Last update: November 10, 2012

INFERENCE IN FIRST-ORDER LOGIC

CMSC 421: Chapter 9

CMSC 421: Chapter 9 1

Outline

- \diamondsuit Reducing first-order inference to propositional inference
- \diamond Unification
- \diamondsuit Generalized Modus Ponens
- \diamondsuit Forward and backward chaining
- \diamond Logic programming
- \diamond Resolution

A brief history of first-order logic

- 1879 Frege first-order logic
- 1922 Wittgenstein proof by truth tables
- 1930 Gödel \exists complete algorithm for FOL
- 1930 Herbrand complete algorithm for FOL (reduce to propositional)
- 1931 Gödel $\neg \exists$ complete algorithm for arithmetic
- 1960 Davis/Putnam "practical" algorithm for propositional logic
- 1965 Robinson "practical" algorithm for FOL—resolution

Frege's notation for FOL

 \diamondsuit In Frege's notation, formulas looked like tree structures

- $\diamondsuit \text{ Example: } \forall x(A(x) \to B(x))$
 - Frege would have written

$$\operatorname{Aa}^{\mathfrak{a}}$$

Universal instantiation (UI)

 \diamond Every instantiation of a universally quantified sentence is entailed by it \diamond For every variable v and ground term g, if θ is the substitution $\{v = g\}$ then

 $\frac{\forall v \ \alpha}{\alpha \ \theta}$

 $\diamondsuit \text{ E.g., } \forall x \ \textit{King}(x) \land \textit{Greedy}(x) \Rightarrow \textit{Evil}(x)$

. . .

- $King(John) \wedge Greedy(John) \Rightarrow Evil(John)$
- $King(Richard) \land Greedy(Richard) \Rightarrow Evil(Richard)$
- $King(father(John)) \land Greedy(father(John)) \Rightarrow Evil(father(John))$

Existential instantiation (EI)

 \diamond For any sentence α , variable v, and constant symbol k that doesn't appear elsewhere in the knowledge base, if $\theta = \{v = k\}$ then

 $\frac{\exists v \ \alpha}{\alpha \ \theta}$

 $\diamondsuit E.g., \text{ from } \exists x \ Crown(x) \land OnHead(x, John) \text{ we can infer} \\ Crown(C_1) \land OnHead(C_1, John)$

where C_1 is a new constant symbol (doesn't already appear somewhere)

- \diamond In words:
 - If there is a crown on John's head, then we can call the crown C_1
- $\diamond C_1$ is called a *Skolem constant*

Existential instantiation, continued

- \diamondsuit UI can be applied several times to ${\bf add}$ new sentences
 - the new KB is logically equivalent to the old
- \diamondsuit EI can be applied once to **replace** the existential sentence
 - the new KB is **not** equivalent to the old, but is satisfiable iff the old KB was satisfiable
- \diamondsuit Mathematicians use these techniques informally every day
- \diamond Example: proofs involving limits
 - Suppose $\lim_{x\to 5} f(x) = 2$. Then $\forall \epsilon > 0 \ \exists \delta > 0 \ \forall x \ |x-5| < \delta \Rightarrow |f(x)-2| < \epsilon$.
 - Let ϵ be any number > 0. Then $\exists \delta > 0 \ \forall x \ |x - 5| < \delta \Rightarrow |f(x) - 2| < \epsilon.$
 - Let $\delta_1 > 0$ be such that $\forall x | x 5 | < \delta$, $|f(x) 2| < \epsilon$.
 - Let x be any number such that $|x-5| < \delta_1$. Then $|f(x)-2| < \epsilon$.
 - . . .

Reduction to propositional inference

 \diamondsuit Suppose the KB contains just the following:

 $\begin{array}{l} \forall x \;\; King(x) \wedge Greedy(x) \; \Rightarrow \; Evil(x) \\ King(John) \\ Greedy(John) \\ Brother(Richard, John) \end{array}$

 \diamond New KB: instantiate the universal sentence in **all possible** ways:

 $King(John) \land Greedy(John) \Rightarrow Evil(John)$ $King(Richard) \land Greedy(Richard) \Rightarrow Evil(Richard)$ King(John)Greedy(John)Brother(Richard, John)

- \diamondsuit The new KB preserves entailment of all ground sentences
 - A ground sentence is entailed by new KB iff entailed by original KB

Reduction to propositional inference (continued)

- ♦ Every FOL KB can be propositionalized so as to preserve entailment of all ground sentences
 - Propositionalize KB and query, apply resolution, return result
- \diamondsuit Problem 1: propositionalization can create lots of irrelevant sentences.
 - E.g., suppose a KB contains

 $\begin{array}{l} \forall x \;\; King(x) \wedge Greedy(x) \; \Rightarrow \; Evil(x) \\ King(John) \\ \forall y \;\; Greedy(y) \\ Brother(Richard, John) \\ Daughter(John, Joanna) \end{array}$

- \diamond To prove Evil(John), use propositionalization to get Greedy(John)
 - But we also get *Greedy*(*Richard*) and *Greedy*(*Joanna*)
- \diamond With *p k*-ary predicates and *n* constants, there are $p \cdot n^k$ instantiations

Reduction to propositional inference (continued)

- \diamond Problem 2: with function symbols, propositionalization can create infinitely many sentences!
 - Greedy(John)
 - Greedy(father(John))
 - $\bullet \ \ Greedy(father(father(John)))$
 - • •

Theorem: Herbrand (1930). If a sentence α is entailed by an FOL KB, then it is entailed by a **finite** subset of the propositionalized KB

- \diamondsuit Basic idea: For n = 0 to ∞ do
 - create a propositional KB by instantiating with all terms of depth $\leq n$
 - \diamond (e.g., up to *n* nested occurrences of *Father*)
 - see if α is entailed by this KB
- \diamond Problem: works if α is entailed, goes forever if α is not entailed

Theorem: Turing (1936), Church (1936), entailment in FOL is *semidecidable*

 $\begin{array}{l} \forall x \;\; King(x) \wedge Greedy(x) \; \Rightarrow \; Evil(x) \\ King(John) \\ \forall y \;\; Greedy(y) \\ Brother(Richard, John) \\ Daughter(John, Joanna) \end{array}$

 \diamond We can infer Evil(John) immediately if we can find a substitution θ such that King(x) and Greedy(x) match King(John) and Greedy(y)

• e.g.,
$$\theta = \{x = John, y = John\}$$

 \diamondsuit Such a substitution is called a unifier

- \diamond A *unifier* for α and β is a substitution θ such that $\alpha\theta$ and $\beta\theta$ are syntactically identical
 - α and β are *unifiable* if such a θ exists
- \diamond What is the unifier (if there is one) for each of the following?

p	q	heta
Knows(John, x)	Knows(John, Jane)	
Knows(John, x)	Knows(y, Joanna)	
Knows(John, x)	Knows(y, mother(y))	
Knows(John, x)	Knows(x, Joanna)	
Knows(John, x)	$Knows(x_{17}, Joanna)$	
Knows(x,x)	Knows(z, mother(z))	

- \diamond A *unifier* for α and β is a substitution θ such that $\alpha\theta$ and $\beta\theta$ are syntactically identical
 - α and β are *unifiable* if such a θ exists
- \diamond What is the unifier (if there is one) for each of the following?

p	q	heta
Knows(John, x)	Knows(John, Jane)	$\{x = Jane\}$
Knows(John, x)	Knows(y, Joanna)	
Knows(John, x)	Knows(y, mother(y))	
Knows(John, x)	Knows(x, Joanna)	
Knows(John, x)	$Knows(x_{17}, Joanna)$	
Knows(x,x)	Knows(z, mother(z))	

- \diamond A *unifier* for α and β is a substitution θ such that $\alpha\theta$ and $\beta\theta$ are syntactically identical
 - α and β are *unifiable* if such a θ exists
- \diamond What is the unifier (if there is one) for each of the following?

p	q	heta
Knows(John, x)	Knows(John, Jane)	$\{x = Jane\}$
Knows(John, x)	Knows(y, Joanna)	$\{x = Joanna, y = John\}$
Knows(John, x)	Knows(y, mother(y))	
Knows(John, x)	Knows(x, Joanna)	
Knows(John, x)	$Knows(x_{17}, Joanna)$	
Knows(x, x)	Knows(z, mother(z))	

- \diamond A *unifier* for α and β is a substitution θ such that $\alpha\theta$ and $\beta\theta$ are syntactically identical
 - α and β are *unifiable* if such a θ exists
- \diamond What is the unifier (if there is one) for each of the following?

p	q	heta
Knows(John, x)	Knows(John, Jane)	$\{x = Jane\}$
Knows(John, x)	Knows(y, Joanna)	$\{x = Joanna, y = John\}$
Knows(John, x)	Knows(y, mother(y))	$\{y = John, x = mother(John)\}$
Knows(John, x)	Knows(x, Joanna)	
Knows(John, x)	$Knows(x_{17}, Joanna)$	
Knows(x, x)	Knows(z, mother(z))	

- \diamond A *unifier* for α and β is a substitution θ such that $\alpha\theta$ and $\beta\theta$ are syntactically identical
 - α and β are *unifiable* if such a θ exists
- \diamond What is the unifier (if there is one) for each of the following?

p	q	heta
Knows(John, x)	Knows(John, Jane)	$\{x = Jane\}$
Knows(John, x)	Knows(y, Joanna)	$\{x = Joanna, y = John\}$
Knows(John, x)	Knows(y, mother(y))	$\{y = John, x = mother(John)\}$
Knows(John, x)	Knows(x, Joanna)	fail
Knows(John, x)	$Knows(x_{17}, Joanna)$	
Knows(x, x)	Knows(z, mother(z))	

- \diamond A *unifier* for α and β is a substitution θ such that $\alpha\theta$ and $\beta\theta$ are syntactically identical
 - α and β are *unifiable* if such a θ exists
- \diamond What is the unifier (if there is one) for each of the following?

p	q	heta
Knows(John, x)	Knows(John, Jane)	$\{x = Jane\}$
Knows(John, x)	Knows(y, Joanna)	$\{x = Joanna, y = John\}$
Knows(John, x)	Knows(y, mother(y))	$\{y = John, x = mother(John)\}$
Knows(John, x)	Knows(x, Joanna)	fail
Knows(John, x)	$Knows(x_{17}, Joanna)$	$\{x_{17} = John, x = Joanna\}$
Knows(x,x)	Knows(z, mother(z))	

 \diamond *Standardizing apart* eliminates overlap of variables, e.g., *Knows*(x_{17} , *Joanna*)

- \diamond A *unifier* for α and β is a substitution θ such that $\alpha\theta$ and $\beta\theta$ are syntactically identical
 - α and β are *unifiable* if such a θ exists
- \diamond What is the unifier (if there is one) for each of the following?

 \diamond *Standardizing apart* eliminates overlap of variables, e.g., *Knows*(x_{17} , *Joanna*)

 \diamond Can't unify a variable with a term that contains the variable

Unification (continued)

 \Diamond A most general unifier (mgu) for α and β is a substitution θ such that

- θ is a unifier for α and β , and
- for every unifier θ' of α and β and for every expression e, $e\theta'$ is a substitution instance of $e\theta$
- $\diamondsuit \text{ E.g., let } \alpha = Knows(w, father(x)) \text{ and } \beta = Knows(mother(y), y)$
 - $\theta_1 = \{w = mother(father(x))), y = father(x)\}$ is an mgu

•
$$\theta_2 = \{w = mother(father(v))), y = father(v), x = v\}$$
 is an mgu

• $\theta_3 = \{w = mother(father(John)), y = father(John)\}$ is a unifier, but it is not an mgu

 $\diamondsuit~$ If θ and θ' are mgus for α and $\beta,$ then they are identical except for renaming of variables

Algorithm to find an mgu

- \diamondsuit Compare the expressions element by element, building up a substitution along the way
 - I'll give the basic idea; the book gives additional details
- \diamond For each pair of corresponding elements:
 - Apply the substitution we've built so far
 - If the two elements are the same after substituting, then continue
 - Else if one of them is a variable x and the other is an expression e, and if x doesn't appear anywhere in e (the occur check)
 then incorporate x = e into the substitution
 - Else FAIL

 \diamond Runs in quadratic time (would be linear time if we left out the occur check)

Generalized Modus Ponens (GMP)

 \diamondsuit Inference rule:

$$\frac{p_1', p_2', \dots, p_n', (p_1 \wedge p_2 \wedge \dots \wedge p_n \Rightarrow q)}{q\theta}$$

where

 $\diamond \ \theta \text{ is a substitution such that } p'_i \theta = p_i \theta \text{ for all } i$

 $\diamond~$ all variables are assumed to be universally quantified.

 \diamond Example:

 $\frac{King(John), \quad Greedy(y), \quad King(x) \wedge Greedy(x) \Rightarrow Evil(x)}{Evil(John)}$

$$\theta = \{x = John, y = John\}$$

$$\varphi = Evil(x)\theta = Evil(John)$$

 \diamond Equivalent formulation using *definite clauses* (exactly one positive literal)

$$\frac{p_1', p_2', \dots, p_n', (\neg p_1 \lor \neg p_2 \lor \dots \lor \neg p_n \lor q)}{q\theta}$$

Soundness of GMP

Theorem. If θ is a substitution that unifies p'_i with p_i for all i, then

 $p'_1, \ldots, p'_n, (p_1 \wedge \ldots \wedge p_n \Rightarrow q) \models q\theta$

Proof.

- \diamond Suppose p'_1, \ldots, p'_n , and $(p_1 \land \ldots \land p_n \Rightarrow q)$ are true.
- \diamond Let θ be as above. Then by applying θ , we get
 - $p'_1\theta$, ..., $p'_n\theta$, and $(p_1\theta \wedge \ldots \wedge p_n\theta \Rightarrow q\theta)$
- \diamond For all $i, p'_i \theta$ and $p_i \theta$ are the same expression, so we have
 - $p_1\theta$, ..., $p_n\theta$, and $(p_1\theta \wedge \ldots \wedge p_n\theta \Rightarrow q\theta)$
- $\diamondsuit~$ From ordinary Modus Ponens, we get $q\theta$

Example knowledge base

- ♦ The law says it is a crime for an American to sell weapons to hostile nations. The country Nono, an enemy of America, has some missiles. All of its missiles were sold to it by Colonel West, who is American.
- \diamondsuit Prove that Col. West is a criminal

Example knowledge base

- ♦ The law says it is a crime for an American to sell weapons to hostile nations. The country Nono, an enemy of America, has some missiles. All of its missiles were sold to it by Colonel West, who is American.
- \diamondsuit Prove that Col. West is a criminal
- \diamond Need two more inference rules:
 - Missiles are weapons.
 - An enemy of America is a "hostile nation"

Example knowledge base

- ♦ The law says it is a crime for an American to sell weapons to hostile nations. The country Nono, an enemy of America, has some missiles. All of its missiles were sold to it by Colonel West, who is American.
- \diamondsuit Prove that Col. West is a criminal
- \diamond Need two more inference rules:
 - Missiles are weapons.
 - An enemy of America is a "hostile nation"

- \diamondsuit What would be the problem with an axiom like this?
 - $\forall x \ LawSays(x) \Rightarrow x$

Example knowledge base, continued

 \diamondsuit The country Nono, an enemy of America, has some missiles.

- Enemy(Nono, America)
- $\exists x \ Owns(Nono, x) \land Missile(x)$ correct translation of "some"? $\diamond \ Owns(Nono, M_1)$ and $Missile(M_1)$
- \diamondsuit All of its missiles were sold to it by Colonel West, who is American.
 - $\forall x \ Missile(x) \land Owns(Nono, x) \Rightarrow Sells(West, x, Nono)$
 - American(West)
- \diamondsuit Missiles are weapons.
 - $\forall x \ Missile(x) \Rightarrow Weapon(x)$
- \diamondsuit An enemy of America is a "hostile nation"
 - $\forall x \ Enemy(x, America) \Rightarrow Hostile(x)$

Forward chaining algorithm

 \diamondsuit Like propositional forward-chaining, with these modifications:

- To make the inferences go through, must find unifiers
- To find unifiers, must standardize the variables

```
function FOL-FC-Ask(KB, \alpha)
   repeat until new is empty
        new \leftarrow \{\}
        for each rule r in KB do
             (p_1 \land \ldots \land p_n \Rightarrow q) \leftarrow \text{STANDARDIZE-VARIABLES}(r)
             for each set of statements p'_1, \ldots, p'_n in KB that unify with p_1, \ldots, p_n
                  \theta \leftarrow the mgu
                   q' \leftarrow q\theta
                  if q' is not a renaming of a sentence already in KB or new then
                        add q' to new
                        if q' is unifiable with \alpha then return the unified expression
        add new to KB
   return false
```

Forward chaining proof

Forward chaining proof

 $\begin{aligned} American(x) \wedge Weapon(y) \wedge Sells(x, y, z) \wedge Hostile(z) \ \Rightarrow \ Criminal(x) \\ \forall x \ Missile(x) \wedge Owns(Nono, x) \ \Rightarrow \ Sells(West, x, Nono) \\ Missile(x) \Rightarrow Weapon(x) \\ Enemy(x, America) \ \Rightarrow \ Hostile(x) \end{aligned}$

Forward chaining proof

 $\begin{aligned} American(x) \wedge Weapon(y) \wedge Sells(x, y, z) \wedge Hostile(z) \ \Rightarrow \ Criminal(x) \\ \forall x \ Missile(x) \wedge Owns(Nono, x) \ \Rightarrow \ Sells(West, x, Nono) \\ Missile(x) \Rightarrow Weapon(x) \\ Enemy(x, America) \ \Rightarrow \ Hostile(x) \end{aligned}$

Properties of forward chaining

- \diamondsuit Sound and complete for first-order Horn clauses
 - (proof similar to propositional proof)
- \diamond If α is not entailed, it might not terminate
 - This is unavoidable because entailment is semidecidable (i.e., equivalent to the halting problem)
- \diamondsuit Can guarantee termination if restrictions are satisfied
 - *Datalog* = first-order Horn clauses + no functions
 e.g., the Colonel West example
 - FC terminates for Datalog in a polynomial number of iterations $\diamond~$ at most $p\cdot n^k$ literals
- \diamondsuit Widely used (with some efficiency improvements) in *deductive databases* and *expert systems*

Efficiency of forward chaining

- \diamond Simple observation:
 - no need to look at a rule on iteration kunless iteration k - 1 added at least one of its premises
- \diamond Only look at a rule if its premise contains a newly added literal
- \diamond For each such rule r, check whether all of r's premises are satisfied
 - Need to retrieve other premises
 - \diamond *Database indexing* allows O(1) retrieval of known facts
 - \diamond e.g., query Missile(x) retrieves $Missile(M_1)$
 - Efficiency problem:
 - \diamond Many combinations of facts may match **some** of *r*'s premises
 - \diamond NP-hard to find one that matches **all** of *r*'s premises
 - example on next page
 - Partial fix: store partial matches in data structures such as *rete networks*

Hard matching example

 \diamondsuit Can write CSPs as datalog inference problems

 $\begin{array}{lll} \textit{Diff}(\textit{Red},\textit{Blue}) & \textit{Diff}(\textit{Red},\textit{Green}) \\ \textit{Diff}(\textit{Green},\textit{Red}) & \textit{Diff}(\textit{Green},\textit{Blue}) \\ \textit{Diff}(\textit{Blue},\textit{Red}) & \textit{Diff}(\textit{Blue},\textit{Green}) \end{array}$

 $\begin{array}{l} \textit{Diff}(wa,nt) \land \textit{Diff}(wa,sa) \land \textit{Diff}(nt,q) \land \\ \textit{Diff}(nt,sa) \land \textit{Diff}(q,nsw) \land \textit{Diff}(q,sa) \land \\ \textit{Diff}(nsw,v) \land \textit{Diff}(nsw,sa) \land \textit{Diff}(v,sa) \\ \Rightarrow \textit{Colorable}() \end{array}$

- \diamond Don't need statements like $nt = Red \lor nt = Blue \lor nt = Green$
 - Why not?
- \diamond *Colorable()* is inferred iff the CSP has a solution
 - Need to try many combinations of variable values
- \diamondsuit CSPs are NP-hard; 3SAT is a special case

Backward chaining algorithm

 \diamond What is $\theta \theta'$?

Criminal(West)

Properties of backward chaining

- \diamondsuit Depth-first recursive proof search: space is linear in size of proof
- \diamond Incomplete due to infinite loops
 - Partial fix: check current goal against every goal on stack
 - This prevents looping here:

 $\diamond \ P(x) \ \Rightarrow \ P(x)$

• But it doesn't prevent looping here:

 $\diamond \ Q(f(x)) \ \Rightarrow \ Q(x)$

- \diamond Inefficient due to repeated subgoals (both success and failure)
 - Fix using caching of previous results (extra space!)
- \diamond Widely used (without the above improvements!) for *logic programming*
- \diamondsuit In the 1980s, an entire operating system was built around it
 - Japan's fifth generation computer systems project

Prolog

 \diamondsuit Basis: backward chaining with Horn clauses

- plus extras (e.g., built-in "predicates" for arithmetic, printing, etc.)
- \diamond Program = set of clauses having the following forms:

```
\diamond head :- literal<sub>1</sub>, ... literal<sub>n</sub>.
```

- \diamond head.
- Example

```
criminal(X) :- american(X), weapon(Y), sells(X,Y,Z), hostile(Z).
```

- \diamondsuit Capitalization is the opposite of what we were doing earlier
 - Capitalized words (e.g., **X**) are variables
 - lower-case words (e.g., **nono**) are constants
- \diamondsuit Depth-first, left-to-right backward chaining
- \diamond Compilation techniques \Rightarrow approaching a billion LIPS
 - Efficient unification by *open coding* (generate unification code inline)
 - Efficient retrieval of matching clauses by direct linking

Example

```
\begin{array}{lll} American(x) \wedge Weapon(y) \wedge Sells(x,y,z) \wedge Hostile(z) \ \Rightarrow \ Criminal(x) \\ Missile(x) \wedge Owns(Nono,x) \ \Rightarrow \ Sells(West,x,Nono) \\ Owns(Nono,M_1) & Missile(M_1) \\ Missile(x) \ \Rightarrow \ Weapon(x) & Enemy(x,America) \ \Rightarrow \ Hostile(x) \\ American(West) & Enemy(Nono,America) \end{array}
```

```
criminal(X) :- american(X), weapon(Y), sells(X,Y,Z), hostile(Z).
sells(west,X,nono) :- missile(X), owns(nono,X).
missile(m1).
owns(nono,m1).
weapon(X) :- missile(X)
hostile(X) :- enemy(X,america).
american(west).
enemy(nono,america).
```

♦ Goal: :- criminal(West)

- generates the same search tree as before
- Answer: yes

Depth-first search in Prolog

 \diamondsuit Depth-first search from a start state $\mathtt{X}:$

```
dfs(X) :- goal(X).
dfs(X) :- successor(X,S),dfs(S).
```

 \diamondsuit Somewhat like the following procedure:

procedure dfs(X):

if there is an mgu θ such that goal(X θ) is true:

return θ

else

for every mgu θ such that successor(X θ ,S θ) is true: if there is an mgu θ' such that dfs(S $\theta\theta'$) is true: return $\theta\theta'$

 \diamondsuit But there's automatic backtracking:

- Suppose we have this clause: foo(X,Y) :- dfs(X), bar(X,Y).
- If dfs(X) succeeds and bar(X,Y) fails, Prolog will backtrack to the **for** loop and continue it where it left off, to look for another X

Appending linked lists

 \diamondsuit Procedure for concatenating two linked lists:

```
procedure append(U,V):

If U is empty, then return V

else

Head = \text{first element of } U; Tail = \text{the other elements of } U

Z = \text{append}(Tail,V)

return the result of pushing Head onto the front of Z
```

 \diamond Prolog notation: [1,2,3] is a linked list whose elements are 1, 2, and 3

• [Head|Tail] = list with 1st element Head, rest of list is Tail

 $\diamond~{\rm e.g.},~{\rm if}~L$ = [2,3,4,5], then [1|L] = [1,2,3,4,5]

- [] is the empty list, so [Head|[]] = [Head]
- \diamondsuit Prolog code to concatenate two linked lists
 - More general than the pseudocode above

append([],V,V).
append([Head|Tail],V,[Head|Z]) :- append(Tail,V,Z).

Appending linked lists in Prolog

- ◇ Same Prolog code as on the previous slide: append([],V,V). append([Head|Tail],V,[Head|Z]) :- append(Tail,V,Z).
 ◇ Given a goal :- append(A1,A2,A3) if append(A1,A2,A3) unifies with append([],V,V), return the mgu if append(A1,A2,A3) unifies with append([Head|Tail],V,[Head|Z]): let θ be the mgu if there is a θ' such that append(Tail,V,Z)θθ' is true, return θθ' return failure
- ♦ Goal: :- append([1,2],[3,4],L)
 - Answer: L=[1,2,3,4]
- \diamond Goal: :- append(A,B,[1,2])
 - Answers:

```
A=[], B=[1,2]
A=[1], B=[2]
A=[1,2], B=[]
```

Negation in Prolog

- \diamond We might want to make inferences such as $\neg Dead(x) \Rightarrow Alive(x)$
 - Not a Horn clause; the antecedent contains a negation
- \diamondsuit Kludge: use "negation as failure"
- \diamond Example:
 - alive(X) :- not dead(X).
 - :- alive(joe)
 - Prolog tries to answer :- dead(joe)
 - ♦ If it succeeds, then it returns no for alive(joe)
 - ♦ Else it returns yes for alive(joe)
- \diamondsuit Answer isn't necessarily correct:
 - will always return **yes** or **no**, even if there's no evidence either way
- \diamond Quantification problem:
 - :- alive(Z) ought to mean "is there someone who's alive?", but it ends up meaning "is everyone alive"?

Arithmetic in Prolog

 \diamondsuit Consider the following statements:

$$Y = 4.$$

 $Z = 2.$
 $X = (Y + Z)/2.$

- \diamond We'd like to infer X = 3.
- \diamondsuit Don't want to have to write axioms for how to evaluate every possible numeric expression
- \diamondsuit Kludge: built-in binary predicate called $\verb"is"$
 - Written using infix notation, like this: X is (Y + Z)/2.
 Not like this: is(X, (Y + Z)/2).
 - Prolog computes the value of the expression on the right-hand side
- \diamondsuit Only works if the right-hand side of the formula is completely instantiated

Resolution in FOL

 $\frac{\ell_1 \vee \cdots \vee \ell_i \vee \cdots \vee \ell_k, \quad m_1 \vee \cdots \vee m_j \vee \cdots \dots m_n}{(\ell_1 \vee \cdots \vee \ell_{i-1} \vee \ell_{i+1} \vee \cdots \vee \ell_k \vee m_1 \vee \cdots \vee m_{j-1} \vee m_{j+1} \vee \cdots \vee m_n)\theta}$

- where θ is any substitution that unifies ℓ_i and $\neg m_j$
- $\diamondsuit \ \text{Example: } \forall x \ Rich(x) \Rightarrow Unhappy(x) \\ \hline \neg Rich(x) \lor Unhappy(x), \quad Rich(Ken) \\ \hline Unhappy(Ken) \\ \hline \end{cases}$
 - with $\theta = \{x = Ken\}$
- \diamond To prove that $KB \models \alpha$
 - convert $\underline{KB} \wedge \neg \alpha$ to CNF
 - use resolution try to reach a contradiction
- \diamond This is a complete proof procedure for FOL
 - If there's a substitution θ such that $KB \models \theta \alpha$, then it will find θ
 - If there's no such θ , then the procedure won't necessarily terminate

Conversion to CNF

 \diamondsuit Everyone who loves all animals is loved by someone:

 $\forall x \ [\forall y \ Animal(y) \Rightarrow Loves(x,y)] \Rightarrow [\exists y \ Loves(y,x)]$

1. Eliminate biconditionals and implications

 $\forall x \ [\neg \forall y \ \neg Animal(y) \lor Loves(x,y)] \lor [\exists y \ Loves(y,x)]$

2. Move
$$\neg$$
 inwards: $\neg \forall x, p \equiv \exists x \neg p, \neg \exists x, p \equiv \forall x \neg p$:
 $\forall x \ [\exists y \ \neg(\neg Animal(y) \lor Loves(x, y))] \lor [\exists y \ Loves(y, x)]$
 $\forall x \ [\exists y \ \neg\neg Animal(y) \land \neg Loves(x, y)] \lor [\exists y \ Loves(y, x)]$
 $\forall x \ [\exists y \ Animal(y) \land \neg Loves(x, y)] \lor [\exists y \ Loves(y, x)]$

Conversion to CNF, continued

- 3. Standardize variables: each quantifier should use a different one $\forall x \ [\exists y \ Animal(y) \land \neg Loves(x, y)] \lor [\exists z \ Loves(z, x)]$
- 4. Skolemize: a more general form of existential instantiation.
 - $\diamond~$ Each existential variable is replaced by a *Skolem function* of the enclosing universally quantified variables:

 $\forall x \ [Animal(F(x)) \land \neg Loves(x,F(x))] \lor Loves(G(x),x)$

5. Drop universal quantifiers:

 $[Animal(F(x)) \land \neg Loves(x,F(x))] \lor Loves(G(x),x)$

6. Distribute \land over \lor :

 $[Animal(F(x)) \lor Loves(G(x), x)] \land [\neg Loves(x, F(x)) \lor Loves(G(x), x)]$

Example

 \diamond Original clauses:

 $\forall x \; American(x) \land Weapon(y) \land Sells(x, y, z) \land Hostile(z) \Rightarrow Criminal(x) \\ \forall x \; Missile(x) \land Owns(Nono, x) \Rightarrow Sells(West, x, Nono) \\ Owns(Nono, M_1) \\ Missile(M_1) \\ \forall x \; Missile(x) \Rightarrow Weapon(x) \\ \forall x \; Enemy(x, America) \Rightarrow Hostile(x) \\ American(West) \\ Enemy(Nono, America)$

\diamond CNF:

 $\neg American(x) \lor \neg Weapon(y) \lor \neg Sells(x, y, z) \lor \neg Hostile(z) \lor Criminal(x) \\ \neg Missile(x) \lor \neg Owns(Nono, x) \lor Sells(West, x, Nono) \\ Owns(Nono, M_1) \\ Missile(M_1) \\ \neg Missile(x) \lor Weapon(x) \\ \neg Enemy(x, America) \lor Hostile(x) \\ American(West) \\ Enemy(Nono, America) \\ \end{cases}$

 \diamond This figure omits all resolvents except the ones in the proof

Compare with the backward chaining example Does similar things, in a similar order $\langle \rangle$ Criminal(West) {x=West, y=M1, z=Nono} American(West) Weapon(y) *Hostile*(*Nono*) Sells(West,M1,z) { } $\{ z=Nono \}$ Missile(M1) *Missile*(y) Owns(Nono,M1) *Enemy*(*Nono*,*America*) { } { } { } $\{ v = M1 \}$

Homework 5

- \diamond Five problems: 7.12, 8.9, 9.4, 9.12, 9.23
 - 10 points each, 50 points total
 - Due Nov. 15 20