Chapter 10: Classical Planning

Dana S. Nau

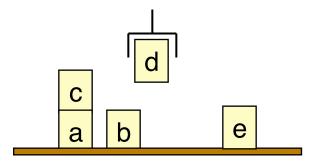
CMSC 421, Fall 2012

Motivation

- How to generate plans of action?
- Chapter 3: search algorithms
 - Domain-independent algorithms: work in many different problem domains
 - No standard representation for states of the world; needs domain-specific heuristics
- Chapter 7: logical agent for the wumpus world
 - Can develop domain-independent heuristics for manipulating logical formulas
 - Huge number of logical rules; can take forever to evaluate them if there are many actions and states
- Chapter 10: classical planning:
 - Standard representation of states and actions
 - Domain-independent algorithms and heuristics

Example: The Blocks World

- Infinitely wide table, finite number of children's blocks
- A robot hand that can pick up blocks and put them down
- A block can sit on the table or on another block
- Ignore where the blocks are located on the table
- Just consider
 - whether each block is on the table, on another block, or being held
 - whether each block is clear or covered by another block
 - whether the robot hand is holding anything
- Example state of the world:

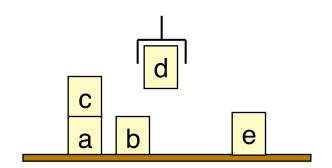


- Sounds trivial, but the search space can be very large
 - ◆ For *n* blocks, more than *n*! states

Symbols

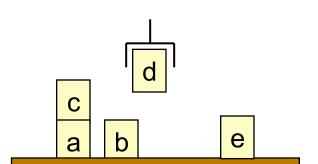
- Start with a first-order language
 - » Language of first-order logic
 - Restrict it to be function-free
 - » Finitely many predicate symbols and constant symbols,
 - » Unlimited (potentially infinite) set of variable symbols
 - » *No* function symbols

- Add a finite set of operator names
 - ◆ I'll discuss those later



Symbols for the Blocks World

- Constant symbols:
 - The blocks: a, b, c, d, e
- Predicates:
 - \bullet ontable(x) block x is on the table
 - on(x,y) block x is on block y
 - clear(x) block x has nothing on it
 - \bullet holding(x) the robot hand is holding block x
 - handempty the robot hand isn't holding anything
- Some terminology
 - ◆ *Atom*: predicate symbol and args
 - ◆ *Ground* expression: contains no variable symbols e.g., on(c,a)
 - Unground expression: at least one variable symbol e.g., on(c,x)

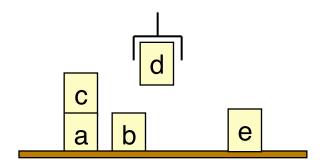


States

- State: a set *s* of ground atoms representing what's currently true
- Example:

```
{ontable(a), on(c,a), clear(c),
  ontable(b), clear(b), holding(d),
  ontable(e), clear(e)}
```

- Number of possible states is finite
 - Suppose there are c constant symbols
 - \bullet p predicate symbols, each with k args
 - Then:
 - » Number of possible ground atoms is pc^k
 - » Number of possible states is 2^{pc^k}



Classical Operators

- *Operator*: a triple (head, preconditions, effects)
 - head: an operator name and a parameter list
 - \gg E.g., $opname(x_1, ..., x_k)$
 - » No two operators can have the same name
 - » Parameter list must include *all* of the operator's variables
 - preconditions: literals that must be true to use the operator
 - effects: literals that the operator will make true
- We'll generally write operators in the following form:
 - $opname(x_1, ..., x_k)$
 - » Precond: $p_1, p_2, ..., p_m$
 - » Effects: $e_1, e_2, ..., e_n$

Blocks-World Operators

unstack(x,y)

Precond: on(x,y), clear(x), handempty

Effects: $\neg on(x,y)$, $\neg clear(x)$, $\neg handempty$,

holding(x), clear(y)

stack(x,y)

Precond: holding(x), clear(y)

Effects: $\neg holding(x)$, $\neg clear(y)$,

on(x,y), clear(x), handempty

pickup(x)

Precond: ontable(x), clear(x), handempty

Effects: $\neg ontable(x)$, $\neg clear(x)$,

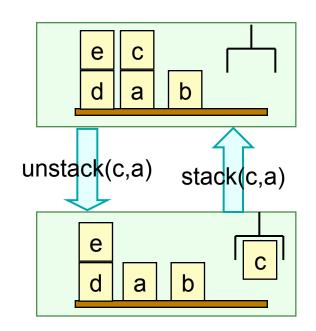
 \neg handempty, holding(x)

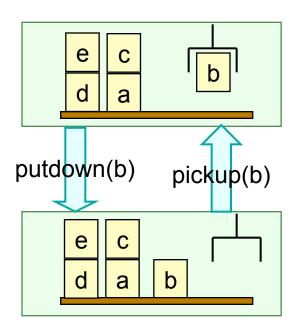
putdown(x)

Precond: holding(x)

Effects: $\neg holding(x)$, ontable(x),

clear(x), handempty





Actions and Plans

• Action: a ground instance (via substitution) of an operator

```
unstack(x,y)
     Precond: on(x,y), clear(x), handempty
     Effects: \neg on(x,y), \neg clear(x), \neg handempty,
              holding(x), clear(y)
unstack(c,a)
  Precond: on(c,a), clear(c), handempty
   Effects: ¬on(c,a), ¬clear(c), ¬handempty,
            holding(c), clear(a)
```

Notation

- Let S be a set of literals. Then
 - $S^+ = \{\text{atoms that appear positively in } S\}$
 - $S^- = \{\text{atoms that appear negatively in } S\}$
- Let a be an operator or action. Then
 - precond⁺ $(a) = \{atoms that appear positively in precond<math>(a)\}$
 - precond $^-(a) = \{\text{atoms that appear negatively in precond}(a)\}$
 - effects $^+(a) = \{\text{atoms that appear positively in effects}(a)\}$
 - effects $^-(a) = \{\text{atoms that appear negatively in effects}(a)\}$
- Example:

```
unstack(x,y)
Precond: on(x,y), clear(x), handempty
Effects: \negon(x,y), \negclear(x), \neghandempty,
holding(x), clear(y)
```

- effects⁺ (unstack(x,y)) = {holding(x), clear(y)}
- effects⁻(unstack(x,y)) = {on(x,y), clear(x), handempty}

Executability

- An action a is executable in s if s satisfies precond(a),
 - i.e., if precond⁺(a) \subseteq s and precond⁻(a) \cap s = \emptyset
- An operator o is applicable to s if there is a ground instance a of o that is executable in s
- Example:
 - {ontable(a), on(c,a), clear(c), ontable(b), handempty}

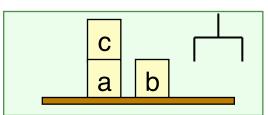
```
unstack(x,y)

Precond: on(x,y), clear(x), handempty

Effects: \negon(x,y), \negclear(x), \neghandempty,

holding(x), clear(y)

unstack(c,a)
```



Precond: on(c,a), clear(c), handempty

Effects: ¬on(c,a), ¬clear(c), ¬handempty,

holding(c), clear(a)

Performing an Action

• If a is executable in s, the result of performing it is

$$\gamma(s,a) = (s - \text{effects}^-(a)) \cup \text{effects}^+(a)$$

- Delete the negative effects, and add the positive ones
- Example:

 $s = \{\text{ontable(a)}, \text{on(c,a)}, \text{clear(c)}, \text{ontable(b)}, \text{handempty}\}$

a = unstack(c,a)

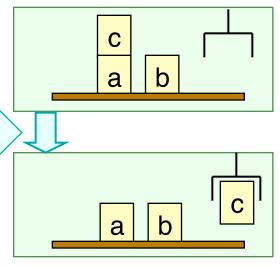
unstack(c,a)

Precond: on(c,a), clear(c), handempty

Effects: ¬on(c,a), ¬clear(c), ¬handempty,

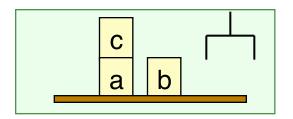
holding(c), clear(a)

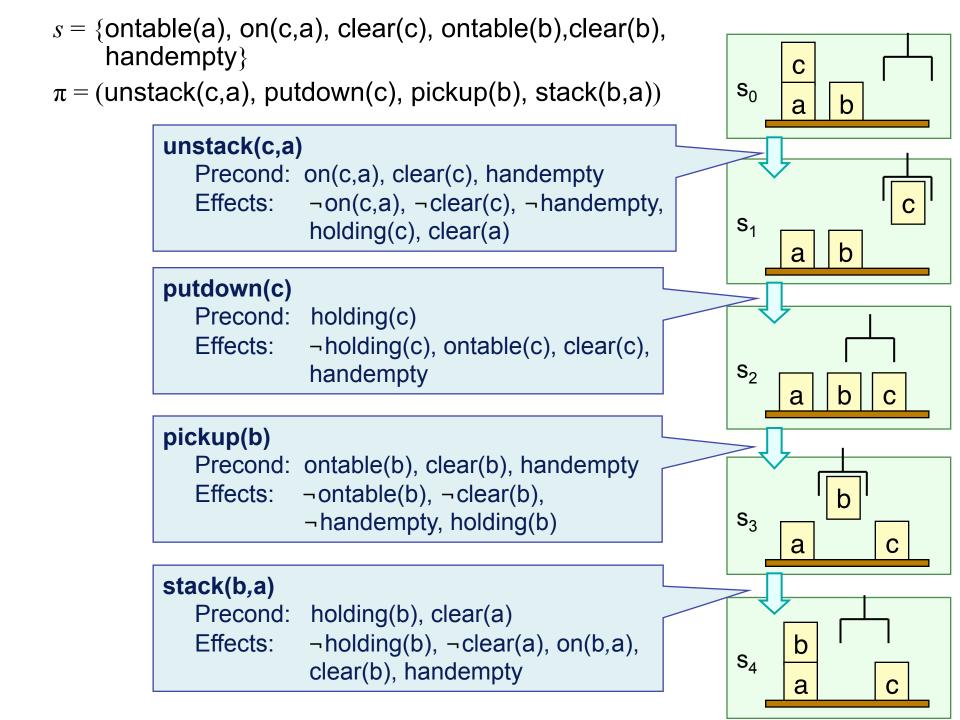
- γ(s,a) = {ontable(a), on(c,a), clear(c), ontable(b), clear(b), handempty, holding(c), clear(a)}
 - ◆ The book calls this Result(*s*,*a*)



Executability of Plans

- Plan: a sequence of actions $\pi = (a_1, ..., a_n)$
- A plan $\pi = (a_1, ..., a_n)$ is executable in the state s_0 if
 - » a_1 is executable in s_0 , producing some state $s_1 = \gamma(s_0, a_1)$
 - » a_2 is executable in s_1 , producing some state $s_2 = \gamma(s_1, a_2)$
 - **>>** ...
 - » a_n is executable in s_{n-1} , producing some state $s_n = \gamma(s_{n-1}, a_n)$
- In this case, we define $\gamma(s_0, \pi) = s_n$
- Example on next slide





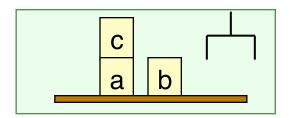
Problems and Solutions

- Planning problem: a triple $P = (O, s_0, g)$
 - ◆ *O* is a set of operators
 - s_0 is the *initial state* a set of atoms
 - \bullet g is the goal formula a set of literals
- Every state that satisfies g is a goal state
- A plan π is a solution for $P=(O,s_0,g)$ if
 - π is executable in s_0
 - the resulting state $\gamma(s_0, \pi)$ satisfies g

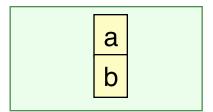
Example

• $O = \{ stack(x,y), unstack(x,y), pickup(x), putdown(x) \}$

s₀ = {ontable(a), on(c,a), clear(c), ontable(b), clear(b), handempty}



• $g = \{on(a,b)\}$



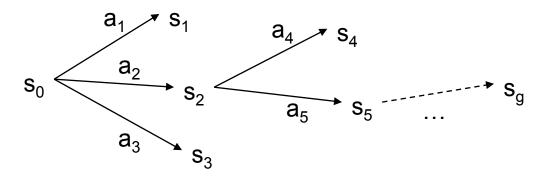
- One of the solutions is
 - $\pi = (unstack(c,a), putdown(c), pickup(a), stack(a,b))$

Complexity of Planning

- Given a classical planning problem *P*, does it have a solution?
 - ◆ PSPACE-complete (much harder than NP-complete)
- Given a classical planning problem *P* and an integer *k*, is there a solution of length *k* or less?
 - ◆ Again PSPACE-complete
- Suppose we add function symbols to the language
- Given a planning problem P, does it have a solution?
 - Undecidable
- Given a planning problem *P* and an integer *k*, is there a solution of length *k* or less?
 - Decidable, NEXPTIME-complete

Forward Search

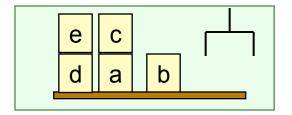
- Go forward from the initial state
- Breadth-first and best-first
 - Sound: if they return a plan, then the plan is a solution



- ◆ *Complete*: if a problem has a solution, then they will return one
- Usually not practical because they require too much memory
 - » Memory requirement is exponential in the length of the solution
- Depth-first search, greedy search
 - More practical to use
 - Worst-case memory requirement is linear in the length of the solution
 - Sound but not complete
- But classical planning has only finitely many states
 - Thus, can make depth-first search complete by doing loop-checking
- The book also discusses backward search, but I'll skip it

Reducing Search Space Size

- Suppose there were 450 blocks rather than 5
- Search space size is more than 10^{1000}
 - Most of the states are completely irrelevant for whatever goal we might want to achieve



- A search algorithm might waste time trying many of them
- How to reduce the size of the search space?
- One approach:
 - First create a *relaxed problem*
 - » Remove some restrictions of the original problem
 - Want the relaxed problem to be easy to solve (polynomial time)
 - » The solutions to the relaxed problem will include all solutions to the original problem
 - ◆ Then do a modified version of the original search
 - » Restrict its search space to include only those actions that occur in solutions to the relaxed problem

Graphplan

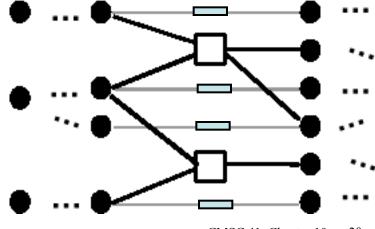
procedure Graphplan:

- for k = 0, 1, 2, ...
 - Graph expansion:
 - » create a "planning graph" that contains k "levels"
 - Check whether the planning graph satisfies a necessary (but insufficient) condition for plan existence

relaxed problem

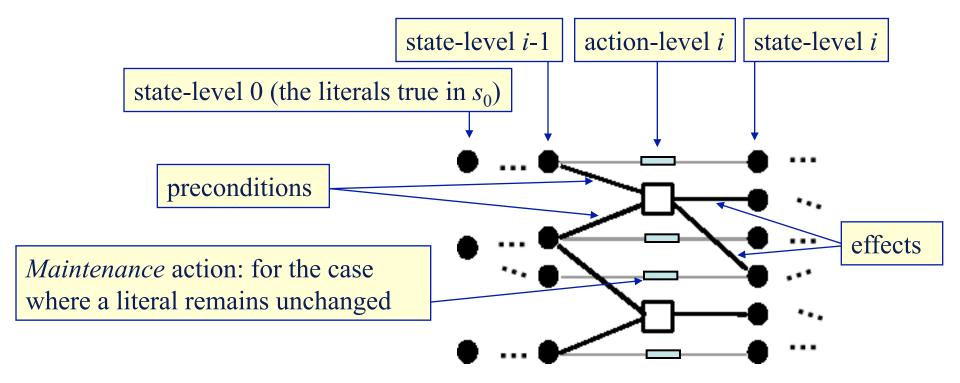
- ◆ If it does, then
 - » do solution extraction:
 - backward search, modified to consider only the actions in the planning graph
 - if we find a solution, then return it

possible possible literals actions in state s_i in state s_i



The Planning Graph

- Search space for a relaxed version of the planning problem
- Alternating layers of ground literals and actions
 - ◆ Nodes at action-level *i*: actions that might be possible to execute at time *i*
 - ◆ Nodes at state-level *i*: literals that might possibly be true at time *i*
 - Edges: preconditions and effects



Example

- Due to Dan Weld (U. of Washington)
- Suppose you want to prepare dinner as a surprise for your sweetheart (who is asleep)

```
s_0 = \{\text{garbage, cleanHands, quiet}\}\

g = \{\text{dinner, present, }\neg\text{garbage}\}\
```

Action	Preconditions	Effects
cook()	cleanHands	dinner
wrap()	quiet	present
carry()	none	¬garbage, ¬cleanHands
dolly()	none	¬garbage, ¬quiet

Also have the maintenance actions: one for each literal

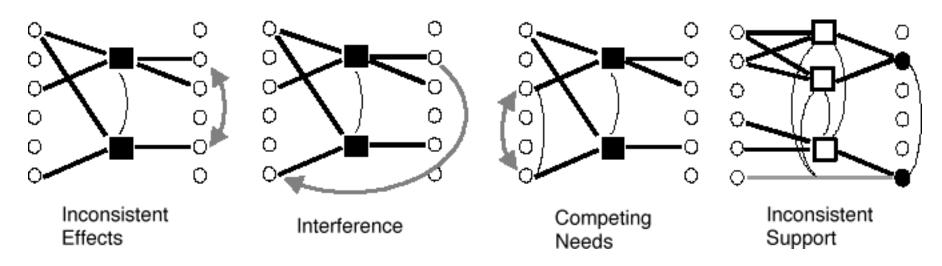
- state-level 0: {all atoms in s_0 } U {negations of all atoms not in s_0 }
- action-level 1: {all actions whose preconditions are satisfied and non-mutex in s_0 }
- state-level 1: {all effects of all of the actions in action-level 1}

Action Preconditions Effects cook() cleanHands dinner wrap() quiet present carry() none ¬garbage, ¬cleanHands dolly() none ¬garbage, ¬quiet

Also have the maintenance actions

action-level 1 state-level 0 state-level 1 garb = garb carry ⊣garb dolly cleanH cleanH ∃cleanH cook quiet quiet wrap ¬quiet dinner present ¬ dinner ¬ dinner ¬ present ¬ present

Mutual Exclusion



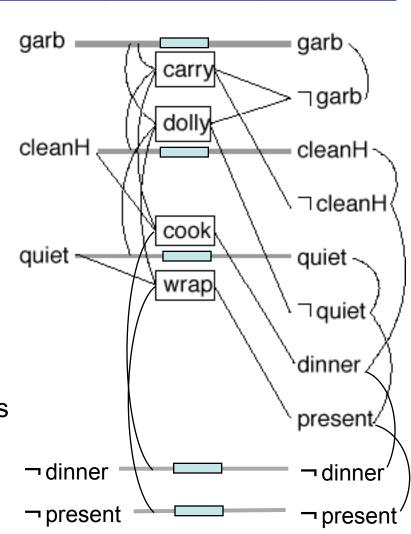
- Two actions at the same action-level are mutex if
 - ◆ *Inconsistent effects:* an effect of one negates an effect of the other
 - ◆ *Interference*: one deletes a precondition of the other
 - **◆** Competing needs: they have mutually exclusive preconditions
- Otherwise they don't interfere with each other
 - Both may appear in a solution plan
- Two literals at the same state-level are mutex if
 - Inconsistent support: one is the negation of the other,
 or all ways of achieving them are pairwise mutex

Recursive propagation of mutexes

state-level 0

- Augment the graph to indicate mutexes
- *carry* is mutex with the maintenance action for *garbage* (inconsistent effects)
- dolly is mutex with wrap
 - interference
- ~quiet is mutex with present
 - inconsistent support
- each of *cook* and *wrap* is mutex with a maintenance operation

Action	Precondition	s Effects	
cook()	cleanHand	s dinner	
wrap()	quiet	present	
carry()	none -	garbage, ¬cleanHands	
dolly()	none -	-garbage, ¬quiet	
Also have the maintenance actions			

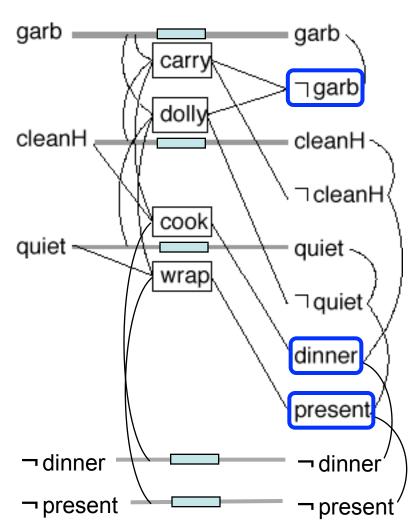


action-level 1

state-level 1

state-level 0

- Check to see whether there's a possible solution
- Recall that the goal is
 - **♦** {¬garbage, dinner, present}
- Note that in state-level 1,
 - All of them are there
 - None are mutex with each other
- Thus, there's a chance that a plan exists
- Try to find it
 - Solution extraction



action-level 1

state-level 1

Solution Extraction

The set of goals we are trying to achieve

The level of the state s_i

procedure Solution-extraction(g,j) if j=0 then return the solution for each literal l in g

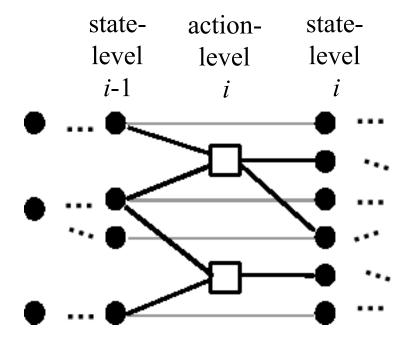
A real action or a maintenance action

nondeterministically choose an action to use in state s_{j-1} to achieve l if any pair of chosen actions are mutex then backtrack

g' := {the preconditions of
 the chosen actions}

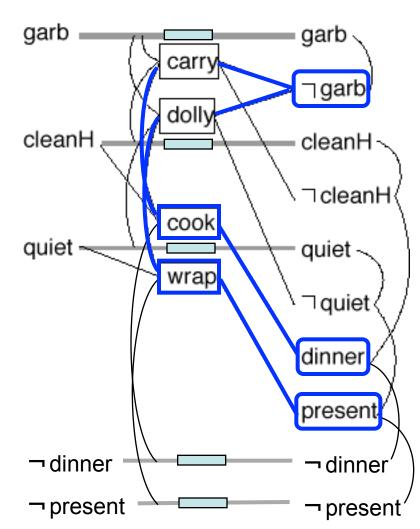
Solution-extraction(g', j–1)

end Solution-extraction



state-level 0

- Two sets of actions for the goals at state-level 1
- Neither of them works
 - Both sets contain actions that are mutex



action-level 1

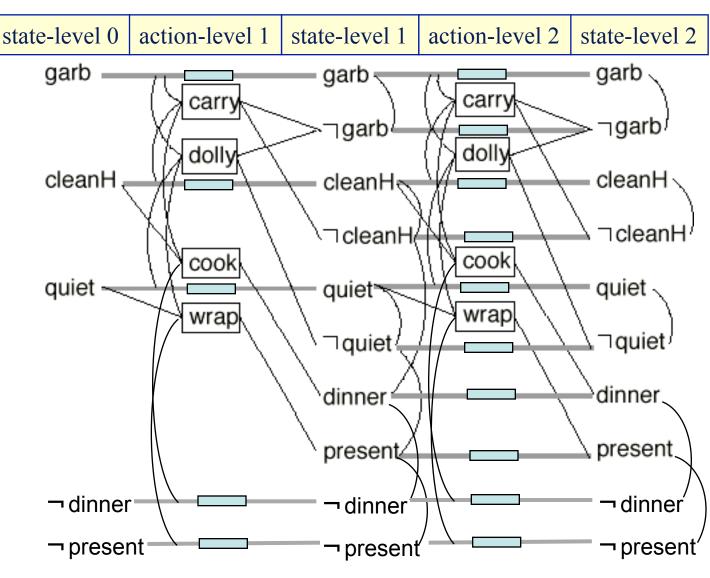
state-level 1

Recall what the algorithm does

procedure Graphplan:

- for k = 0, 1, 2, ...
 - Graph expansion:
 - » create a "planning graph" that contains k "levels"
 - Check whether the planning graph satisfies a necessary (but insufficient) condition for plan existence
 - ◆ If it does, then
 - » do solution extraction:
 - backward search, modified to consider only the actions in the planning graph
 - if we find a solution, then return it

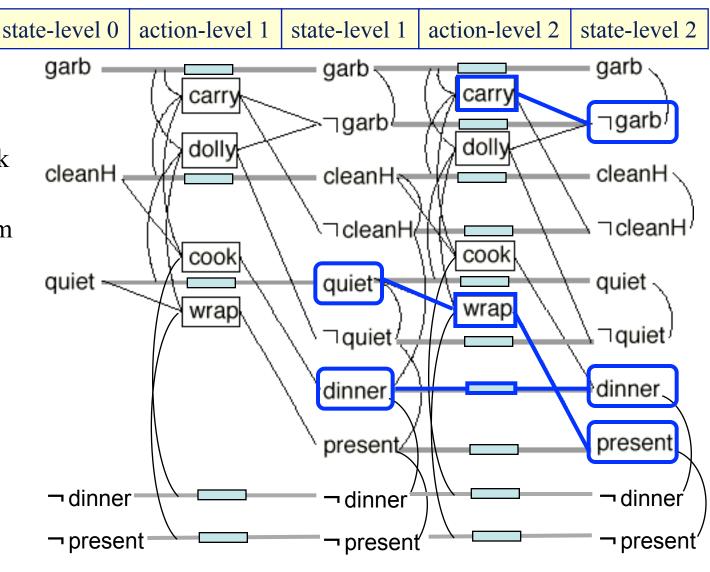
- Go back and do more graph expansion
- Generate another action-level and another statelevel



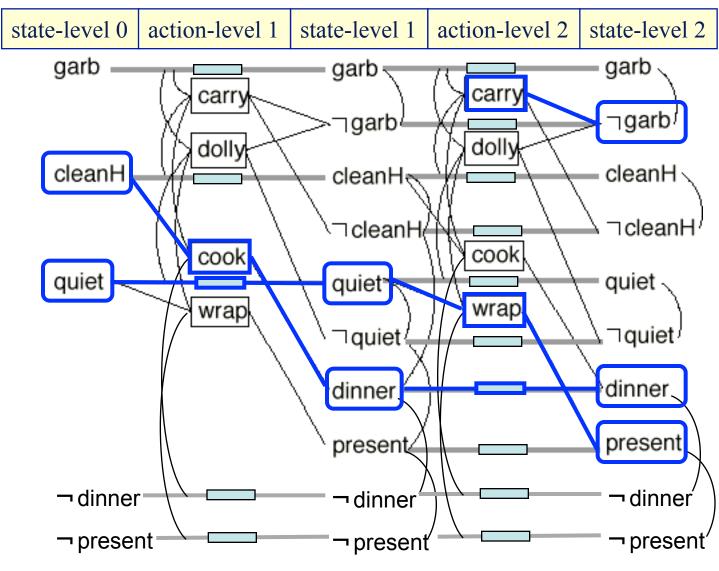
- Solution extraction
- Twelve combinations at level 4
 - Three ways to achieve ¬garb
 - Two ways to achieve dinner
 - Two ways to achieve present



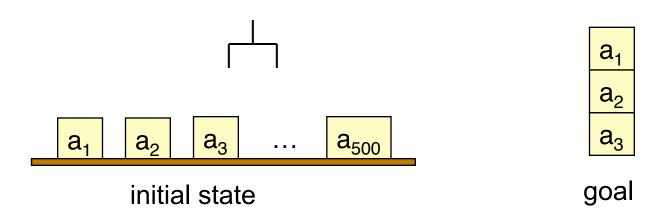
- Several of the combinations lookOK at level 2
- Here's one of them



- Call Solution-Extraction recursively at level 2
- It succeeds
- Solution whose parallel length is 2



Back to Forward Search



- Earlier, I said
 - Forward search can waste time trying lots of irrelevant actions (see above)
 » pickup(a₁), pickup(a₂), ..., pickup(a₅₀₀)
 - Need a good heuristic to guide the search
- We can use planning graphs to compute such a heuristic

Getting Heuristic Values from a Planning Graph

Recall how GraphPlan works:

loop

Graph expansion:

this takes polynomial time

extend a "planning graph" forward from the initial state until we have achieved a necessary (but insufficient) condition for plan existence

Solution extraction:

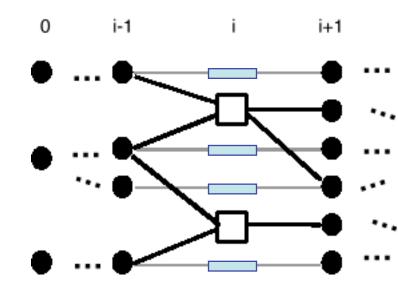
this takes exponential time

search backward from the goal, looking for a correct plan if we find one, then return it

repeat

Using Planning Graphs to Compute *h*(*s*)

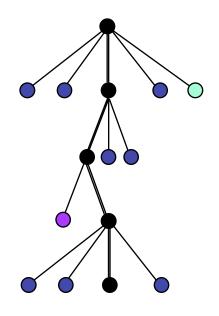
- In the graph, there are alternating layers of ground literals and actions
- The number of "action" layers is a lower bound on the number of actions in the plan
- Construct a planning graph, starting at s
- $\Delta^g(s,g)$ = level of the first layer that "possibly achieves" the goal
 - Some ways to improve this, but
 I'll skip the details



The FastForward Planner

- Use a heuristic function h(s) similar to $\Delta^g(s,g)$
- Don't want an A*-style search (takes too much memory)
- Instead, use a greedy procedure:

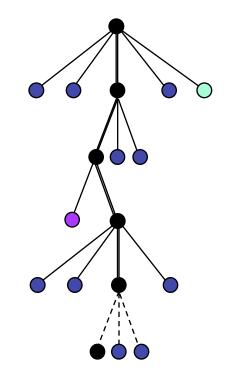
until we have a solution, do
expand the current state s
s := the child of s for which h(s) is smallest
(i.e., the child we think is closest to a solution)



The FastForward Planner

- Use a heuristic function h(s) similar to $\Delta^g(s,g)$
- Don't want an A*-style search (takes too much memory)
- Instead, use a greedy procedure:

until we have a solution, do
expand the current state s
s := the child of s for which h(s) is smallest
(i.e., the child we think is closest to a solution)



- Problem: can get caught in local minima
 - h(s') > h(s) for every successor s' of s
 - Escape by doing a breadth-first search until you find a node with lower cost
- Problem: can hit a dead end in this case, FF fails
- No guarantee on whether FF will find a solution, or how good a solution
 - ◆ But FF works quite well on many classical planning problems

International Planning Competitions

- International planning competitions in 1998, 2002, 2004, 2006, 2008
 - Many of the planners in these competitions have incorporated ideas from GraphPlan and FastForward
- Graphplan was developed in 1995
 - Several years before the competitions started
- FastForward was introduced in the 2000 International Planning Competition
 - It got one of the two top awards
 - Large variation in how good or bad its plans were, but it found them very quickly