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Motivation

How to generate plans of action?
Chapter 3: search algorithms

¢ Domain-independent algorithms: work in many different problem domains

¢ No standard representation for states of the world; needs domain-specific

heuristics

Chapter 7: logical agent for the wumpus world

¢ Can develop domain-independent heuristics for manipulating logical

formulas

¢ Huge number of logical rules; can take forever to evaluate them if there are

many actions and states
Chapter 10: classical planning:
¢ Standard representation of states and actions
¢ Domain-independent algorithms and heuristics
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Example: The Blocks World

Infinitely wide table, finite number of children's blocks

A robot hand that can pick up blocks and put them down

A block can sit on the table or on another block

Ignore where the blocks are located on the table

Just consider
¢ whether each block is on the table, on another block, or being held
¢ whether each block is clear or covered by another block
¢ whether the robot hand is holding anything

Example state of the world: oml
C

al|lb
Sounds trivial, but the search _u—EL

space can be very large

¢ For n blocks, more than n! states

CMSC 41: Chapter 10

3



Symbols

@® Start with a first-order language
» Language of first-order logic
¢ Restrict it to be function-free
» Finitely many predicate symbols and constant symbols,
» Unlimited (potentially infinite) set of variable symbols

» No function symbols

® Add a finite set of operator names |‘I‘|

¢ I'll discuss those later
a ‘b‘ ‘:|
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Symbols for the Blocks World

® Constant symbols:

¢ The blocks: a, b, c, d, e |_|_I
® Predicates: d
¢ ontable(x) - block x is on the table C
¢ on(x,y) - block x is on block y all|b ‘ : |
¢ clear(x) - block x has nothing on it

¢ holding(x) - the robot hand is holding block x
¢ handempty - the robot hand isn't holding anything

® Some terminology
& Atom: predicate symbol and args
& Ground expression: contains no variable symbols - e.g., on(c,a)
& Unground expression: at least one variable symbol - e.g., on(c,x)
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States

@ State: a set s of ground atoms representing what's currently true

® Example:
{ontable(a), on(c,a), clear(c),
ontable(b), clear(b), holding(d),

ontable(e), clear(e)} |_I_I

® Number of possible states 1s finite C

¢ Suppose there are ¢ constant symbols a ‘ b ‘ ‘ : |

¢ p predicate symbols, each with & args
¢ Then:

» Number of possible ground atoms is pc*

: : k
» Number of possible states is 2P¢
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Classical Operators

® Operator: atriple (head, preconditions, effects)
¢ head: an operator name and a parameter list
» E.g., opname(x, ..., x;)
» No two operators can have the same name
» Parameter list must include all of the operator's variables
¢ preconditions: literals that must be true to use the operator
¢ cffects: literals that the operator will make true

® We'll generally write operators in the following form:

® opname(x, ..., X;)
» Precond: p,, p,, ..., p,,
» Effects: e, e,, ..., e

n
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Blocks-World Operators

unstack(x,y)
Precond: on(x,y), clear(x), handempty
Effects: -on(x,y), —clear(x), ~handempty,
holding(x), clear(y)

stack(x,y)
Precond: holding(x), clear(y)
Effects: —holding(x), —clear(y),
on(x,y), clear(x), handempty

pickup(x)
Precond: ontable(x), clear(x), handempty
Effects: -ontable(x), —clear(x),
-handempty, holding(x)

putdown(x)
Precond: holding(x)
Effects: -—holding(x), ontable(x),
clear(x), handempty

c|
dlla]||Db
ellc |—b—|
d||a
=
puttﬂn(b) pickuF(b)
c * I
dila]||Db
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Actions and Plans

@® Action: a ground instance (via substitution) of an operator

unstack(x,y)
Precond: on(x,y), clear(x), handempty
Effects: —on(x,y), —clear(x), ~handempty,
holding(x), clear(y)

cl
unstack(c,a) al|b
Precond: on(c,a), clear(c), handempty ﬂ
Effects: -on(c,a), —clear(c), ~handempty,
holding(c), clear(a) Il
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Notation

® Let Sbe asetof literals. Then
¢ ST = {atoms that appear positively in S}
¢ S~ = {atoms that appear negatively in S}

® Let a be an operator or action. Then
¢ precond’ (a) = {atoms that appear positively in precond(a)}
¢ precond (a) = {atoms that appear negatively in precond(a)}
¢ cffects™ (a) = {atoms that appear positively in effects(a)}
¢ cffects™(a) = {atoms that appear negatively in effects(a)}

® Example:
unstack(x,y)
Precond: on(x,y), clear(x), handempty
Effects: -on(x,y), —clear(x), ~handempty,
holding(x), clear(y)

¢ cffects* (unstack(x,y)) = {holding(x), clear(y)}
¢ cffects~ (unstack(x,y)) = {on(x,y), clear(x), handempty}

CMSC 41: Chapter 10 10



Executability

® An action a is executable in s 1f s satisfies precond(a),
¢ i.c., if precond* (a) Cs and precond=(a) Ns =
® An operator o 1s applicable to s 1f there is a
ground instance a of o that 1s executable in s

® Example:
¢ {ontable(a), on(c,a), clear(c), ontable(b), handempty}

unstack(x,y) a ‘ b ‘

Precond: on(x,y), clear(x), handempty
Effects: -on(x,y), -clear(x), —handempty,
holding(x), clear(y)

unstack(c,a)
Precond: on(c,a), clear(c), handempty
Effects: -on(c,a), —clear(c), ~handempty,
holding(c), clear(a)
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Performing an Action

® If a is executable in s, the result of performing it is
v(s,a) = (s — effects(a)) U effects*(a)
¢ Delete the negative effects, and add the positive ones
® Example:
s = {ontable(a), on(c,a), clear(c), ontable(b), handempty}

a = unstack(c,a) c —
unstack(c,a) al|b
Precond: on(c,a), clear(c), handempty ﬂ
Effects: -on(c,a), —clear(c), ~handempty,
holding(c), clear(a) Il

® 1(s,a) = {ontable(a), en{e;ai—clearfe); ontable(b),
clear(b), handermpty; holding(c), clear(a)}
¢ The book calls this Result(s,a)
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Executability of Plans

® Plan: a sequence of actions t = (a, ..., a,)

® Aplann=(a,, ..., a,)1s executable in the state s, 1f
» a, 1s executable 1n s, producing some state s, = v (s,,a,)
» a,1s executable in s, producing some state s, = v(s,,a,)
» ...

» a,1s executable in s, ,, producing some state s, = y(s, ;,a,)

n—1»

® In this case, we define y (s, ) = s,

® Example on next slide

cl

a ‘b‘
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handempty}

n = (unstack(c,a), putdown(c), pickup(b), stack(b,a))

s = {ontable(a), on(c,a), clear(c), ontable(b),clear(b),

unstack(c,a)
Precond: on(c,a), clear(c), handempty
Effects: -on(c,a), —clear(c), ~handempty,
holding(c), clear(a)

-

putdown(c)
Precond: holding(c)
Effects: -holding(c), ontable(c), clear(c),
handempty

pickup(b)
Precond: ontable(b), clear(b), handempty
Effects: -ontable(b), —clear(b),
-handempty, holding(b)

stack(b,a)
Precond: holding(b), clear(a)
Effects: -holding(b), —clear(a), on(b,a),
clear(b), handempty

5
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Problems and Solutions

® Planning problem: a triple P = (O, s, g)
¢ O 1s a set of operators
® s, 1s the initial state - a set of atoms
¢ o 1s the goal formula - a set of literals

® Every state that satisfies g 1s a goal state

® A plan z 1s a solution for P=(0O,s,,g) 1t
¢ 1 1s executable 1n s,

¢ the resulting state y(s,,m) satisfies g
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Example

® O = {stack(x,y), unstack(x,y), pickup(x), putdown(x)}

el ]
® s5,= {ontable(a), on(c,a), clear(c),

’ ontable(b), clear(b), handempty} _3M_
® g ={on(ab)} 2

® One of the solutions is
¢ 1= (unstack(c,a), putdown(c), pickup(a), stack(a,b))
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Complexity of Planning

Given a classical planning problem P, does it have a solution?
¢ PSPACE-complete (much harder than NP-complete)

Given a classical planning problem P and an integer k, is there a solution of
length k or less?

¢ Again PSPACE-complete

Suppose we add function symbols to the language
Given a planning problem P, does it have a solution?
¢ Undecidable

Given a planning problem P and an integer £, is there a solution of length & or
less?

¢ Decidable, NEXPTIME-complete

CMSC 41: Chapter 10
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Forward Search

Go forward from the 1nitial state

Breadth-first and best-first

¢ Sound: if they return a plan,
then the plan is a solution

¢ Complete: 1f a problem has a solution, then they will return one
¢ Usually not practical because they require too much memory
» Memory requirement is exponential in the length of the solution

Depth-first search, greedy search

¢ More practical to use

¢ Worst-case memory requirement is linear in the length of the solution

¢ Sound but not complete
But classical planning has only finitely many states

¢ Thus, can make depth-first search complete by doing loop-checking

The book also discusses backward search, but I'll skip it
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Reducing Search Space Size

Suppose there were 450 blocks rather than 5 ell ¢ —
Search space size is more than 10109 1l a ‘ b ‘
¢ Most of the states are completely irrelevant

for whatever goal we might want to achieve
¢ A search algorithm might waste time trying many of them
How to reduce the size of the search space?
One approach:
¢ First create a relaxed problem
» Remove some restrictions of the original problem
e Want the relaxed problem to be easy to solve (polynomial time)

» The solutions to the relaxed problem will include all solutions to the
original problem

¢ Then do a modified version of the original search

» Restrict its search space to include only those actions that occur in
solutions to the relaxed problem
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Graphplan
procedure Graphplan:
® fork=0,1,2,...

~

» create a “planning graph” that contains k£ “levels” relaxed

¢ Graph expansion:

¢ Check whether the planning graph satisfies a necessary problem
(but insufficient) condition for plan existence Y

o Ifit does, then possible  possible
literals actions

in state s; in state s;

» do solution extraction:

e backward search,
modified to consider
only the actions in
the planning graph ® -

e 1f we find a solution,
then return it
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The Planning Graph

® Scarch space for a relaxed version of the planning problem

® Alternating layers of ground literals and actions

¢ Nodes at action-level i: actions that might be possible to execute at time i

¢ Nodes at state-level i: literals that might possibly be true at time i

¢ Edges: preconditions and effects

state-level i-1

action-level i

state-level i

state-level O (the literals true in s,) \

preconditions

Maintenance action: for the case
where a literal remains unchanged

effects
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Example
® Due to Dan Weld (U. of Washington)

® Suppose you want to prepare dinner as a surprise for your sweetheart (who is
asleep)

s, = {garbage, cleanHands, quiet}

g = {dinner, present, —garbage}

Action Preconditions Effects

cook() cleanHands dinner

wrap() quiet present

carry() none -~garbage, -cleanHands
dolly() none —~garbage, —quiet

Also have the maintenance actions: one for each literal
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Example (continued)

® state-level O:

{all atoms in s,} U state-level O | action-level 1 | state-level 1
{negations of all atoms not in s} garb o
S ar
@ action-level I: carry J
{all actions whose preconditions garb
are satisfied and non-mutex in s} dolly
® state-level I: cleant L= .
{all effects of all of the \ 1 cleanH
actions in action-level 1} cook
quiet . E— quiet
Action _Preconditions Effects \ wrap
. 1 qui
cook() cleanHands dinner quiet
wrap() quiet present dinner
carry() none —~garbage, -cleanHands
dolly() none ~garbage, -quiet present
Also have the maintenance actions —dinner — —dinner
- present —1 — present
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Mutual Exclusion

O » O
\ \

O B O I<o

0 \o O 0 O

O O 0 CO O

o B—C -—O O B—0

o/ O O O
Inconsistent Interference Competing
Effects Needs

® Two actions at the same action-level are mutex if

Inconsistent
Support

¢ [nconsistent effects: an effect of one negates an effect of the other

& Interference: one deletes a precondition of the other

¢ Competing needs: they have mutually exclusive preconditions

® Otherwise they don't interfere with each other
¢ Both may appear in a solution plan

® Two literals at the same state-level are mutex if
& Inconsistent support: one 1s the negation of the other, /

or all ways of achieving them are pairwise mutex

\

Recursive
propagation
of mutexes
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Example (continued)

® Augment the graph to indicate mutexes .
, , , state-level O | action-level 1 | state-level 1
® carry is mutex with the maintenance
act1on. for garbage (inconsistent effects) garb — garb
® dolly is mutex with wrap carry \
¢ interference —1garb
e : dolly
O quz.et 1S @utex with present cleanH cleanH
¢ 1nconsistent support
® cach of cook and wrap 1s mutex with TcleanH
a maintenance operation .
quiet quiet
Action _Preconditions Effects Tquiet
cook() cleanHands dinner |
wrap() quiet present dinner
carry() none —~garbage, -cleanHands present
dolly() none —~garbage, —quiet
Also have the maintenance actions —dinner —dinner
- present —1 — present
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Example (continued)

Check to see whether there's a possible
solution

Recall that the goal is

& {-garbage, dinner, present}
Note that in state-level 1,

¢ All of them are there

¢ None are mutex with each other
Thus, there's a chance that a plan exists
Try to find it

¢ Solution extraction

state-level O

action-level 1

state-level 1

garb

cleanH .

quiet

= dinner

=1 present

CMSC 41: Chapter 10
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Solution Extraction

The set of goals we are

trying to achieve \ / The level of the state s,

procedure Solution-extraction(g,;)

A real action or a maintenance action

if /=0 then return the solution
for each literal /in g /

nondeterministically choose an action
to use in state s ; | to achieve / state-  action-  state-

if any pair of chosen actions are mutex 1§V31 level le\{el
then backtrack i-1 ! !

g' = {the preconditions of
the chosen actions}

Solution-extraction(g’, j—1) ®

end Solution-extraction
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Example (continued)

® Two sets of actions for the goals at

state-level 1
® Neither of them works

¢ Both sets contain actions that are

mutex

state-level 0 | action-level 1 | state-level 1

garb s s Jarb

carr
J—\>(Tgan

cleanH - :|:|:= cleanH

| “1cleanH
| cook
quiet ; : quiet
“1quiet

inner)
present

= dinner S— —dinner

=1 present S— — present
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Recall what the algorithm does

procedure Graphplan:
® fork=0,1,2,...
¢ Graph expansion:
» create a " planning graph” that contains k “levels”

¢ Check whether the planning graph satisfies a necessary
(but insufficient) condition for plan existence
¢ If it does, then
» do solution extraction:

* backward search,
modified to consider
only the actions in
the planning graph

e 1f we find a solution,
then return 1t
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Example (continued)

state-level 0 | action-level 1 | state-level 1

action-level 2

state-level 2

® Go back and do
more graph
expansion

Generate another
action-level

and another state-
level

garb .

: garb-\
T1garb

. cleanHw=

cleanH

quiet -

e

presen

—dinner —dinner

—1present - presen/

CMSC 41: Chapter 10
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rquiet\
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= dinner
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Example (continued)

state-level 0

action-level 1

state-level 1

action-level 2

state-level 2

® Solution
extraction

garb .

® Twelve combinations
at level 4

¢ Three ways to
achieve —garb

¢ Two ways to
achieve dinner

quiet -

¢ Two ways to
achieve present

= dinner

—1present

cleanH

: garb-\
T1garb

. cleanHw=

presen

= dinner

— presen

/

-garb

: cleanH\
v T1cleanH
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Example (continued)

state-level O | action-level 1 | state-level 1 | action-level 2 | state-level 2

garb

carr
® Several of the
combinations look dleanH ] dolly,
OK at level 2 |
® Here's one of them
quiet = : ;
wrap
- et
dinner dinner
present

present; —

= dinner — = dinner —1 = dinner
/ ——

—1present

— - presen = present
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Example (continued)

state-level O | action-level 1 | state-level 1 | action-level 2 | state-level 2

, garb - garb s garb
® Call Solution- carr }
Extraction —1garb
recursively at dolly,
level 2 cleanH cleanHX—g ’ \
® It succeeds T1cleanHiie= ey, T CleanH
® Solution whose _ cook ; \ .
parallel length feiiss wrap quier
18 2 Tquiet | | “1quie
dinner dinner
presentder—— present
—dinner — = dinner — —dinner
— present — = presenl/ — — present
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Back to Forward Search

do
initial state goal

® Earlier, I said
¢ Forward search can waste time trying lots of irrelevant actions (see above)

» pickup(a,), pickup(a,) , ..., pickup(as)
¢ Need a good heuristic to guide the search

® We can use planning graphs to compute such a heuristic
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Getting Heuristic Values from
a Planning Graph

® Recall how GraphPlan works:

loop
Graph expansion: this takes polynomial time

extend a “planning graph” forward from the initial state
until we have achieved a necessary (but insufficient) condition
for plan existence

this takes exponential time

Solution extraction:
search backward from the goal, looking for a correct plan
if we find one, then return it

repeat
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Using Planning Graphs to Compute h(s)

® In the graph, there are alternating ° - | .+1

layers of ground literals and actions 9 ...0 — ® -
® The number of “action” layers is a lower

bound on the number of actions in the plan o — ¢ ...
® Construct a planning graph, starting at s N ——
® As(s,g) = level of the first layer that —@

“possibly achieves” the goal o .. — o

¢ Some ways to improve this, but

I'll skip the details
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The FastForward Planner

® Use a heuristic function 4(s) similar to As(s,g) /\O
® Don't want an A*-style search (takes too much memory)

® Instead, use a greedy procedure:

until we have a solution, do
expand the current state s
S := the child of s for which h(s) is smallest
(i.e., the child we think is closest to a solution)
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The FastForward Planner

Use a heuristic function /4(s) similar to As(s,2) /\O
Don't want an A*-style search (takes too much memory)

Instead, use a greedy procedure:

until we have a solution, do °
expand the current state s
S := the child of s for which h(s) is smallest
(i.e., the child we think is closest to a solution)
Problem: can get caught in local minima |
L X

¢ /A(s") > h(s) for every successor s’ of s

¢ Escape by doing a breadth-first search until you find a node with lower
cost

Problem: can hit a dead end - 1n this case, FF fails
No guarantee on whether FF will find a solution, or how good a solution
¢ But FF works quite well on many classical planning problems
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International Planning Competitions

® International planning competitions in 1998, 2002, 2004, 2006, 2008

¢ Many of the planners in these competitions have incorporated ideas from
GraphPlan and FastForward

® Graphplan was developed in 1995

& Several years before the competitions started

® FastForward was introduced in the 2000 International Planning Competition
¢ [t got one of the two top awards

& Large variation in how good or bad its plans were, but it found them very
quickly
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