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Motivation 
  How to generate plans of action? 
  Chapter 3: search algorithms  

  Domain-independent algorithms: work in many different problem domains 
  No standard representation for states of the world; needs domain-specific 

heuristics  
  Chapter 7: logical agent for the wumpus world 

  Can develop domain-independent heuristics for manipulating logical 
formulas 

  Huge number of logical rules; can take forever to evaluate them if there are 
many actions and states 

  Chapter 10: classical planning: 
  Standard representation of states and actions 
  Domain-independent algorithms and heuristics 
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Example: The Blocks World 
  Infinitely wide table, finite number of children's blocks 
  A robot hand that can pick up blocks and put them down 
  A block can sit on the table or on another block 
  Ignore where the blocks are located on the table 
  Just consider 

  whether each block is on the table, on another block, or being held 
  whether each block is clear or covered by another block 
  whether the robot hand is holding anything 

  Example state of the world: 

  Sounds trivial, but the search 
space can be very large 
  For n blocks, more than n! states 

c"
a" b" e"

d"
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Symbols 
  Start with a first-order language 

»  Language of first-order logic 
  Restrict it to be  function-free 

»  Finitely many predicate symbols and constant symbols, 
»  Unlimited (potentially infinite) set of variable symbols 
»  No function symbols 

  Add a finite set of operator names 
  I'll discuss those later c"

a" b" e"

d"
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Symbols for the Blocks World 
  Constant symbols: 

  The blocks: a, b, c, d, e 
  Predicates: 

  ontable(x)  - block x is on the table 
  on(x,y)  - block x is on block y 
  clear(x)  - block x has nothing on it 
  holding(x)  - the robot hand is holding block x 
  handempty  - the robot hand isn't holding anything 

  Some terminology 
  Atom: predicate symbol and args 
  Ground expression: contains no variable symbols    -   e.g.,  on(c,a) 
  Unground expression: at least one variable symbol  -   e.g.,  on(c,x) 
 

c 
a b e 

d 
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States 
  State: a set s of ground atoms representing what's currently true 

  Example: 
{ontable(a), on(c,a), clear(c), 
  ontable(b), clear(b), holding(d), 
  ontable(e), clear(e)} 

  Number of possible states is finite 
  Suppose there are c constant symbols 
  p predicate symbols, each with k args 
  Then: 

»  Number of possible ground atoms is  pck 

 
»  Number of possible states is 

c"
a" b" e"

d"

2pck 
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Classical Operators 
  Operator: a triple (head, preconditions, effects) 

  head: an operator name and a parameter list 
»  E.g., opname(x1, …, xk) 
»  No two operators can have the same name 
»  Parameter list must include all of the operator's variables 

  preconditions: literals that must be true to use the operator 
  effects: literals that the operator will make true 

  We'll generally write operators in the following form: 

  opname(x1, …, xk) 
»  Precond: p1, p2, …, pm 
»  Effects: e1, e2, …, en 
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unstack(x,y) 
   Precond:  on(x,y), clear(x), handempty 
   Effects:   ¬on(x,y), ¬clear(x), ¬handempty, 

                    holding(x), clear(y) 

stack(x,y) 
   Precond:   holding(x), clear(y) 
   Effects:    ¬holding(x), ¬clear(y), 

                     on(x,y), clear(x), handempty 

pickup(x) 
   Precond:  ontable(x), clear(x), handempty 
   Effects:   ¬ontable(x), ¬clear(x), 

                    ¬handempty, holding(x) 

putdown(x) 
   Precond:   holding(x) 
   Effects:    ¬holding(x), ontable(x), 

                     clear(x), handempty 

Blocks-World Operators c 

a b 

c 
a b 

c 

a 
b 
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unstack(c,a) stack(c,a) 

putdown(b) pickup(b) 
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Actions and Plans 
  Action: a ground instance (via substitution) of an operator 

unstack(c,a) 
   Precond:  on(c,a), clear(c), handempty 
   Effects:   ¬on(c,a), ¬clear(c), ¬handempty, 

                    holding(c), clear(a) 

c"
a" b"

c"
a" b"

unstack(x,y) 
   Precond:  on(x,y), clear(x), handempty 
   Effects:   ¬on(x,y), ¬clear(x), ¬handempty, 

                    holding(x), clear(y) 



CMSC 41: Chapter 10 10 

Notation 
  Let S be a set of literals.  Then 

  S+ = {atoms that appear positively in S} 
  S– = {atoms that appear negatively in S} 

  Let a be an operator or action. Then 
  precond+

 (a) = {atoms that appear positively in precond(a)} 
  precond–

 (a) = {atoms that appear negatively in precond(a)} 
  effects+

 (a) = {atoms that appear positively in effects(a)} 
  effects–

 (a) = {atoms that appear negatively in effects(a)} 

  Example: 

  effects+
 (unstack(x,y)) = {holding(x), clear(y)}  

  effects–
 (unstack(x,y)) = {on(x,y), clear(x), handempty} 

unstack(x,y) 
   Precond:  on(x,y), clear(x), handempty 
   Effects:   ¬on(x,y), ¬clear(x), ¬handempty, 

                    holding(x), clear(y) 
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Executability 
  An action a is executable in s if s satisfies precond(a), 

  i.e., if  precond+
 (a) ⊆ s  and  precond–

 (a) ∩ s = ∅ 
  An operator o is applicable to s if there is a  

ground instance a of o that is executable in s 
  Example:   

  {ontable(a), on(c,a), clear(c), ontable(b), handempty} 

unstack(c,a) 
   Precond:  on(c,a), clear(c), handempty 
   Effects:   ¬on(c,a), ¬clear(c), ¬handempty, 

                    holding(c), clear(a) 

unstack(x,y) 
   Precond:  on(x,y), clear(x), handempty 
   Effects:   ¬on(x,y), ¬clear(x), ¬handempty, 

                    holding(x), clear(y) 

c"
a" b"
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Performing an Action 
  If a is executable in s, the result of performing it is 

         γ(s,a) = (s – effects–(a)) ∪ effects+(a) 
  Delete the negative effects, and add the positive ones 

  Example: 
s = {ontable(a), on(c,a), clear(c), ontable(b), handempty} 
a = unstack(c,a) 
 
 
 
 
 

  γ(s,a) = {ontable(a), on(c,a), clear(c), ontable(b),  
             clear(b), handempty, holding(c), clear(a)} 
  The book calls this Result(s,a) 
 
 

unstack(c,a) 
   Precond:  on(c,a), clear(c), handempty 
   Effects:   ¬on(c,a), ¬clear(c), ¬handempty, 

                    holding(c), clear(a) 

c"
a" b"

c"
a" b"
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Executability of Plans 
  Plan: a sequence of actions π = (a1, …, an)  
  A plan π = (a1, …, an) is executable in the state s0 if 

» a1 is executable in s0, producing some state s1 = γ (s0,a1) 
» a2 is executable in s1, producing some state s2 = γ (s1,a2) 

» … 
» an is executable in sn–1, producing some state sn= γ (sn–1,an) 

  In this case, we define γ (s0,π) = sn 
  Example on next slide 

c"
a" b"
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s3 

s2 

s1 

s0 
c"
a" b"

c"

a" b"

a" b"

c"a"
b"

s4 
b"
a" c"

c"

unstack(c,a) 
   Precond:  on(c,a), clear(c), handempty 
   Effects:     ¬on(c,a), ¬clear(c), ¬handempty,  

                      holding(c), clear(a) 

stack(b,a) 
   Precond:   holding(b), clear(a) 
   Effects:     ¬holding(b), ¬clear(a), on(b,a), 

                      clear(b), handempty 

pickup(b) 
   Precond:  ontable(b), clear(b), handempty 
   Effects:    ¬ontable(b), ¬clear(b),  

                     ¬handempty, holding(b) 

putdown(c) 
   Precond:   holding(c) 
   Effects:     ¬holding(c), ontable(c), clear(c),  

                      handempty 

s = {ontable(a), on(c,a), clear(c), ontable(b),clear(b), 
       handempty} 
π = (unstack(c,a), putdown(c), pickup(b), stack(b,a)) 
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Problems and Solutions 
  Planning problem: a triple P = (O, s0, g) 

  O is a set of operators 
  s0 is the initial state - a set of atoms 
  g is the goal formula - a set of literals 

  Every state that satisfies g is a goal state 

  A plan π is a solution for P=(O,s0,g) if 
   π is executable in s0 

   the resulting state γ (s0,π) satisfies g 
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Example 
  O = {stack(x,y), unstack(x,y), pickup(x), putdown(x)} 

  s0 = {ontable(a), on(c,a), clear(c),  
         ontable(b), clear(b), handempty} 

  g = {on(a,b)} 

  One of the solutions is 
   π = (unstack(c,a), putdown(c), pickup(a), stack(a,b)) 

c"
a" b"

a"
b"
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Complexity of Planning 

  Given a classical planning problem P, does it have a solution? 
  PSPACE-complete (much harder than NP-complete) 

  Given a classical planning problem P and an integer k, is there a solution of 
length k or less? 
  Again PSPACE-complete 

  Suppose we add function symbols to the language 
  Given a planning problem P, does it have a solution? 

  Undecidable 
  Given a planning problem P and an integer k, is there a solution of length k or 

less? 
  Decidable, NEXPTIME-complete 
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Forward Search 
  Go forward from the initial state 

  Breadth-first and best-first 
  Sound: if they return a plan, 

then the plan is a solution 
  Complete: if a problem has a solution, then they will return one 
  Usually not practical because they require too much memory 

»  Memory requirement is exponential in the length of the solution 
  Depth-first search, greedy search 

  More practical to use 
  Worst-case memory requirement is linear in the length of the solution 
  Sound but not complete 

  But classical planning has only finitely many states 
  Thus, can make depth-first search complete by doing loop-checking 

 
  The book also discusses backward search, but I'll skip it 

s0 

s1 

s2 

s3 

a1 

a2 

a3 

s4 

s5 
sg 

a4 

a5 … 
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Reducing Search Space Size 
  Suppose there were 450 blocks rather than 5 
  Search space size is more than 101000 

  Most of the states are completely irrelevant 
for whatever goal we might want to achieve 

  A search algorithm might waste time trying many of them 
  How to reduce the size of the search space? 
  One approach: 

  First create a relaxed problem 
»  Remove some restrictions of the original problem  

•  Want the relaxed problem to be easy to solve (polynomial time) 
»  The solutions to the relaxed problem will include all solutions to the 

original problem 
  Then do a modified version of the original search 

»  Restrict its search space to include only those actions that occur in 
solutions to the relaxed problem 

c 

a b d 

e 
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Graphplan 
procedure Graphplan: 
  for k = 0, 1, 2, … 

 
  Graph expansion: 

»  create a “planning graph” that contains k “levels” 
  Check whether the planning graph satisfies a necessary 

(but insufficient) condition for plan existence 
 

  If it does, then 
»  do solution extraction: 
•  backward search, 

modified to consider 
only the actions in 
the planning graph 

•  if we find a solution, 
then return it 

possible 
literals 
in state si 

possible 
actions 
in state si 

relaxed 
problem 
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state-level i 

effects 
Maintenance action: for the case 
where a literal remains unchanged 

state-level i-1 

state-level 0 (the literals true in s0) 

The Planning Graph 
  Search space for a relaxed version of the planning problem 
  Alternating layers of ground literals and actions 

  Nodes at action-level i: actions that might be possible to execute at time i 
  Nodes at state-level i: literals that might possibly be true at time i 
  Edges: preconditions and effects 

action-level i 

preconditions 
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Example 
  Due to Dan Weld (U. of Washington) 

  Suppose you want to prepare dinner as a surprise for your sweetheart (who is 
asleep) 

 s0 = {garbage, cleanHands, quiet} 
 g = {dinner, present, ¬garbage} 

 Action  Preconditions          Effects                   
 cook()  cleanHands        dinner 
 wrap()  quiet         present 
 carry()   none          ¬garbage, ¬cleanHands 
 dolly()   none          ¬garbage, ¬quiet 

 
Also have the maintenance actions: one for each literal 
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Example (continued) 
  state-level 0: 

{all atoms in s0} U 
    {negations of all atoms not in s0} 

  action-level 1: 
{all actions whose preconditions 
     are satisfied and non-mutex in s0} 

  state-level 1: 
{all effects of all of the 
     actions in action-level 1} 

Action  Preconditions Effects                      
cook()  cleanHands dinner 
wrap()  quiet   present 
carry()   none  ¬garbage, ¬cleanHands 
dolly()   none  ¬garbage, ¬quiet 

Also have the maintenance actions ¬dinner 

¬present 

¬dinner 

¬present 

state-level 0 state-level 1 action-level 1 
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Mutual Exclusion 

  Two actions at the same action-level are mutex if 
  Inconsistent effects: an effect of one negates an effect of the other 
  Interference: one deletes a precondition of the other 
  Competing needs: they have mutually exclusive preconditions 

  Otherwise they don't interfere with each other 
  Both may appear in a solution plan 

  Two literals at the same state-level are mutex if 
  Inconsistent support: one is the negation of the other, 

or all ways of achieving them are pairwise mutex 

Recursive 
propagation 
of mutexes 
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Example (continued) 

¬dinner 

¬present 

¬dinner 

¬present 

state-level 0 state-level 1 action-level 1   Augment the graph to indicate mutexes 
  carry is mutex with the maintenance 

action for garbage (inconsistent effects) 
  dolly is mutex with wrap  

  interference 
  ~quiet is mutex with present 

  inconsistent support 
  each of cook and wrap is mutex with 

a maintenance operation 

Action  Preconditions  Effects   
cook()  cleanHands  dinner 
wrap()  quiet   present 
carry()   none     ¬garbage, ¬cleanHands 
dolly()   none     ¬garbage, ¬quiet 

Also have the maintenance actions 
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¬dinner 

¬present 

¬dinner 

¬present 

Example (continued) 

  Check to see whether there's a possible 
solution 

  Recall that the goal is 
  {¬garbage, dinner, present} 

  Note that in state-level 1, 
  All of them are there 
  None are mutex with each other 

  Thus, there's a chance that a plan exists 
  Try to find it 

  Solution extraction 

state-level 0 state-level 1 action-level 1 
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Solution Extraction 

procedure Solution-extraction(g,j) 
if j=0 then return the solution 
for each literal l in g 

 nondeterministically choose an action 
 to use in state s j–1 to achieve l 

if any pair of chosen actions are mutex 
 then backtrack 

g' := {the preconditions of 
      the chosen actions} 

Solution-extraction(g', j–1) 
end Solution-extraction 

The level of the state sj 
The set of goals we are 
trying to achieve 

state- 
level 
i-1 

action- 
level 

i 

state- 
level 

i 

A real action or a maintenance action 
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Example (continued) 

  Two sets of actions for the goals at 
state-level 1 

  Neither of them works 
  Both sets contain actions that are 

mutex 

¬dinner 

¬present 

¬dinner 

¬present 

state-level 0 state-level 1 action-level 1 
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Recall what the algorithm does 

procedure Graphplan: 
  for k = 0, 1, 2, … 

  Graph expansion: 
»  create a “planning graph” that contains k “levels” 

  Check whether the planning graph satisfies a necessary 
(but insufficient) condition for plan existence 

  If it does, then 
»  do solution extraction: 
•  backward search, 

modified to consider 
only the actions in 
the planning graph 

•  if we find a solution, 
then return it 
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Example (continued) 

  Go back and do 
more graph 
expansion 

  Generate another 
action-level 
and another state-
level 

¬dinner 

¬present 

¬dinner 

¬present 

¬dinner 

¬present 

state-level 0 state-level 1 action-level 1 state-level 2 action-level 2 
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Example (continued) 

  Solution 
extraction 

  Twelve combinations 
at level 4 
  Three ways to 

achieve ¬garb 
  Two ways to 

achieve dinner 
  Two ways to 

achieve present 

¬dinner 

¬present 

¬dinner 

¬present 

¬dinner 

¬present 

state-level 0 state-level 1 action-level 1 state-level 2 action-level 2 
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Example (continued) 

  Several of the 
combinations look 
OK at level 2 

  Here's one of them 

¬dinner 

¬present 

¬dinner 

¬present 

¬dinner 

¬present 

state-level 0 state-level 1 action-level 1 state-level 2 action-level 2 
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Example (continued) 

  Call Solution-
Extraction 
recursively at 
level 2 

  It succeeds 
  Solution whose 

parallel length 
is 2 

¬dinner 

¬present 

¬dinner 

¬present 

¬dinner 

¬present 

state-level 0 state-level 1 action-level 1 state-level 2 action-level 2 
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Back to Forward Search 

  Earlier, I said 
  Forward search can waste time trying lots of irrelevant actions (see above) 

»  pickup(a1), pickup(a2) , …, pickup(a500) 
  Need a good heuristic to guide the search 

  We can use planning graphs to compute such a heuristic 

a3"

a1"
a2"

…"a1" a2" a500"a3"

initial state goal 
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Getting Heuristic Values from 
a Planning Graph 

  Recall how GraphPlan works: 
loop 

Graph expansion: 
extend a “planning graph” forward from the initial state 

until we have achieved a necessary (but insufficient) condition 
for plan existence 
 

Solution extraction: 
search backward from the goal, looking for a correct plan 
if we find one, then return it 

repeat 

this takes polynomial time 

this takes exponential time 
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Using Planning Graphs to Compute h(s) 

  In the graph, there are alternating 
layers of ground literals and actions 

  The number of “action” layers is a lower 
bound on the number of actions in the plan 

  Construct a planning graph, starting at s 
   Δg(s,g) = level of the first layer that 

 “possibly achieves” the goal 
  Some ways to improve this, but 

I'll skip the details 
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The FastForward Planner 

  Use a heuristic function h(s) similar to Δg(s,g) 
  Don't want an A*-style search (takes too much memory) 
  Instead, use a greedy procedure: 

until we have a solution, do 
expand the current state s 
s := the child of s for which h(s) is smallest 

 (i.e., the child we think is closest to a solution) 
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The FastForward Planner 

  Use a heuristic function h(s) similar to Δg(s,g) 
  Don't want an A*-style search (takes too much memory) 
  Instead, use a greedy procedure: 

until we have a solution, do 
expand the current state s 
s := the child of s for which h(s) is smallest 

 (i.e., the child we think is closest to a solution) 
 
  Problem: can get caught in local minima 

  h(s') > h(s) for every successor s' of s 
  Escape by doing a breadth-first search until you find a node with lower 

cost 
  Problem: can hit a dead end - in this case, FF fails 
  No guarantee on whether FF will find a solution, or how good a solution 

  But FF works quite well on many classical planning problems 
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International Planning Competitions 
  International planning competitions in 1998, 2002, 2004, 2006, 2008 

  Many of the planners in these competitions have incorporated ideas from 
GraphPlan and FastForward 

  Graphplan was developed in 1995 
  Several years before the competitions started 

  FastForward was introduced in the 2000 International Planning Competition 
  It got one of the two top awards 
  Large variation in how good or bad its plans were, but it found them very 

quickly 


