
CMSC 41: Chapter 10 1

Chapter 10: Classical Planning

Dana S. Nau

CMSC 421, Fall 2012

CMSC 41: Chapter 10 2

Motivation
  How to generate plans of action?
  Chapter 3: search algorithms

  Domain-independent algorithms: work in many different problem domains
  No standard representation for states of the world; needs domain-specific

heuristics
  Chapter 7: logical agent for the wumpus world

  Can develop domain-independent heuristics for manipulating logical
formulas

  Huge number of logical rules; can take forever to evaluate them if there are
many actions and states

  Chapter 10: classical planning:
  Standard representation of states and actions
  Domain-independent algorithms and heuristics

CMSC 41: Chapter 10 3

Example: The Blocks World
  Infinitely wide table, finite number of children's blocks
  A robot hand that can pick up blocks and put them down
  A block can sit on the table or on another block
  Ignore where the blocks are located on the table
  Just consider

  whether each block is on the table, on another block, or being held
  whether each block is clear or covered by another block
  whether the robot hand is holding anything

  Example state of the world:

  Sounds trivial, but the search
space can be very large
  For n blocks, more than n! states

c"
a" b" e"

d"

CMSC 41: Chapter 10 4

Symbols
  Start with a first-order language

»  Language of first-order logic
  Restrict it to be function-free

»  Finitely many predicate symbols and constant symbols,
»  Unlimited (potentially infinite) set of variable symbols
»  No function symbols

  Add a finite set of operator names
  I'll discuss those later c"

a" b" e"

d"

CMSC 41: Chapter 10 5

Symbols for the Blocks World
  Constant symbols:

  The blocks: a, b, c, d, e
  Predicates:

  ontable(x) - block x is on the table
  on(x,y) - block x is on block y
  clear(x) - block x has nothing on it
  holding(x) - the robot hand is holding block x
  handempty - the robot hand isn't holding anything

  Some terminology
  Atom: predicate symbol and args
  Ground expression: contains no variable symbols - e.g., on(c,a)
  Unground expression: at least one variable symbol - e.g., on(c,x)

c
a b e

d

CMSC 41: Chapter 10 6

States
  State: a set s of ground atoms representing what's currently true

  Example:
{ontable(a), on(c,a), clear(c),
 ontable(b), clear(b), holding(d),
 ontable(e), clear(e)}

  Number of possible states is finite
  Suppose there are c constant symbols
  p predicate symbols, each with k args
  Then:

»  Number of possible ground atoms is pck

»  Number of possible states is

c"
a" b" e"

d"

2pck

CMSC 41: Chapter 10 7

Classical Operators
  Operator: a triple (head, preconditions, effects)

  head: an operator name and a parameter list
»  E.g., opname(x1, …, xk)
»  No two operators can have the same name
»  Parameter list must include all of the operator's variables

  preconditions: literals that must be true to use the operator
  effects: literals that the operator will make true

  We'll generally write operators in the following form:

  opname(x1, …, xk)
»  Precond: p1, p2, …, pm
»  Effects: e1, e2, …, en

CMSC 41: Chapter 10 8

unstack(x,y)
 Precond: on(x,y), clear(x), handempty
 Effects: ¬on(x,y), ¬clear(x), ¬handempty,

 holding(x), clear(y)

stack(x,y)
 Precond: holding(x), clear(y)
 Effects: ¬holding(x), ¬clear(y),

 on(x,y), clear(x), handempty

pickup(x)
 Precond: ontable(x), clear(x), handempty
 Effects: ¬ontable(x), ¬clear(x),

 ¬handempty, holding(x)

putdown(x)
 Precond: holding(x)
 Effects: ¬holding(x), ontable(x),

 clear(x), handempty

Blocks-World Operators c

a b

c
a b

c

a
b

c

a b

unstack(c,a) stack(c,a)

putdown(b) pickup(b)

d

e

d

e

d

e

d

e

CMSC 41: Chapter 10 9

Actions and Plans
  Action: a ground instance (via substitution) of an operator

unstack(c,a)
 Precond: on(c,a), clear(c), handempty
 Effects: ¬on(c,a), ¬clear(c), ¬handempty,

 holding(c), clear(a)

c"
a" b"

c"
a" b"

unstack(x,y)
 Precond: on(x,y), clear(x), handempty
 Effects: ¬on(x,y), ¬clear(x), ¬handempty,

 holding(x), clear(y)

CMSC 41: Chapter 10 10

Notation
  Let S be a set of literals. Then

  S+ = {atoms that appear positively in S}
  S– = {atoms that appear negatively in S}

  Let a be an operator or action. Then
  precond+

 (a) = {atoms that appear positively in precond(a)}
  precond–

 (a) = {atoms that appear negatively in precond(a)}
  effects+

 (a) = {atoms that appear positively in effects(a)}
  effects–

 (a) = {atoms that appear negatively in effects(a)}

  Example:

  effects+
 (unstack(x,y)) = {holding(x), clear(y)}

  effects–
 (unstack(x,y)) = {on(x,y), clear(x), handempty}

unstack(x,y)
 Precond: on(x,y), clear(x), handempty
 Effects: ¬on(x,y), ¬clear(x), ¬handempty,

 holding(x), clear(y)

CMSC 41: Chapter 10 11

Executability
  An action a is executable in s if s satisfies precond(a),

  i.e., if precond+
 (a) ⊆ s and precond–

 (a) ∩ s = ∅
  An operator o is applicable to s if there is a

ground instance a of o that is executable in s
  Example:

  {ontable(a), on(c,a), clear(c), ontable(b), handempty}

unstack(c,a)
 Precond: on(c,a), clear(c), handempty
 Effects: ¬on(c,a), ¬clear(c), ¬handempty,

 holding(c), clear(a)

unstack(x,y)
 Precond: on(x,y), clear(x), handempty
 Effects: ¬on(x,y), ¬clear(x), ¬handempty,

 holding(x), clear(y)

c"
a" b"

CMSC 41: Chapter 10 12

Performing an Action
  If a is executable in s, the result of performing it is

 γ(s,a) = (s – effects–(a)) ∪ effects+(a)
  Delete the negative effects, and add the positive ones

  Example:
s = {ontable(a), on(c,a), clear(c), ontable(b), handempty}
a = unstack(c,a)

  γ(s,a) = {ontable(a), on(c,a), clear(c), ontable(b),
 clear(b), handempty, holding(c), clear(a)}
  The book calls this Result(s,a)

unstack(c,a)
 Precond: on(c,a), clear(c), handempty
 Effects: ¬on(c,a), ¬clear(c), ¬handempty,

 holding(c), clear(a)

c"
a" b"

c"
a" b"

CMSC 41: Chapter 10 13

Executability of Plans
  Plan: a sequence of actions π = (a1, …, an)
  A plan π = (a1, …, an) is executable in the state s0 if

» a1 is executable in s0, producing some state s1 = γ (s0,a1)
» a2 is executable in s1, producing some state s2 = γ (s1,a2)

» …
» an is executable in sn–1, producing some state sn= γ (sn–1,an)

  In this case, we define γ (s0,π) = sn
  Example on next slide

c"
a" b"

CMSC 41: Chapter 10 14

s3

s2

s1

s0
c"
a" b"

c"

a" b"

a" b"

c"a"
b"

s4
b"
a" c"

c"

unstack(c,a)
 Precond: on(c,a), clear(c), handempty
 Effects: ¬on(c,a), ¬clear(c), ¬handempty,

 holding(c), clear(a)

stack(b,a)
 Precond: holding(b), clear(a)
 Effects: ¬holding(b), ¬clear(a), on(b,a),

 clear(b), handempty

pickup(b)
 Precond: ontable(b), clear(b), handempty
 Effects: ¬ontable(b), ¬clear(b),

 ¬handempty, holding(b)

putdown(c)
 Precond: holding(c)
 Effects: ¬holding(c), ontable(c), clear(c),

 handempty

s = {ontable(a), on(c,a), clear(c), ontable(b),clear(b),
 handempty}
π = (unstack(c,a), putdown(c), pickup(b), stack(b,a))

CMSC 41: Chapter 10 15

Problems and Solutions
  Planning problem: a triple P = (O, s0, g)

  O is a set of operators
  s0 is the initial state - a set of atoms
  g is the goal formula - a set of literals

  Every state that satisfies g is a goal state

  A plan π is a solution for P=(O,s0,g) if
  π is executable in s0

  the resulting state γ (s0,π) satisfies g

CMSC 41: Chapter 10 16

Example
  O = {stack(x,y), unstack(x,y), pickup(x), putdown(x)}

  s0 = {ontable(a), on(c,a), clear(c),
 ontable(b), clear(b), handempty}

  g = {on(a,b)}

  One of the solutions is
  π = (unstack(c,a), putdown(c), pickup(a), stack(a,b))

c"
a" b"

a"
b"

CMSC 41: Chapter 10 17

Complexity of Planning

  Given a classical planning problem P, does it have a solution?
  PSPACE-complete (much harder than NP-complete)

  Given a classical planning problem P and an integer k, is there a solution of
length k or less?
  Again PSPACE-complete

  Suppose we add function symbols to the language
  Given a planning problem P, does it have a solution?

  Undecidable
  Given a planning problem P and an integer k, is there a solution of length k or

less?
  Decidable, NEXPTIME-complete

CMSC 41: Chapter 10 18

Forward Search
  Go forward from the initial state

  Breadth-first and best-first
  Sound: if they return a plan,

then the plan is a solution
  Complete: if a problem has a solution, then they will return one
  Usually not practical because they require too much memory

»  Memory requirement is exponential in the length of the solution
  Depth-first search, greedy search

  More practical to use
  Worst-case memory requirement is linear in the length of the solution
  Sound but not complete

  But classical planning has only finitely many states
  Thus, can make depth-first search complete by doing loop-checking

  The book also discusses backward search, but I'll skip it

s0

s1

s2

s3

a1

a2

a3

s4

s5
sg

a4

a5 …

CMSC 41: Chapter 10 19

Reducing Search Space Size
  Suppose there were 450 blocks rather than 5
  Search space size is more than 101000

  Most of the states are completely irrelevant
for whatever goal we might want to achieve

  A search algorithm might waste time trying many of them
  How to reduce the size of the search space?
  One approach:

  First create a relaxed problem
»  Remove some restrictions of the original problem

•  Want the relaxed problem to be easy to solve (polynomial time)
»  The solutions to the relaxed problem will include all solutions to the

original problem
  Then do a modified version of the original search

»  Restrict its search space to include only those actions that occur in
solutions to the relaxed problem

c

a b d

e

CMSC 41: Chapter 10 20

Graphplan
procedure Graphplan:
  for k = 0, 1, 2, …

  Graph expansion:

»  create a “planning graph” that contains k “levels”
  Check whether the planning graph satisfies a necessary

(but insufficient) condition for plan existence

  If it does, then
»  do solution extraction:
•  backward search,

modified to consider
only the actions in
the planning graph

•  if we find a solution,
then return it

possible
literals
in state si

possible
actions
in state si

relaxed
problem

CMSC 41: Chapter 10 21

state-level i

effects
Maintenance action: for the case
where a literal remains unchanged

state-level i-1

state-level 0 (the literals true in s0)

The Planning Graph
  Search space for a relaxed version of the planning problem
  Alternating layers of ground literals and actions

  Nodes at action-level i: actions that might be possible to execute at time i
  Nodes at state-level i: literals that might possibly be true at time i
  Edges: preconditions and effects

action-level i

preconditions

CMSC 41: Chapter 10 22

Example
  Due to Dan Weld (U. of Washington)

  Suppose you want to prepare dinner as a surprise for your sweetheart (who is
asleep)

 s0 = {garbage, cleanHands, quiet}
 g = {dinner, present, ¬garbage}

 Action Preconditions Effects
 cook() cleanHands dinner
 wrap() quiet present
 carry() none ¬garbage, ¬cleanHands
 dolly() none ¬garbage, ¬quiet

Also have the maintenance actions: one for each literal

CMSC 41: Chapter 10 23

Example (continued)
  state-level 0:

{all atoms in s0} U
 {negations of all atoms not in s0}

  action-level 1:
{all actions whose preconditions
 are satisfied and non-mutex in s0}

  state-level 1:
{all effects of all of the
 actions in action-level 1}

Action Preconditions Effects
cook() cleanHands dinner
wrap() quiet present
carry() none ¬garbage, ¬cleanHands
dolly() none ¬garbage, ¬quiet

Also have the maintenance actions ¬dinner

¬present

¬dinner

¬present

state-level 0 state-level 1 action-level 1

CMSC 41: Chapter 10 24

Mutual Exclusion

  Two actions at the same action-level are mutex if
  Inconsistent effects: an effect of one negates an effect of the other
  Interference: one deletes a precondition of the other
  Competing needs: they have mutually exclusive preconditions

  Otherwise they don't interfere with each other
  Both may appear in a solution plan

  Two literals at the same state-level are mutex if
  Inconsistent support: one is the negation of the other,

or all ways of achieving them are pairwise mutex

Recursive
propagation
of mutexes

CMSC 41: Chapter 10 25

Example (continued)

¬dinner

¬present

¬dinner

¬present

state-level 0 state-level 1 action-level 1   Augment the graph to indicate mutexes
  carry is mutex with the maintenance

action for garbage (inconsistent effects)
  dolly is mutex with wrap

  interference
  ~quiet is mutex with present

  inconsistent support
  each of cook and wrap is mutex with

a maintenance operation

Action Preconditions Effects
cook() cleanHands dinner
wrap() quiet present
carry() none ¬garbage, ¬cleanHands
dolly() none ¬garbage, ¬quiet

Also have the maintenance actions

CMSC 41: Chapter 10 26

¬dinner

¬present

¬dinner

¬present

Example (continued)

  Check to see whether there's a possible
solution

  Recall that the goal is
  {¬garbage, dinner, present}

  Note that in state-level 1,
  All of them are there
  None are mutex with each other

  Thus, there's a chance that a plan exists
  Try to find it

  Solution extraction

state-level 0 state-level 1 action-level 1

CMSC 41: Chapter 10 27

Solution Extraction

procedure Solution-extraction(g,j)
if j=0 then return the solution
for each literal l in g

 nondeterministically choose an action
 to use in state s j–1 to achieve l

if any pair of chosen actions are mutex
 then backtrack

g' := {the preconditions of
 the chosen actions}

Solution-extraction(g', j–1)
end Solution-extraction

The level of the state sj
The set of goals we are
trying to achieve

state-
level
i-1

action-
level

i

state-
level

i

A real action or a maintenance action

CMSC 41: Chapter 10 28

Example (continued)

  Two sets of actions for the goals at
state-level 1

  Neither of them works
  Both sets contain actions that are

mutex

¬dinner

¬present

¬dinner

¬present

state-level 0 state-level 1 action-level 1

CMSC 41: Chapter 10 29

Recall what the algorithm does

procedure Graphplan:
  for k = 0, 1, 2, …

  Graph expansion:
»  create a “planning graph” that contains k “levels”

  Check whether the planning graph satisfies a necessary
(but insufficient) condition for plan existence

  If it does, then
»  do solution extraction:
•  backward search,

modified to consider
only the actions in
the planning graph

•  if we find a solution,
then return it

CMSC 41: Chapter 10 30

Example (continued)

  Go back and do
more graph
expansion

  Generate another
action-level
and another state-
level

¬dinner

¬present

¬dinner

¬present

¬dinner

¬present

state-level 0 state-level 1 action-level 1 state-level 2 action-level 2

CMSC 41: Chapter 10 31

Example (continued)

  Solution
extraction

  Twelve combinations
at level 4
  Three ways to

achieve ¬garb
  Two ways to

achieve dinner
  Two ways to

achieve present

¬dinner

¬present

¬dinner

¬present

¬dinner

¬present

state-level 0 state-level 1 action-level 1 state-level 2 action-level 2

CMSC 41: Chapter 10 32

Example (continued)

  Several of the
combinations look
OK at level 2

  Here's one of them

¬dinner

¬present

¬dinner

¬present

¬dinner

¬present

state-level 0 state-level 1 action-level 1 state-level 2 action-level 2

CMSC 41: Chapter 10 33

Example (continued)

  Call Solution-
Extraction
recursively at
level 2

  It succeeds
  Solution whose

parallel length
is 2

¬dinner

¬present

¬dinner

¬present

¬dinner

¬present

state-level 0 state-level 1 action-level 1 state-level 2 action-level 2

CMSC 41: Chapter 10 34

Back to Forward Search

  Earlier, I said
  Forward search can waste time trying lots of irrelevant actions (see above)

»  pickup(a1), pickup(a2) , …, pickup(a500)
  Need a good heuristic to guide the search

  We can use planning graphs to compute such a heuristic

a3"

a1"
a2"

…"a1" a2" a500"a3"

initial state goal

CMSC 41: Chapter 10 35

Getting Heuristic Values from
a Planning Graph

  Recall how GraphPlan works:
loop

Graph expansion:
extend a “planning graph” forward from the initial state

until we have achieved a necessary (but insufficient) condition
for plan existence

Solution extraction:
search backward from the goal, looking for a correct plan
if we find one, then return it

repeat

this takes polynomial time

this takes exponential time

CMSC 41: Chapter 10 36

Using Planning Graphs to Compute h(s)

  In the graph, there are alternating
layers of ground literals and actions

  The number of “action” layers is a lower
bound on the number of actions in the plan

  Construct a planning graph, starting at s
  Δg(s,g) = level of the first layer that

 “possibly achieves” the goal
  Some ways to improve this, but

I'll skip the details

CMSC 41: Chapter 10 37

The FastForward Planner

  Use a heuristic function h(s) similar to Δg(s,g)
  Don't want an A*-style search (takes too much memory)
  Instead, use a greedy procedure:

until we have a solution, do
expand the current state s
s := the child of s for which h(s) is smallest

 (i.e., the child we think is closest to a solution)

CMSC 41: Chapter 10 38

The FastForward Planner

  Use a heuristic function h(s) similar to Δg(s,g)
  Don't want an A*-style search (takes too much memory)
  Instead, use a greedy procedure:

until we have a solution, do
expand the current state s
s := the child of s for which h(s) is smallest

 (i.e., the child we think is closest to a solution)

  Problem: can get caught in local minima

  h(s') > h(s) for every successor s' of s
  Escape by doing a breadth-first search until you find a node with lower

cost
  Problem: can hit a dead end - in this case, FF fails
  No guarantee on whether FF will find a solution, or how good a solution

  But FF works quite well on many classical planning problems

CMSC 41: Chapter 10 39

International Planning Competitions
  International planning competitions in 1998, 2002, 2004, 2006, 2008

  Many of the planners in these competitions have incorporated ideas from
GraphPlan and FastForward

  Graphplan was developed in 1995
  Several years before the competitions started

  FastForward was introduced in the 2000 International Planning Competition
  It got one of the two top awards
  Large variation in how good or bad its plans were, but it found them very

quickly

