Section 11.2: Hierarchical Planning

Dana S. Nau

CMSC 421, Fall 2012

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Motivation

® For some planning problems, we may already have ideas about good ways
to solve them
® Example: travel to a destination that's far away:

¢ Domain-independent planner:
» many combinations vehicles and routes

¢ Experienced human: small number of “recipes”
e.g., flying:
1. buy ticket from local airport to remote airport
2. travel to local airport
3. fly to remote airport
4. travel to final destination

® How to get planning systems to use such recipes?
¢ General approach: Hierarchical Task Network (HTN) planning

¢ We'll look at a simpler special case: Task-List Planning

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Task-List Planning

@ States and operators: same as in classical planning
® Instead of achieving a goal, we will want to accomplish a list of tasks
¢ Recursively decompose tasks into smaller and smaller subtasks

¢ At the bottom, actions that we know how to accomplish directly

® Task: an expression of the form #(u,...,u,)

® {1s a task symbol, and each u; 1s a term

® Two kinds of task symbols (and tasks):
& primitive: tasks that we know how to execute directly
» task symbol is the head of an operator
¢ nonprimitive: tasks that must be decomposed into subtasks
» use methods (next slide)

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Methods

® Method: a 4-tuple m = (head, task, precond, subtasks)
¢ head: the method's name, followed by list of variable symbols (x,....x,)

& task: a nonprimitive task

& precond: preconditions (literals)

& subtasks: a sequence of tasks (z,, ..

air-travel(x,y,u,v)

task: travel(x,y)

L 1)

precond: far(X,y), airport(x,u), airport(y,v)

subtasks: get-ticket(u,v), travel(x,u),
fly(u,v), travel(v,y)

air-travel(x,y,u,v

travel(x,y)

Precond: far(x,y), airport(x,u), airport(y,v)

axi-travel(x,

[~N

Precond: —far(x,y)

get-ticket (u,v) ||travel (x, u)|| fly (u,v)

travel (v,y) | jget-taxi

ride-taxi(x,y)||pay-driver

Dana Nau: CMSC 421, U. of Maryland

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Domains, Problems, Solutions

® Task-list planning domain: methods, operators

® Task-list planning problem: methods, operators, 1nitial state, initial
task list

@ Solution: any executable plan nonprimitive task

that can be generated by @

recursively applying

¢ methods to precond
nonprimitive tasks e

primitive task primitive task

¢ operators to

rimitive tasks g g
P @erator inst@ @erator inst@
Z N\ 7\

Sy | |precond| |effects| |s,| |precond| |effects| |s,

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Example
Task: travel from UMD to UCLA

® Use air-travel method

® Use taxi-travel method for travel(UMD,UCLA)« ~~ "~
some of the subtasks /

® The other subtasks B
(get-taxi, efc.) @el(UMD,UCLA a-
2 . r

are primitive

_ honprimitive task

_-method instance

Precond: far(UMD,UCLA),
airport(UMD,BWI),
airport(LAX,UCLA)

4 \
/ \

oet-ticket (UMD, UCLA]|travel (UMD,BWI) |ffly (BWI,LAX)|travel (LAX,UCLA)

/ l
@avel(UMD,B@ @avel(LAX,U@
v

+
Precond: —far(UMD,BWI) Precond: —far(LAX,UCLA)

»
>

[
-

»
»

get-taxi || ride-taxi (UMD,BWI) || pay-driver | | get-taxi || ride-taxi (LAX,UCLA) || pay-driver

Dana Nau: CMSC 421, U. of Maryland 6
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Solving Task-List Planning Problems

® TFD(s,(t,,....t,))
¢ 1f /=0 (1.e., no tasks) then return the empty plan
¢ clse 1f there 1s an action a such that head(a) = ¢, then
» 1f s satisfies precond(a) then
e return TFD(y(s,t)),(%5,...,t;))
» else return failure
¢ clse state

» A= {m : mis a method instance such that
task(m)=t¢,, and s satisties precond(m)}

» 1f active 1s empty then return failure
» nondeterministically choose m in 4
» letu,..., u; be m's subtasks

» return TFD(s, (u,..., U byy ooy 1))

Dana Nau: CMSC 421, U. of Maryland

state s; task list T=(

t

actionl a

Y(s,a)|; task list T=(t,, ..

task list T=(

method instance

t

m

..

task list TZ(‘ul,...,uj It,,...

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

..

)

)

)

® TFD(s,(t,,....t,)

¢ 1f /=0 (1.e., no tasks) then return the empty plan
¢ clse if there 1s an action a such that head(a) = ¢, then

Example

» 1f s satisfies precond(a) then
e return TFD(y(s,t)),(%5,...,t;))
» else return failure

¢ clse

» A= {m : m1is a method instance such that

task(m)=t,, and s satisfies precond(m)}
» 1f active 1s empty then return failure

» nondeterministically choose m in A4

» letu,..., u; be m's subtasks
» return TFD(s, (u,..., U byy ooy 1))

air-travel(x,y,u,v

Precond: far(x,y), airport(x,u), airport(y,v)

[

AN

S, :| far(UMD,UCLA),

airport(UMD,BWI),
airport(UCLA,LAX)

(travel(UMD,UCLA))

apply
air-travel
method:

(get-ticket (UMD,UCLA)

travel (UMD,BWI)
fly (BWI,LAX)
travel (LAX,UCLA))

apply | far(UMD,UCLA),

get-

apply

taxi-travel

method:

airport(UMD,BWI),

ticket | airport(UCLA,LAX)
action:| ticket(UCLA,LAX)

(get-taxi
ride-taxi(UMD,BWI)
pay-driver
fly (BWI,LAX)
travel (LAX,UCLA))

Precond: —far(x,y)

get-ticket (u,v) ||travel (x, u)

fly (u,v)

travel (v,y)

oet-taxi

ride-taxi(x,y)

pay-driver

Comparison to Classical Planners

® Advantages:

¢ Can encode “recipes” (standard ways do planning in a given
domain) as collections of methods and operators

» Helps the planning system do more-intelligent search - can
speed up planning by many orders of magnitude (e.g.,
polynomial time versus exponential time)

» Produces plans that correspond to how a human might solve
the problem

¢ Greater expressive power
» Preconditions and effects aren’t limited to just sets of literals
® Disadvantages:
¢ More complicated than just writing classical operators
¢ The author needs knowledge about planning in the given domain

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

SHOP and SHOP2

® SHOP and SHOP2:
¢ http://www.cs.umd.edu/projects/shop
¢ Generalized versions of TFD
¢ SHOP2 an award in the AIPS-2002 Planning Competition
® Freeware, open source
¢ Downloaded more than 13,000 times — I stopped keeping track
¢ Used in hundreds (thousands?) of projects worldwide

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

10

method travel-by-foot (a,x,))

precond: distance(z,y) < 2 HTN planning with
task: travel(a, z,y) .
subtasks: walk(a, z,7) state variables

precond: cash(a) > 1.5+ 0.5 x distance(z,y)
subtasks: (call-taxi(a,x), ride(a, z,y), pay-driver(a, z,y))

method travel-by-taxi(a,x,y)
task: travel(a, z, y) @ :

operator walk(a,x,y)

precond: location(a) = ® Simple travel-planning domain
effects: location(a) —y ¢ Go from one location to another

® Represent states as collections of variables

¢ Equivalent expressive power, but easier
to understand

operator call-taxi(a, x)
effects: location(taxi) «— x

operator ride-taxi(a,x,y)
precond: location(taxi) = z, location(a) = x
effects: location(taxi) «— y, location(a) «— y

operator pay-driver(a, z,y)
precond: cash(a) > 1.5+ 0.5 x distance(z, y)
effects: cash(a) <« cash(a) — 1.5 + 0.5 x distance(z,y) d

g . |lam at home, | have $20,
Plannlng Problem. | want to go to a park 8 miles away

Initial task: | travel(me,home,park) @ —>

. home park
travel-by-foot

Precond: distance(home,park) <2 | | Precond: cash(me)> 1.50 + 0.50*distance(home,park)
|

Z
< Precondition fails > < Precondition succeeds >
ecomposition into subtasks

1 1 |
.: Precond: ... Precond: ... Precond: ... /
’.' Effects: ... /!

Effects: ... Effects: ...

call-taxi(me,home) @ ride(me,home,park) @ pay-driver(me,home,park) @
] |

?So: S| = 1527 183=
1{location(me)=home, {location(me)=home, ! {locatl.on(me?=park, E {locat}on(mekpark,

i cash(me)=20, location(taxi)=home, . location(taxi)=park, E location(taxi)=park,

. distance(home,park)=8}| cash(me)=20, . cash(me)=20, E cash(me)=14.50,
"""""""""""" - di —g1 1 distance(h k)=8} | distance(home,park)=8
pana s OMSC 421, U.of gt iStance(home park)=8 | distance(home.park)78} | distance(home,park)=8)

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/lice

Pyhop

® A simple HTN planner written in Python; works in Python 2.7 and 3.2
® Somewhat similar to SHOP
® The main differences:
¢ HTN operators and methods are Python functions
¢ States are collections of variables, not logical atoms.
» Instead of writing on(a,b), you might write something like loc[a] = b

¢ The current state 1s a python object; must refer to it explicitly in the operator
and method definitions

» In the above example, what you would really write is state.loc[a] = b
¢ You can define a goal as a python object

» You might write goal.loc[a] = b to specify that your goal of having block
a on block b

» Pyhop doesn't explicitly check to see if the goal is achieved, but you can
use it to hold information that you might want to use in your operators
and methods

Dana Nau: CMSC 421, U. of Maryland 13
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

