
Last update: November 10, 2012

Inference in first-order logic

CMSC 421: Chapter 9

CMSC 421: Chapter 9 1

Outline

♦ Reducing first-order inference to propositional inference

♦ Unification

♦ Generalized Modus Ponens

♦ Forward and backward chaining

♦ Logic programming

♦ Resolution

CMSC 421: Chapter 9 2

A brief history of first-order logic

1879 Frege first-order logic

1922 Wittgenstein proof by truth tables

1930 Gödel ∃ complete algorithm for FOL

1930 Herbrand complete algorithm for FOL (reduce to propositional)

1931 Gödel ¬∃ complete algorithm for arithmetic

1960 Davis/Putnam “practical” algorithm for propositional logic

1965 Robinson “practical” algorithm for FOL—resolution

CMSC 421: Chapter 9 3

Frege’s notation for FOL

♦ In Frege’s notation, formulas looked like tree structures

−

♦ Example: ∀x(A(x)→ B(x))

• Frege would have written

CMSC 421: Chapter 9 4

Universal instantiation (UI)

♦ Every instantiation of a universally quantified sentence is entailed by it

♦ For every variable v and ground term g, if θ is the substitution {v = g}
then

∀ v α

α θ

♦ E.g., ∀x King(x) ∧Greedy(x) ⇒ Evil(x)

• King(John) ∧Greedy(John) ⇒ Evil(John)

• King(Richard) ∧Greedy(Richard) ⇒ Evil(Richard)

• King(father (John))∧Greedy(father (John)) ⇒ Evil(father (John))

. . .

CMSC 421: Chapter 9 5

Existential instantiation (EI)

♦ For any sentence α, variable v, and constant symbol k that doesn’t
appear elsewhere in the knowledge base, if θ = {v = k} then

∃ v α

α θ

♦ E.g., from ∃x Crown(x) ∧OnHead(x, John) we can infer

Crown(C1) ∧OnHead(C1, John)

where C1 is a new constant symbol (doesn’t already appear somewhere)

♦ In words:

• If there is a crown on John’s head, then we can call the crown C1

♦ C1 is called a Skolem constant

CMSC 421: Chapter 9 6

Existential instantiation, continued

♦ UI can be applied several times to add new sentences

• the new KB is logically equivalent to the old

♦ EI can be applied once to replace the existential sentence

• the new KB is not equivalent to the old,
but is satisfiable iff the old KB was satisfiable

♦ Mathematicians use these techniques informally every day

♦ Example: proofs involving limits

• Suppose limx→5 f (x) = 2. Then
∀ ε > 0 ∃ δ > 0 ∀x |x− 5| < δ ⇒ |f (x)− 2| < ε.

• Let ε be any number > 0. Then
∃ δ > 0 ∀x |x− 5| < δ ⇒ |f (x)− 2| < ε.

• Let δ1 > 0 be such that ∀x |x− 5| < δ, |f (x)− 2| < ε.

• Let x be any number such that |x− 5| < δ1. Then |f (x)− 2| < ε.

• . . .

CMSC 421: Chapter 9 7

Reduction to propositional inference

♦ Suppose the KB contains just the following:

∀x King(x) ∧Greedy(x) ⇒ Evil(x)
King(John)
Greedy(John)
Brother (Richard , John)

♦ New KB: instantiate the universal sentence in all possible ways:

King(John) ∧Greedy(John) ⇒ Evil(John)
King(Richard) ∧Greedy(Richard) ⇒ Evil(Richard)
King(John)
Greedy(John)
Brother (Richard , John)

♦ The new KB is propositionalized: proposition symbols are

King(John), Greedy(John), Evil(John),King(Richard) etc.

♦ The new KB preserves entailment of all ground sentences

• A ground sentence is entailed by new KB iff entailed by original KB

CMSC 421: Chapter 9 8

Reduction to propositional inference (continued)

♦ Every FOL KB can be propositionalized so as to preserve entailment of all
ground sentences

• Propositionalize KB and query, apply resolution, return result

♦ Problem 1: propositionalization can create lots of irrelevant sentences.

• E.g., suppose a KB contains

∀x King(x) ∧Greedy(x) ⇒ Evil(x)
King(John)
∀ y Greedy(y)
Brother (Richard , John)
Daughter (John, Joanna)

♦ To prove Evil(John), use propositionalization to get Greedy(John)

• But we also get Greedy(Richard) and Greedy(Joanna)

♦ With p k-ary predicates and n constants, there are p · nk instantiations

CMSC 421: Chapter 9 9

Reduction to propositional inference (continued)

♦ Problem 2: with function symbols, propositionalization can create
infinitely many sentences!

• Greedy(John)

• Greedy(father (John))

• Greedy(father (father (John)))

• · · ·
Theorem: Herbrand (1930). If a sentence α is entailed by an FOL KB,
then it is entailed by a finite subset of the propositionalized KB

♦ Basic idea: For n = 0 to ∞ do

• create a propositional KB by instantiating with all terms of depth ≤ n

� (e.g., up to n nested occurrences of Father)

• see if α is entailed by this KB

♦ Problem: works if α is entailed, goes forever if α is not entailed

Theorem: Turing (1936), Church (1936), entailment in FOL is semidecidable

CMSC 421: Chapter 9 10

Unification

∀x King(x) ∧Greedy(x) ⇒ Evil(x)
King(John)
∀ y Greedy(y)
Brother (Richard , John)
Daughter (John, Joanna)

♦ We can infer Evil(John) immediately if we can find a substitution θ
such that King(x) and Greedy(x) match King(John) and Greedy(y)

• e.g., θ = {x = John, y = John}

♦ Such a substitution is called a unifier

CMSC 421: Chapter 9 11

Unification

♦ A unifier for α and β is a substitution θ such that αθ and βθ are
syntactically identical

• α and β are unifiable if such a θ exists

♦ What is the unifier (if there is one) for each of the following?

p q θ
Knows(John, x) Knows(John, Jane)
Knows(John, x) Knows(y, Joanna)
Knows(John, x) Knows(y,mother (y))
Knows(John, x) Knows(x, Joanna)
Knows(John, x) Knows(x17, Joanna)
Knows(x, x) Knows(z,mother (z))

CMSC 421: Chapter 9 12

Unification

♦ A unifier for α and β is a substitution θ such that αθ and βθ are
syntactically identical

• α and β are unifiable if such a θ exists

♦ What is the unifier (if there is one) for each of the following?

p q θ
Knows(John, x) Knows(John, Jane) {x = Jane}
Knows(John, x) Knows(y, Joanna)
Knows(John, x) Knows(y,mother (y))
Knows(John, x) Knows(x, Joanna)
Knows(John, x) Knows(x17, Joanna)
Knows(x, x) Knows(z,mother (z))

CMSC 421: Chapter 9 13

Unification

♦ A unifier for α and β is a substitution θ such that αθ and βθ are
syntactically identical

• α and β are unifiable if such a θ exists

♦ What is the unifier (if there is one) for each of the following?

p q θ
Knows(John, x) Knows(John, Jane) {x = Jane}
Knows(John, x) Knows(y, Joanna) {x = Joanna, y = John}
Knows(John, x) Knows(y,mother (y))
Knows(John, x) Knows(x, Joanna)
Knows(John, x) Knows(x17, Joanna)
Knows(x, x) Knows(z,mother (z))

CMSC 421: Chapter 9 14

Unification

♦ A unifier for α and β is a substitution θ such that αθ and βθ are
syntactically identical

• α and β are unifiable if such a θ exists

♦ What is the unifier (if there is one) for each of the following?

p q θ
Knows(John, x) Knows(John, Jane) {x = Jane}
Knows(John, x) Knows(y, Joanna) {x = Joanna, y = John}
Knows(John, x) Knows(y,mother (y)) {y = John, x = mother (John)}
Knows(John, x) Knows(x, Joanna)
Knows(John, x) Knows(x17, Joanna)
Knows(x, x) Knows(z,mother (z))

CMSC 421: Chapter 9 15

Unification

♦ A unifier for α and β is a substitution θ such that αθ and βθ are
syntactically identical

• α and β are unifiable if such a θ exists

♦ What is the unifier (if there is one) for each of the following?

p q θ
Knows(John, x) Knows(John, Jane) {x = Jane}
Knows(John, x) Knows(y, Joanna) {x = Joanna, y = John}
Knows(John, x) Knows(y,mother (y)) {y = John, x = mother (John)}
Knows(John, x) Knows(x, Joanna) fail
Knows(John, x) Knows(x17, Joanna)
Knows(x, x) Knows(z,mother (z))

CMSC 421: Chapter 9 16

Unification

♦ A unifier for α and β is a substitution θ such that αθ and βθ are
syntactically identical

• α and β are unifiable if such a θ exists

♦ What is the unifier (if there is one) for each of the following?

p q θ
Knows(John, x) Knows(John, Jane) {x = Jane}
Knows(John, x) Knows(y, Joanna) {x = Joanna, y = John}
Knows(John, x) Knows(y,mother (y)) {y = John, x = mother (John)}
Knows(John, x) Knows(x, Joanna) fail
Knows(John, x) Knows(x17, Joanna) {x17 = John, x = Joanna}
Knows(x, x) Knows(z,mother (z))

♦ Standardizing apart eliminates overlap of variables, e.g., Knows(x17, Joanna)

CMSC 421: Chapter 9 17

Unification

♦ A unifier for α and β is a substitution θ such that αθ and βθ are
syntactically identical

• α and β are unifiable if such a θ exists

♦ What is the unifier (if there is one) for each of the following?

p q θ
Knows(John, x) Knows(John, Jane) {x = Jane}
Knows(John, x) Knows(y, Joanna) {x = Joanna, y = John}
Knows(John, x) Knows(y,mother (y)) {y = John, x = mother (John)}
Knows(John, x) Knows(x, Joanna) fail
Knows(John, x) Knows(x17, Joanna) {x17 = John, x = Joanna}
Knows(x, x) Knows(z,mother (z)) fail

♦ Standardizing apart eliminates overlap of variables, e.g., Knows(x17, Joanna)

♦ Can’t unify a variable with a term that contains the variable

CMSC 421: Chapter 9 18

Unification (continued)

♦ A most general unifier (mgu) for α and β is a substitution θ such that

• θ is a unifier for α and β, and

• for every unifier θ′ of α and β and for every expression e,
eθ′ is a substitution instance of eθ

♦ E.g., let α = Knows(w, father (x)) and β = Knows(mother (y), y)

• θ1 = {w = mother (father (x))), y = father (x)} is an mgu

• θ2 = {w = mother (father (v))), y = father (v), x = v} is an mgu

• θ3 = {w = mother (father (John)), y = father (John)} is a unifier,
but it is not an mgu

♦ If θ and θ′ are mgus for α and β, then they are identical except for renaming
of variables

CMSC 421: Chapter 9 19

Algorithm to find an mgu

♦ Compare the expressions element by element, building up a substitution
along the way

• I’ll give the basic idea; the book gives additional details

♦ For each pair of corresponding elements:

• Apply the substitution we’ve built so far

• If the two elements are the same after substituting, then continue

• Else if one of them is a variable x and the other is an expression e,
and if x doesn’t appear anywhere in e (the occur check)

� then incorporate x = e into the substitution

• Else FAIL

Knows (John , mother (z))
l l l l l l l l

Knows (y , mother (sister(y)))
y=John z=sister (John)

♦ Runs in quadratic time (would be linear time if we left out the occur check)

CMSC 421: Chapter 9 20

Generalized Modus Ponens (GMP)

♦ Inference rule:

p′1, p′2, . . . , p′n, (p1 ∧ p2 ∧ . . . ∧ pn ⇒ q)

qθ
where

� θ is a substitution such that p′iθ= piθ for all i

� all variables are assumed to be universally quantified.

♦ Example:

King(John), Greedy(y), King(x) ∧Greedy(x)⇒ Evil(x)

Evil(John)

� θ = {x = John, y = John}
� qθ = Evil(x)θ = Evil(John)

♦ Equivalent formulation using definite clauses (exactly one positive literal)

p′1, p′2, . . . , p′n, (¬p1 ∨ ¬p2 ∨ . . . ∨ ¬pn ∨ q)
qθ

CMSC 421: Chapter 9 21

Soundness of GMP

Theorem. If θ is a substitution that unifies p′i with pi for all i, then

p′1, . . . , p
′
n, (p1 ∧ . . . ∧ pn ⇒ q) |= qθ

Proof.

♦ Suppose p′1, . . . , p
′
n, and (p1 ∧ . . . ∧ pn ⇒ q) are true.

♦ Let θ be as above. Then by applying θ, we get

• p′1θ, . . . , p
′
nθ, and (p1θ ∧ . . . ∧ pnθ ⇒ qθ)

♦ For all i, p′iθ and piθ are the same expression, so we have

• p1θ, . . . , pnθ, and (p1θ ∧ . . . ∧ pnθ ⇒ qθ)

♦ From ordinary Modus Ponens, we get qθ

CMSC 421: Chapter 9 22

Example knowledge base

♦ The law says it is a crime for an American to sell weapons to hostile
nations. The country Nono, an enemy of America, has some missiles.
All of its missiles were sold to it by Colonel West, who is American.

♦ Prove that Col. West is a criminal

CMSC 421: Chapter 9 23

Example knowledge base

♦ The law says it is a crime for an American to sell weapons to hostile
nations. The country Nono, an enemy of America, has some missiles.
All of its missiles were sold to it by Colonel West, who is American.

♦ Prove that Col. West is a criminal

♦ Need two more inference rules:

• Missiles are weapons.

• An enemy of America is a “hostile nation”

CMSC 421: Chapter 9 24

Example knowledge base

♦ The law says it is a crime for an American to sell weapons to hostile
nations. The country Nono, an enemy of America, has some missiles.
All of its missiles were sold to it by Colonel West, who is American.

♦ Prove that Col. West is a criminal

♦ Need two more inference rules:

• Missiles are weapons.

• An enemy of America is a “hostile nation”

♦ What would be the problem with an axiom like this?

• ∀x LawSays(x) ⇒ x

CMSC 421: Chapter 9 25

Example knowledge base, continued

♦ It is a crime for an American to sell weapons to hostile nations.
∀x, y, z American(x)∧Weapon(y)∧Sells(x, y, z)∧Hostile(z)⇒ Criminal(x)

♦ The country Nono, an enemy of America, has some missiles.

• Enemy(Nono,America)

• ∃x Owns(Nono, x)∧Missile(x) correct translation of “some”?

� Owns(Nono,M1) and Missile(M1)

♦ All of its missiles were sold to it by Colonel West, who is American.

• ∀x Missile(x) ∧Owns(Nono, x) ⇒ Sells(West, x,Nono)

• American(West)

♦ Missiles are weapons.

• ∀x Missile(x)⇒ Weapon(x)

♦ An enemy of America is a “hostile nation”

• ∀x Enemy(x,America) ⇒ Hostile(x)

CMSC 421: Chapter 9 26

Forward chaining algorithm

♦ Like propositional forward-chaining, with these modifications:

• To make the inferences go through, must find unifiers

• To find unifiers, must standardize the variables

function FOL-FC-Ask(KB,α)

repeat until new is empty

new ← {}
for each rule r in KB do

(p1 ∧ . . . ∧ pn ⇒ q) ← Standardize-Variables(r)

for each set of statements p ′1 , . . . , p
′
n in KB that unify with p1 , . . . , pn

θ ← the mgu

q ′ ← qθ

if q ′ is not a renaming of a sentence already in KB or new then

add q ′ to new

if q′ is unifiable with α then return the unified expression

add new to KB

return false

CMSC 421: Chapter 9 27

Forward chaining proof

Enemy(Nono,America)Owns(Nono,M1)Missile(M1)American(West)

American(x) ∧Weapon(y) ∧ Sells(x, y, z) ∧Hostile(z) ⇒ Criminal(x)

Missile(x) ∧Owns(Nono, x) ⇒ Sells(West, x,Nono)

Missile(x)⇒ Weapon(x)

Enemy(x,America) ⇒ Hostile(x)

CMSC 421: Chapter 9 28

Forward chaining proof

Hostile(Nono)

Enemy(Nono,America)Owns(Nono,M1)Missile(M1)American(West)

Weapon(M1) Sells(West,M1,Nono)

American(x) ∧Weapon(y) ∧ Sells(x, y, z) ∧Hostile(z) ⇒ Criminal(x)

∀x Missile(x) ∧Owns(Nono, x) ⇒ Sells(West, x,Nono)

Missile(x)⇒ Weapon(x)

Enemy(x,America) ⇒ Hostile(x)

CMSC 421: Chapter 9 29

Forward chaining proof

Hostile(Nono)

Enemy(Nono,America)Owns(Nono,M1)Missile(M1)American(West)

Weapon(M1)

Criminal(West)

Sells(West,M1,Nono)

American(x) ∧Weapon(y) ∧ Sells(x, y, z) ∧Hostile(z) ⇒ Criminal(x)

∀x Missile(x) ∧Owns(Nono, x) ⇒ Sells(West, x,Nono)

Missile(x)⇒ Weapon(x)

Enemy(x,America) ⇒ Hostile(x)

CMSC 421: Chapter 9 30

Properties of forward chaining

♦ Sound and complete for first-order Horn clauses

• (proof similar to propositional proof)

♦ If α is not entailed, it might not terminate

• This is unavoidable because entailment is semidecidable
(i.e., equivalent to the halting problem)

♦ Can guarantee termination if restrictions are satisfied

• Datalog = first-order Horn clauses + no functions

� e.g., the Colonel West example

• FC terminates for Datalog in a polynomial number of iterations

� at most p · nk literals

♦ Widely used (with some efficiency improvements) in deductive databases
and expert systems

CMSC 421: Chapter 9 31

Efficiency of forward chaining

♦ Simple observation:

• no need to look at a rule on iteration k
unless iteration k − 1 added at least one of its premises

♦ Only look at a rule if its premise contains a newly added literal

♦ For each such rule r, check whether all of r’s premises are satisfied

• Need to retrieve other premises

� Database indexing allows O(1) retrieval of known facts

� e.g., query Missile(x) retrieves Missile(M1)

• Efficiency problem:

� Many combinations of facts may match some of r’s premises

� NP-hard to find one that matches all of r’s premises

− example on next page

• Partial fix: store partial matches in data structures such as rete networks

CMSC 421: Chapter 9 32

Hard matching example

♦ Can write CSPs as datalog inference problems

Victoria

WA

NT

SA

Q

NSW

V

T

Diff(Red,Blue) Diff(Red,Green)

Diff(Green,Red) Diff(Green,Blue)

Diff(Blue,Red) Diff(Blue,Green)

Diff(wa, nt) ∧ Diff(wa, sa) ∧ Diff(nt, q) ∧
Diff(nt, sa) ∧ Diff(q, nsw) ∧ Diff(q, sa) ∧
Diff(nsw, v) ∧ Diff(nsw, sa) ∧ Diff(v, sa)

⇒ Colorable()

♦ Don’t need statements like nt = Red ∨ nt = Blue ∨ nt = Green

• Why not?

♦ Colorable() is inferred iff the CSP has a solution

• Need to try many combinations of variable values

♦ CSPs are NP-hard; 3SAT is a special case

CMSC 421: Chapter 9 33

Backward chaining algorithm

function FOL-BC-Ask(KB, θ, [g1, . . . , gk])

inputs: KB, a knowledge base

g1, . . . , gk, goals: each is an atom with θ already applied to it

answers ← {} // a set of substitutions, initially empty

if k = 0 (i.e., no goals) then return {θ}
for each sentence r in KB

let (p1 ∧ . . . ∧ pn ⇒ q) be a standardization of r

if g1 and q are unifiable

θ′ ← the mgu

answers← answers ∪ FOL-BC-Ask(KB, θθ′, [p2θ
′, . . . , pnθ

′, g1θ
′, . . . , gkθ

′])

return answers

♦ What is θθ′ ?

CMSC 421: Chapter 9 34

Backward chaining example

Criminal(West)

American(x) ∧Weapon(y) ∧ Sells(x, y, z) ∧Hostile(z) ⇒ Criminal(x)

Missile(x) ∧Owns(Nono, x) ⇒ Sells(West, x,Nono)

Owns(Nono,M1) Missile(M1)

Missile(x)⇒ Weapon(x) Enemy(x,America) ⇒ Hostile(x)

American(West) Enemy(Nono,America)

CMSC 421: Chapter 9 35

Backward chaining example

American(x) ∧Weapon(y) ∧ Sells(x, y, z) ∧Hostile(z) ⇒ Criminal(x)

Missile(x) ∧Owns(Nono, x) ⇒ Sells(West, x,Nono)

Owns(Nono,M1) Missile(M1)

Missile(x)⇒ Weapon(x) Enemy(x,America) ⇒ Hostile(x)

American(West) Enemy(Nono,America)

CMSC 421: Chapter 9 36

Backward chaining example

American(x) ∧Weapon(y) ∧ Sells(x, y, z) ∧Hostile(z) ⇒ Criminal(x)

Missile(x) ∧Owns(Nono, x) ⇒ Sells(West, x,Nono)

Owns(Nono,M1) Missile(M1)

Missile(x)⇒ Weapon(x) Enemy(x,America) ⇒ Hostile(x)

American(West) Enemy(Nono,America)

CMSC 421: Chapter 9 37

Backward chaining example

American(x) ∧Weapon(y) ∧ Sells(x, y, z) ∧Hostile(z) ⇒ Criminal(x)

Missile(x) ∧Owns(Nono, x) ⇒ Sells(West, x,Nono)

Owns(Nono,M1) Missile(M1)

Missile(x)⇒ Weapon(x) Enemy(x,America) ⇒ Hostile(x)

American(West) Enemy(Nono,America)

CMSC 421: Chapter 9 38

Backward chaining example

American(x) ∧Weapon(y) ∧ Sells(x, y, z) ∧Hostile(z) ⇒ Criminal(x)

Missile(x) ∧Owns(Nono, x) ⇒ Sells(West, x,Nono)

Owns(Nono,M1) Missile(M1)

Missile(x)⇒ Weapon(x) Enemy(x,America) ⇒ Hostile(x)

American(West) Enemy(Nono,America)

CMSC 421: Chapter 9 39

Backward chaining example

American(x) ∧Weapon(y) ∧ Sells(x, y, z) ∧Hostile(z) ⇒ Criminal(x)

Missile(x) ∧Owns(Nono, x) ⇒ Sells(West, x,Nono)

Owns(Nono,M1) Missile(M1)

Missile(x)⇒ Weapon(x) Enemy(x,America) ⇒ Hostile(x)

American(West) Enemy(Nono,America)

CMSC 421: Chapter 9 40

Backward chaining example

American(x) ∧Weapon(y) ∧ Sells(x, y, z) ∧Hostile(z) ⇒ Criminal(x)

Missile(x) ∧Owns(Nono, x) ⇒ Sells(West, x,Nono)

Owns(Nono,M1) Missile(M1)

Missile(x)⇒ Weapon(x) Enemy(x,America) ⇒ Hostile(x)

American(West) Enemy(Nono,America)

CMSC 421: Chapter 9 41

Properties of backward chaining

♦ Depth-first recursive proof search: space is linear in size of proof

♦ Incomplete due to infinite loops

• Partial fix: check current goal against every goal on stack

• This prevents looping here:

� P (x) ⇒ P (x)

• But it doesn’t prevent looping here:

� Q(f (x)) ⇒ Q(x)

♦ Inefficient due to repeated subgoals (both success and failure)

• Fix using caching of previous results (extra space!)

♦ Widely used (without the above improvements!) for logic programming

♦ In the 1980s, an entire operating system was built around it

• Japan’s fifth generation computer systems project

CMSC 421: Chapter 9 42

Prolog

♦ Basis: backward chaining with Horn clauses

• plus extras (e.g., built-in “predicates” for arithmetic, printing, etc.)

♦ Program = set of clauses having the following forms:

� head :- literal1, . . . literaln.

� head.

• Example

criminal(X) :- american(X), weapon(Y), sells(X,Y,Z), hostile(Z).

♦ Capitalization is the opposite of what we were doing earlier

• Capitalized words (e.g., X) are variables

• lower-case words (e.g., nono) are constants

♦ Depth-first, left-to-right backward chaining

♦ Compilation techniques ⇒ approaching a billion LIPS

• Efficient unification by open coding (generate unification code inline)

• Efficient retrieval of matching clauses by direct linking

CMSC 421: Chapter 9 43

Example

American(x) ∧Weapon(y) ∧ Sells(x, y, z) ∧Hostile(z) ⇒ Criminal(x)

Missile(x) ∧Owns(Nono, x) ⇒ Sells(West, x,Nono)

Owns(Nono,M1) Missile(M1)

Missile(x)⇒ Weapon(x) Enemy(x,America) ⇒ Hostile(x)

American(West) Enemy(Nono,America)

criminal(X) :- american(X), weapon(Y), sells(X,Y,Z), hostile(Z).

sells(west,X,nono) :- missile(X), owns(nono,X).

missile(m1).

owns(nono,m1).

weapon(X) :- missile(X)

hostile(X) :- enemy(X,america).

american(west).

enemy(nono,america).

♦ Goal: :- criminal(West)

• generates the same search tree as before

• Answer: yes

CMSC 421: Chapter 9 44

Depth-first search in Prolog

♦ Depth-first search from a start state X:

dfs(X) :- goal(X).

dfs(X) :- successor(X,S),dfs(S).

♦ Somewhat like the following procedure:

procedure dfs(X):
if there is an mgu θ such that goal(Xθ) is true:

return θ
else

for every mgu θ such that successor(Xθ,Sθ) is true:
if there is an mgu θ′ such that dfs(Sθθ′) is true:

return θθ′

♦ But there’s automatic backtracking:

• Suppose we have this clause: foo(X,Y) :- dfs(X), bar(X,Y).

• If dfs(X) succeeds and bar(X,Y) fails, Prolog will backtrack
to the for loop and continue it where it left off, to look for another X

CMSC 421: Chapter 9 45

Appending linked lists

♦ Procedure for concatenating two linked lists:

procedure append(U,V):
If U is empty, then return V
else

Head = first element of U ; Tail = the other elements of U
Z = append(Tail,V)
return the result of pushing Head onto the front of Z

♦ Prolog notation: [1,2,3] is a linked list whose elements are 1, 2, and 3

• [Head|Tail] = list with 1st element Head, rest of list is Tail

� e.g., if L = [2,3,4,5], then [1|L] = [1,2,3,4,5]

• [] is the empty list, so [Head|[]] = [Head]

♦ Prolog code to concatenate two linked lists

• More general than the pseudocode above

append([],V,V).

append([Head|Tail],V,[Head|Z]) :- append(Tail,V,Z).

CMSC 421: Chapter 9 46

Appending linked lists in Prolog

♦ Same Prolog code as on the previous slide:

append([],V,V).

append([Head|Tail],V,[Head|Z]) :- append(Tail,V,Z).

♦ Given a goal :- append(A1,A2,A3)

if append(A1,A2,A3) unifies with append([],V,V), return the mgu
if append(A1,A2,A3) unifies with append([Head|Tail],V,[Head|Z]):

let θ be the mgu
if there is a θ′ such that append(Tail,V,Z)θθ′ is true, return θθ′

return failure

♦ Goal: :- append([1,2],[3,4],L)

• Answer: L=[1,2,3,4]

♦ Goal: :- append(A,B,[1,2])

• Answers:

A=[], B=[1,2]

A=[1], B=[2]

A=[1,2], B=[]

CMSC 421: Chapter 9 47

Negation in Prolog

♦ We might want to make inferences such as ¬Dead(x)⇒ Alive(x)

• Not a Horn clause; the antecedent contains a negation

♦ Kludge: use “negation as failure”

♦ Example:

• alive(X) :- not dead(X).

• :- alive(joe)

• Prolog tries to answer :- dead(joe)

� If it succeeds, then it returns no for alive(joe)

� Else it returns yes for alive(joe)

♦ Answer isn’t necessarily correct:

• will always return yes or no, even if there’s no evidence either way

♦ Quantification problem:

• :- alive(Z) ought to mean “is there someone who’s alive?”,
but it ends up meaning “is everyone alive”?

CMSC 421: Chapter 9 48

Arithmetic in Prolog

♦ Consider the following statements:

Y = 4.

Z = 2.

X = (Y + Z)/2.

♦ We’d like to infer X = 3.

♦ Don’t want to have to write axioms for how to evaluate every possible
numeric expression

♦ Kludge: built-in binary predicate called is

• Written using infix notation, like this: X is (Y + Z)/2.

� Not like this: is(X,(Y + Z)/2).

• Prolog computes the value of the expression on the right-hand side

♦ Only works if the right-hand side of the formula is completely instantiated

CMSC 421: Chapter 9 49

Resolution in FOL

`1 ∨ · · · ∨ `i ∨ · · · `k, m1 ∨ · · · ∨mj ∨ · · ·mn

(`1 ∨ · · · ∨ `i−1 ∨ `i+1 ∨ · · · ∨ `k ∨m1 ∨ · · · ∨mj−1 ∨mj+1 ∨ · · · ∨mn)θ

• where θ is any substitution that unifies `i and ¬mj

♦ Example: ∀x Rich(x)⇒ Unhappy(x)

¬Rich(x) ∨ Unhappy(x), Rich(Ken)

Unhappy(Ken)

• with θ = {x = Ken}

♦ To prove that KB |= α

• convert KB ∧ ¬α to CNF

• use resolution try to reach a contradiction

♦ This is a complete proof procedure for FOL

• If there’s a substitution θ such that KB |= θα, then it will find θ

• If there’s no such θ, then the procedure won’t necessarily terminate

CMSC 421: Chapter 9 50

Conversion to CNF

♦ Everyone who loves all animals is loved by someone:

∀x [∀ y Animal(y) ⇒ Loves(x, y)] ⇒ [∃ y Loves(y, x)]

1. Eliminate biconditionals and implications

∀x [¬∀ y ¬Animal(y) ∨ Loves(x, y)] ∨ [∃ y Loves(y, x)]

2. Move ¬ inwards: ¬∀x, p ≡ ∃x ¬p, ¬∃x, p ≡ ∀x ¬p:

∀x [∃ y ¬(¬Animal(y) ∨ Loves(x, y))] ∨ [∃ y Loves(y, x)]
∀x [∃ y ¬¬Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ y Loves(y, x)]
∀x [∃ y Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ y Loves(y, x)]

CMSC 421: Chapter 9 51

Conversion to CNF, continued

3. Standardize variables: each quantifier should use a different one

∀x [∃ y Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ z Loves(z, x)]

4. Skolemize: a more general form of existential instantiation.

� Each existential variable is replaced by a Skolem function
of the enclosing universally quantified variables:

∀x [Animal(F (x)) ∧ ¬Loves(x, F (x))] ∨ Loves(G(x), x)

5. Drop universal quantifiers:

[Animal(F (x)) ∧ ¬Loves(x, F (x))] ∨ Loves(G(x), x)

6. Distribute ∧ over ∨:

[Animal(F (x)) ∨ Loves(G(x), x)] ∧ [¬Loves(x, F (x)) ∨ Loves(G(x), x)]

CMSC 421: Chapter 9 52

Example

♦ Original clauses:
∀x American(x) ∧Weapon(y) ∧ Sells(x, y, z) ∧Hostile(z) ⇒ Criminal(x)

∀x Missile(x) ∧Owns(Nono, x) ⇒ Sells(West, x,Nono)

Owns(Nono,M1)

Missile(M1)

∀x Missile(x)⇒ Weapon(x)

∀x Enemy(x,America) ⇒ Hostile(x)

American(West)

Enemy(Nono,America)

♦ CNF:
¬American(x) ∨ ¬Weapon(y) ∨ ¬Sells(x, y, z) ∨ ¬Hostile(z) ∨ Criminal(x)

¬Missile(x) ∨ ¬Owns(Nono, x) ∨ Sells(West, x,Nono)

Owns(Nono,M1)

Missile(M1)

¬Missile(x) ∨Weapon(x)

¬Enemy(x,America) ∨Hostile(x)

American(West)

Enemy(Nono,America)

CMSC 421: Chapter 9 53

Resolution proof

American(West)

Missile(M1)

Missile(M1)

Owns(Nono,M1)

Enemy(Nono,America) Enemy(Nono,America)

Criminal(x)Hostile(z)LSells(x,y,z)LWeapon(y)LAmerican(x)L > > > >

Weapon(x)Missile(x)L >

Sells(West,x,Nono)Missile(x)L Owns(Nono,x)L> >

Hostile(x)Enemy(x,America)L >

Sells(West,y,z)LWeapon(y)LAmerican(West)L > > Hostile(z)L>

Sells(West,y,z)LWeapon(y)L > Hostile(z)L>

Sells(West,y,z)L> Hostile(z)L>L Missile(y)

Hostile(z)L>L Sells(West,M1,z)

> > L Hostile(Nono)L Owns(Nono,M1)L Missile(M1)

> L Hostile(Nono)L Owns(Nono,M1)

L Hostile(Nono)

Criminal(West)L

¬

♦ This figure omits all resolvents except the ones in the proof

CMSC 421: Chapter 9 54

Compare with the backward chaining example

♦ Does similar things, in a similar order

American(x) ∧Weapon(y) ∧ Sells(x, y, z) ∧Hostile(z) ⇒ Criminal(x)

∀x Missile(x) ∧Owns(Nono, x) ⇒ Sells(West, x,Nono)

Owns(Nono,M1) Missile(M1)

Missile(x)⇒ Weapon(x) Enemy(x,America) ⇒ Hostile(x)

American(West) Enemy(Nono,America)

CMSC 421: Chapter 9 55

Homework 5

♦ Five problems: 7.12, 8.9, 9.4, 9.12, 9.23

• 10 points each, 50 points total

• Due Nov. 15 20

CMSC 421: Chapter 9 56

