2}: -2 & P_{1}: -5, P_{2}: 0 \\ \hline Defect & P_{1}: 0, P_{2}: -5 & P_{1}: -4, P_{2}: -4 \end{array}$$

- \diamond Non-zero-sum
- \diamond Imperfect information
 - neither player knows the other's move until after both players have moved

Notation

 \diamond Add 5 so the numbers are ≥ 0 ; abbreviate names or omit them



- P_1 chooses a row, and gets the 1st payoff in each square
- P_2 chooses a column, and gets the 2nd payoff in each square
- \Diamond In the book, the roles of P_1 and P_2 are interchanged
 - In the Prisoner's Dilemma, it doesn't matter because the game is *symmetric* (same game if you interchange the two players)
- \diamond But not all games are symmetric:

Strategies

- \diamondsuit Players P_1, \ldots, P_n
 - $S_i = \{ \text{all possible strategies for } P_i \}$
 - s_i will always refer to a strategy in S_i
- \diamond Strategy profile: an *n*-tuple (s_1, s_2, \ldots, s_n) , one strategy for each player
- \diamond Utility: $U_i(s_1, \ldots, s_n)$ = payoff for P_i with strategy profile (s_1, \ldots, s_n)
- $\diamond s_i$ strongly dominates s'_i if P_i always does better with s_i than with s'_i :

•
$$\forall s_1, \dots, s_{i-1}, s_{i+1}, \dots, s_n,$$

 $U_i(s_1, \dots, s_{i-1}, s_i, s_{i+1}, \dots, s_n) > U_i(s_1, \dots, s_{i-1}, s_i', s_{i+1}, \dots, s_n)$

 $\diamond s_i$ weakly dominates s'_i if P_i never does worse with s_i than with s'_i , and there is at least one case where P_i does better with s_i than with s'_i

- $\forall s_1, \ldots, s_{i-1}, s_{i+1}, \ldots, s_n, U_i(\ldots, s_i, \ldots) \ge U_i(\ldots, s'_i, \ldots)$
- $\exists s_1, \ldots, s_{i-1}, s_{i+1}, \ldots, s_n \quad U_i(\ldots, s_i, \ldots) > U_i(\ldots, s'_i, \ldots)$

Dominant strategy equilibrium

- $\diamond s_i$ is a *(strongly, weakly) dominant* strategy if it (strongly, weakly) dominates every $s'_i \in S_i$.
- \Diamond Dominant strategy equilibrium: a strategies (s_1, \ldots, s_n) such that each s_i is dominant for player P_i
 - Thus P_i will do best by using s_i rather than a different strategy,
 - $\diamond~$ regardless of what strategies the other players use
- \diamond The Prisoner's Dilemma has a dominant strategy equilibrium
 - What is it?

- \diamondsuit What can happen if you don't play your dominant strategy:
 - http://www.youtube.com/watch?v=ED9gaAb2BEw

Pareto optimality

 \diamond A strategy profile (s_1, \ldots, s_n) is *Pareto optimal* if there's no strategy profile (s'_1, \ldots, s'_n) that gives all players higher payoffs

$$\begin{array}{c|cc}
C & D \\
\hline
C & 3,3 & 0,5 \\
D & 5,0 & 1,1 \\
\end{array}$$

- (C,C) is Pareto optimal
 - So are (C,D) and (D,C)
- (D,D) is the *only* strategy profile that isn't Pareto optimal

Coordination games

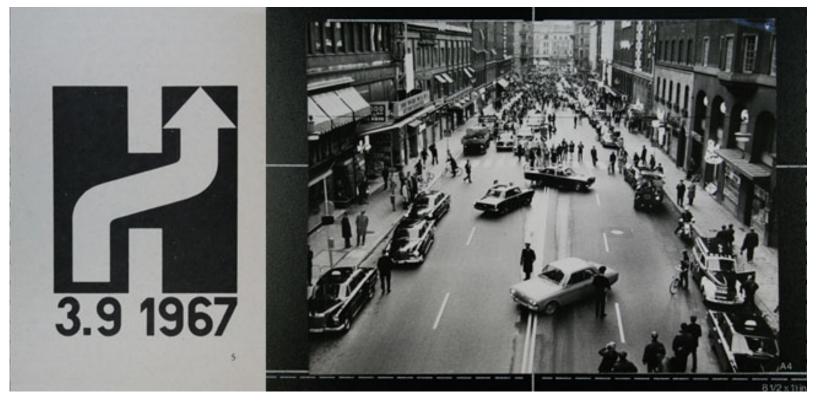
- \diamondsuit Not every game has a dominant strategy equilibrium
- \diamond Example: which side of the road?
 - 2 people driving toward each other in a country with no traffic rules
 - Each needs to decide which side of the road to drive on

- \diamondsuit Why did I use 1 and 0 for the payoffs?
- \diamondsuit How to decide which side of the road?
 - (1) guess
 - (2) change the rules of the game

Changing the rules of the game

 \diamond *Mechanism design*: set up the rules of the game, to give each agent an incentive to choose a desired outcome

- E.g., pass a law saying what side of the road to drive on
- \diamondsuit Sweden on September 3, 1967:



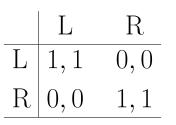
Best response and Nash equilibrium

- \diamond Suppose players P_1, \ldots, P_n have chosen the following strategy profile:
 - $\sigma = (s_1, \dots, s_{i-1}, s_i, s_{i+1}, \dots, s_n)$
- ♦ P_i 's strategy s_i is a *best response* to the other players' strategies in σ if for every strategy $s'_i \in S_i$,
 - $U_i(s_1, \ldots, s_{i-1}, s_i, s_{i+1}, \ldots, s_n) \ge U_i(s_1, \ldots, s_{i-1}, s'_i, s_{i+1}, \ldots, s_n)$
 - i.e., if P_i switches to a different strategy and nobody else does, then P_i won't do any better, and might do worse

 \diamond Suppose that for **every** player *i*, P_i 's strategy s_i is a best response to the other players' strategies in σ

- Then σ is a *Nash equilibrium* (named after John Nash)
- \diamond Basically a local optimum:
 - No player can benefit from *unilaterally* switching to a different strategy

Example



 \diamondsuit Two Nash equilibria: (L, L) and (R, R)

 \diamondsuit Every game has a Nash equilibrium

- (subject to a condition I'll describe later)
- \diamondsuit Every dominant strategy equilibrium is a Nash equilibrium
 - but not vice versa

Mixed strategies

 \diamondsuit Two-finger Morra:

• Two players: E (*Even*) and O (*Odd*). Each holds up 1 or 2 fingers:

$$E \begin{array}{c|c} & \text{one} & \text{two} \\ \hline \text{one} & 2, -2 & -3, 3 \\ \hline \text{two} & -3, 3 & 4, -4 \end{array}$$

 \diamondsuit If this game has a Nash equilibrium, then what is it?

 \cap

- Not (one, one): O can do better by changing to "two"
- Not (one,two): E can do better by changing to "two"
- Likewise, not (two,one) or (two,two)
- \diamond There is no equilibrium in *pure* (deterministic) strategies
- \diamondsuit Equilibrium: both players use a *mixed* (randomized) strategy:

[Pr(one)=7/12, Pr(two)=5/12]

Von Neumann's maximin technique

- ♦ Suppose O's strategy is [Pr(one)=q, Pr(two)=1-q]
 - If E plays one, E's expected utility is 2q 3(1 q) = 5q 3
 - If E plays *two*, E's expected utility is -3q + 4(1 q) = 4 7q
- $\diamond E$'s *best response* is to choose whichever move (*one* or *two*) produces a greater expected utility. If E does this, E's expected utility is

 $U_{E|q} = \max(5q - 3, 4 - 7q)$

 \diamond O's expected utility is the negative of E's, so O's best strategy is to choose a value of q that minimizes $U_{E|q}$:

 $\arg\min_{q} U_{E|q} = \arg\min_{q} (\max(5q-3, 4-7q))$

 \diamond This occurs where the line y = 5q - 3 intersects the line y = 4 - 7q

$$5q - 3 = 4 - 7q \implies 12q = 7 \implies q = 7/12$$

- \diamond If O uses this, then E's expected utility is -1/12, and O's is 1/12, regardless of what move E makes
 - E can't benefit by unilaterally changing to a different strategy

Von Neumann's maximin technique

- ♦ Suppose E's strategy is [Pr(one)=p, Pr(two)=1-p]
 - If O plays one then E's expected utility is 2p 3(1-p) = 5p 3.
 - If O plays *two* then E's expected utility is -3p + 4(1-p) = 4 7p.
- \diamond O's best response is to choose whichever move (*one* or *two*) produces a greater expected utility for O (i.e., a smaller expected utility for E)
 - This gives E the following expected utility:

 $U_{E|p} = \min(5p - 3, 4 - 7p)$

so E's best strategy is to choose p that maximizes $U_{E|p}$:

 $\arg\max_{p} U_{E|p} = \arg\max_{p} (\min(5p - 3, 4 - 7p))$

 \diamond This occurs where the lines y = 5p - 3 and y = 4 - 7p intersect

$$5p - 3 = 4 - 7p \implies 12p = 7 \implies p = 7/12$$

- \diamond If *E* uses this, then *E*'s expected utility is -1/12, and *O*'s is 1/12, regardless of what move *O* makes
 - O can't benefit by unilaterally changing to a different strategy

Von Neumann's maximin technique

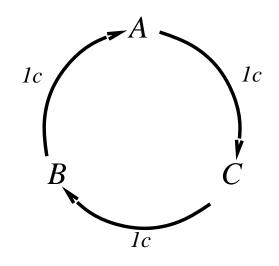
- \diamondsuit Suppose that
 - E's strategy is [Pr(one)=7/12, Pr(two)=5/12]
 - O's strategy also is [Pr(one)=7/12, Pr(two)=5/12]
- \diamond Then
 - E's expected utility is -1/12 and O's is 1/12
- \diamondsuit If either player unilaterally changes to a different strategy, the expected utilities don't change
 - So we have a Nash equilibrium
- \diamondsuit When can we expect players to choose a Nash equilibrium?
 - Requires common knowledge of rationality

Rational preferences

- \diamond Let $O = \{o_1, \ldots, o_k\}$ be the set of all possible outcomes of some choice
- \diamond For every pair of outcomes $o, o' \in O$, which do you prefer?
 - Either you prefer o, or you prefer o', or both are equally preferable
- \diamondsuit There are mathematical axioms defining when these preferences are decision-theoretically rational
 - e.g., rational preferences must be transitive:
 - ♦ prefer *o* to *o'* and prefer *o'* to *o''* \Rightarrow prefer *o* to *o''*
- \diamondsuit This isn't psychological rationality, it's mathematical consistency
 - But if someone's preferences aren't decision-theoretically rational, they can be induced to do things that seem self-evidently irrational

Example: intransitive preferences

- \diamondsuit Suppose that an agent
 - prefers A to B
 - prefers B to C
 - prefers C to A
- \diamondsuit Such an agent would
 - trade C plus some money to get B
 - trade B plus some money to get A
 - trade A plus some money to get C
- \diamondsuit Such an agent can be induced to give away all its money



Principle of maximum expected utility (MEU)

\diamond Theorem:

- Every rational set of preferences correspond to a *utility function*

 a function that assigns a numeric *utility value* to each outcome
- Choices that satisfy the preferences
 - = choices that maximize expected utility

Common knowledge

- \diamond A fact is *common knowledge* if
 - \diamond Everyone knows it
 - $\diamond~$ Everyone knows that everyone knows it
 - ♦ Everyone knows that everyone knows that everyone knows it
 - • •
 - And so on, *ad infinitum*
- \diamondsuit Knowing that every one knows something can make a big difference
 - http://www.youtube.com/watch?v=3-son3EJTrU

Nash equilbrium

 \diamondsuit Consider a game that has a unique Nash equilibrium

- If all of the players are decision-theoretically rational and if there is common knowledge of rationality
- then we can expect them to choose the Nash equilibrium
- \diamondsuit If a game has more than one Nash equilibrium, then it's more complicated

$$\begin{array}{c|ccc}
L & R \\
\hline
L & 1,1 & 0,0 \\
\hline
R & 0,0 & 1,1 \\
\end{array}$$

• Need to either guess or communicate

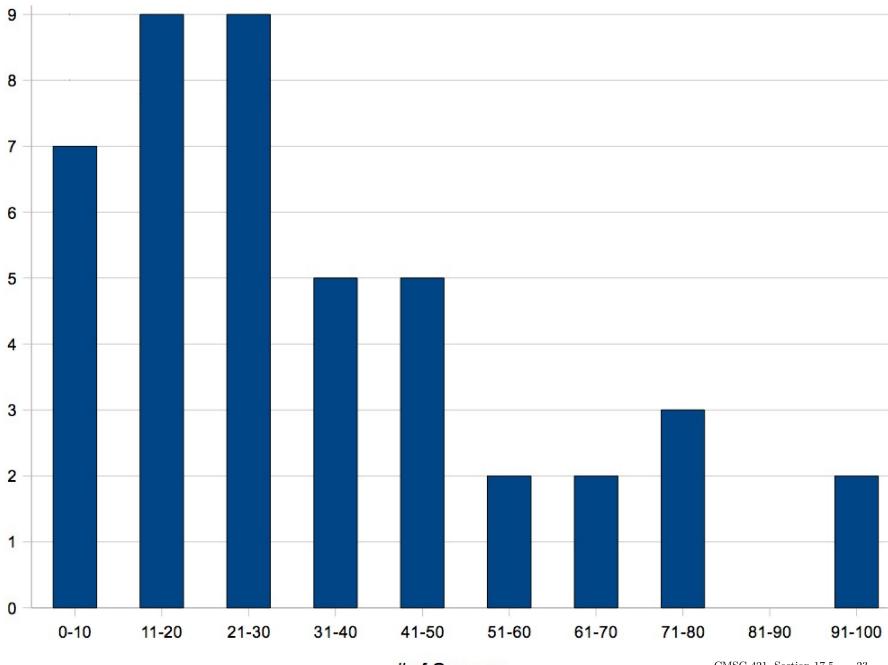
The *p*-beauty contest

 \diamondsuit Earlier this semester, we played the following game:

- Everyone chooses a number in the range from 0 to 100.
- The winner(s) are whoever chooes a number that's closest to 2/3 of the average of all of the numbers.
- \diamondsuit This game is famous among economists and game theorists
 - It's called the *p*-beauty contest; I used p = 2/3
- \diamond What does game theory tell us about it?

Nash equilibrium for the *p*-beauty contest

- \diamond We can find a Nash equilibrium using *backward induction*
- \diamond All of the numbers are ≤ 100
 - average $\leq 100 \Rightarrow 2/3$ of the average < 67
- \diamondsuit If rationality is common knowledge, they'll all choose numbers < 67
 - average $< 67 \Rightarrow 2/3$ of the average < 45
- $\diamondsuit~$ If rationality is common knowledge, they'll all choose numbers <45
 - average $< 45 \Rightarrow 2/3$ of the average < 30
 - . . .
- \diamondsuit Nash equilibrium: every body chooses 0



of Guesses

CMSC 421, Section 17.5 23

Why choose a non-equilibrium strategy?

- \diamondsuit Limitations in reasoning ability
 - Maybe you didn't calculate the Nash equilibrium correctly, or you didn't know how to calculate it, or you didn't know the concept
- \diamond Incorrect utilities
 - Maybe the payoff matrix doesn't represent your actual preferences
- \diamond Opponent modeling
 - If an opponent uses a non-equilibrium strategy, your best response will be a non-equilibrium strategy
 - If you can predict the other agents' likely actions, you can play an approximation of your best response
 - You may be able to do much better that way

Rock-Paper-Scissors

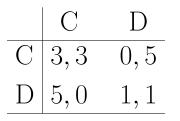
	Rock	Paper	Scissors
Rock	0, 0	-1, 1	1, -1
Paper	1, -1	0, 0	-1, 1
Scissors	-1, 1	1, -1	0, 0

- \diamond Nash equilibrium:
 - Both players choose randomly, probability 1/3 for each move
 - Expected utility = 0

Rock-Paper-Scissors

- \diamond International rock-paper-scissors programming competition, 1999
 - www.cs.ualberta.ca/~darse/rsbpc1.html
- \diamond Round-robin tournament:
 - 55 programs, 1000 iterations for each pair of programs
 - Lowest possible score = -55000; highest possible score = 55000
- \diamondsuit Average over 25 tournaments:
 - Lowest score (*Cheesebot*): -36006
 - Highest score (*Iocaine Powder*): 13038

Prisoner's Dilemma



 \diamondsuit (D,D) is a dominant strategy equilibrium, but it isn't Pareto optimal

- \diamondsuit (C,C) is Pareto optimal, but it's not a Nash equilibrium
- \diamond How to get both players to choose C?
 - Each player must be willing to forego the personal gain that he/she would get from defecting
 - Each player has to trust the other to do the same
- \diamond How to make this happen?

Repeated games

- \diamond In a *repeated* or *iterated* game, some game G is played multiple times by the same set of players
 - G is called the *stage game*
 - Each occurrence of G is called an *iteration*, *round*, or *stage*
- \diamond Usually each player knows what all players did in the previous iterations, but not what they're doing in the current iteration
 - Thus, imperfect information
- \diamond Usually the final score is the sum of the payoffs in all the iterations

Iterated Prisoner's Dilemma

$$\begin{array}{c|cc}
C & D \\
\hline
C & 3,3 & 0,5 \\
D & 5,0 & 1,1 \\
\end{array}$$

◊ *Iterated Prisoner's Dilemma*: play the Prisoner's Dilemma repeatedly

- Score is the sum of the payoffs in all the iterations
- \diamondsuit If you defect and they cooperate, you get a short-term gain
 - But they might punish you next time by defecting
- \diamondsuit You can both do well if you both cooperate with each other
- \diamondsuit How to establish and maintain cooperation,
 - without letting them take advantage of you?

Some well-known strategies

	Iteration	TFT	other player
\diamond Tit for Tat (TFT):	1	С	С
• Move 1: cooperate	2	С	D
• Move i : do what the other	3	D	\mathbf{C}
player did on move $i-1$	4	С	С

- \diamondsuit Tit for Two Tats: cooperate unless the other player defected twice
- \diamond GRIM: if the other player ever defects, never cooperate again
- \diamond AllC: always cooperate
- \diamondsuit AllD (the "hawk" strategy): always defect
- \diamond Tester: defect on round 1, cooperate on round 2
 - If the opponent defects on round 2
 - $\diamond~$ Cooperate on round 3 and play Tit-for-Tat from then on
 - Otherwise, randomly intersperse cooperation and defection

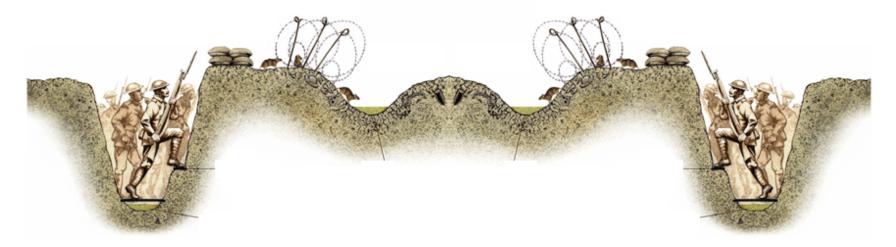
TFT with other players

- $\diamondsuit~$ Axelrod's famous tournaments
 - The Evolution of Cooperation, 1985
- \diamondsuit In these tournaments, TFT usually did best
 - It could establish and maintain cooperations with many other players
 - It could prevent malicious players from taking advantage of it

TFT	AllC	TFT	AllD	TFT	Grim	TFT	TFT	TFT ⁻	Tester
С	С	С	D	С	С	С	С	С	D
С	С	D	D	С	С	С	С	D	С
С	С	D	D	С	С	С	С	С	С
С	С	D	D	С	С	С	С	С	С
С	С	D	D	С	С	С	С	С	С
С	С	D	D	С	С	С	С	С	С
С	С	D	D	С	С	С	С	С	С
•	:	:	:	:	•	:	•	:	:

 \diamondsuit Axelrod also looked at analogies with various human behaviors

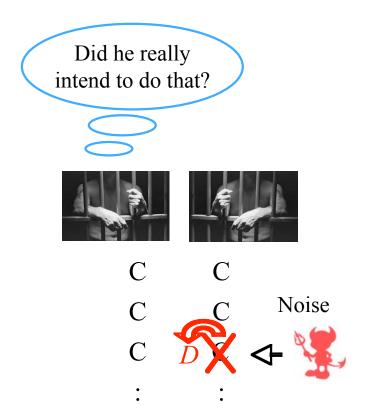
Example: trench warfare in World War I



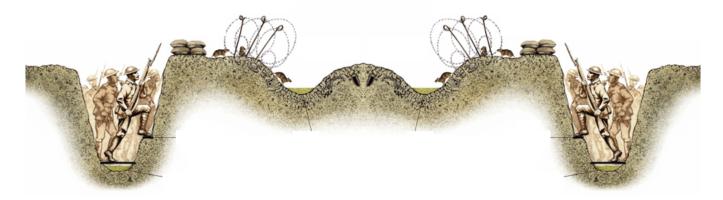
- \diamondsuit Incentive to cooperate:
 - If I attack the other side, then they'll retaliate and I'll get hurt
 - If I don't attack, maybe they won't either
- \diamondsuit Result: tacit cooperation
 - Even though the soldiers were supposed to be enemies, they tried to avoid attacking each other

Iterated Prisoner's Dilemma with Noise

- \diamond On each move, a nonzero probability that C will be recorded as D, and vice versa
- \diamond Can use this to model accidents or misinterpretations



Example of noise



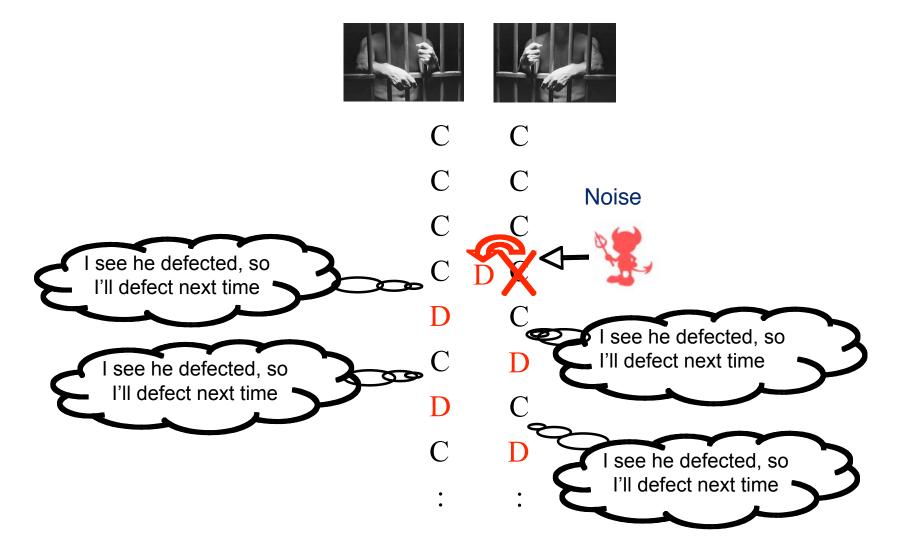
 \diamond Story from a British army officer in World War I:

I was having tea with A Company when we heard a lot of shouting and went out to investigate. We found our men and the Germans standing on their respective parapets. Suddenly a salvo arrived but did no damage. Naturally both sides got down and our men started swearing at the Germans, when all at once a brave German got onto his parapet and shouted out: "We are very sorry about that; we hope no one was hurt. It is not our fault. It is that damned Prussian artillery."

- \diamond The salvo wasn't the German infantry's intention
 - They didn't expect it, and didn't want it

Effects of noise

 \diamondsuit Noise causes big problems for Tit-for-Tat and similar strategies:



Some strategies for the noisy IPD

 \diamondsuit One idea: be more for giving in the face of apparent defections

- Tit-For-Two-Tats (TFTT)
 - $\diamond~$ Retaliate only if the other player defects twice in a row
- Generous Tit-For-Tat (GTFT)
 - ♦ Forgive randomly: small probability of cooperation if the other player defects
- Pavlov (Win-Stay, Lose-Shift)
 - $\diamond~$ Repeat my previous move if I got 3 or 5 points last time
 - $\diamond~$ Reverse my previous move if I got 0 or 1 points last time
 - $\diamond~$ If the other player defects continuously, Pavlov will alternatively cooperate and defect
- \diamond Problem: more forgiving \Rightarrow can be exploited by an unscrupulous opponent

Discussion

 \diamond The British army officer's story:

a brave German got onto his parapet and shouted out: "We are very sorry about that; we hope no one was hurt. It is not our fault. It is that damned Prussian artillery."

- \diamond The apology avoided a conflict
 - It was convincing because it was consistent with the German infantry's past behavior
 - The British had ample evidence that the German infantry wanted to keep the peace
- \diamondsuit Principle: if you can tell which actions are affected by noise, you can avoid reacting to the noise

DBS

♦ Author: Tsz-Chiu Au (PhD graduate of mine, now a professor in Korea)

- A program to play the noisy IPD
- Tries to detect when noise occurs, and respond to the move that the other player *intended* rather than the one that was recorded
- ♦ Based on observations of the other player's recent behavior, DBS builds a simple, approximate model of their strategy
 - gives a probabilistic prediction of their next move
- \diamond DBS uses the model to filter out the noise
 - If the model says the player will cooperate (or defect) with probability 1, and you see them do the opposite, assume you saw noise
 - But if that happens too many times, assume their strategy has changed
 ⇒ Build a new model of their strategy, based on their recent behavior
- \diamond DBS uses the model to decide what move to make next
 - game-tree search, using the model to predict the other player's moves

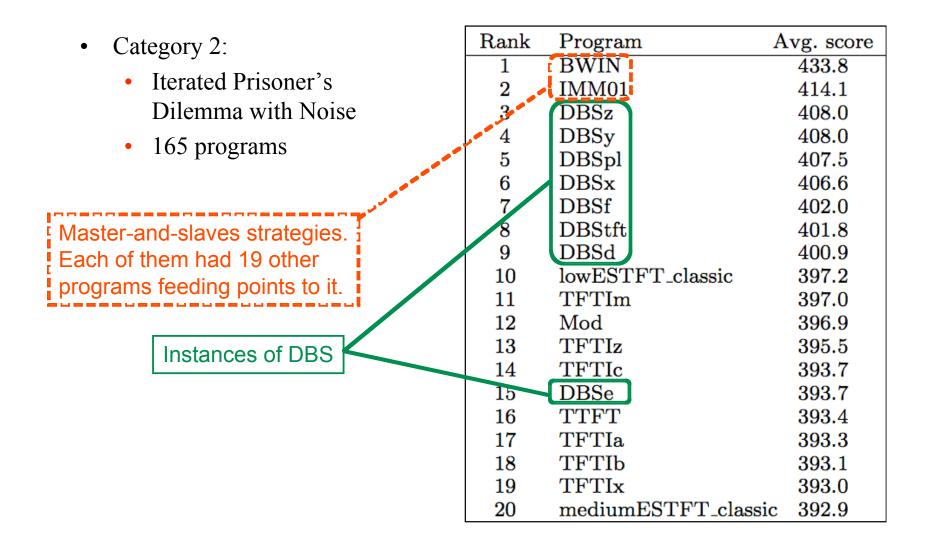
DBS's strategy model

 \diamondsuit Here's what DBS's model of other player's strategy looks like

- Four probabilities of the following form: Pr[they'll choose C | my last move, their last move]
- \diamond This can correctly represent simple strategies, but not complicated ones:
 - Can correctly represent TFT:
 - $\diamond \ \Pr[\ C \ | \ C, \ C] = 1$
 - $\diamond \operatorname{Pr}[C \mid C, D] = 1$
 - $\diamond \ \Pr[\ C \mid D, \, C] = 0$
 - $\diamond \operatorname{Pr}[C \mid D, D] = 0$
 - Can't correctly represent TFTT:
 - $\diamond~$ TFTT's next move depends on the last two iterations

 \diamond Why is this OK?

20th Anniversary IPD Competition



How BWIN and IMM01 worked

- \diamond Each participant could enter up to 20 agents
 - Some of them wrote agents that could recognize each other by exchanging coded sequences of C and D moves
- \diamondsuit Once they recognized each other, the 20 agents worked as a team:
 - 1 master and 19 slaves
- \diamond When a slave plays with its master, it cooperates and the master defects
 - \Rightarrow master gets 5 points, slave gets nothing
- ♦ When a slave plays with an agent not in its team, the slave defects
 ⇒ the other agent gets ≤ 1 points

 $\diamondsuit~$ BWIN and IMM01 were the masters of two master-and-slave teams

Analysis

 \diamondsuit Average score of each master-slaves team was much lower than DBS's

- If BWIN and IMM01 each had ≤ 10 slaves, DBS would have placed 1st
- If BWIN and IMM01 had no slaves, they would have done badly
- $\diamondsuit\,$ Unlike BWIN and IMM01, DBS had no slaves
 - None of the DBS programs even knew that the others were there
- \diamond DBS established cooperations with many other agents
 - Could do this despite the noise, because it could filter out the noise

Homework (only 30 points this time)

- **1.** Do Problem 17.16 in the book.
- **2.** Consider the following game:

	Н	D
Η	-2, -2	6, 0
D	0, 6	3, 3

(a) Find all dominant strategy equilibria. If there are none, explain why.(b) Find all Nash equilibria.

3. For each of the following strategies, can DBS's strategy model represent it correctly? If so, write the representation. If not, explain why not.(a) AllC.

(b) Random (choose C or D at random, with 0.5 probability for each).

(c) GTFT (If the other player's last move was C, choose C. Otherwise, choose D with probability 0.9, and C with probability 0.1.)

(d) Pavlov.

(e) Grim. (Think carefully about this one, it's tricky.)