
Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 1

Section 11.2: Hierarchical Planning

Dana S. Nau

CMSC 421, Fall 2012

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 2

Motivation
  For some planning problems, we may already have ideas about good ways

to solve them
  Example: travel to a destination that's far away:

  Domain-independent planner:
»  many combinations vehicles and routes

  Experienced human: small number of “recipes”
e.g., flying:

1.  buy ticket from local airport to remote airport
2.  travel to local airport
3.  fly to remote airport
4.  travel to final destination

  How to get planning systems to use such recipes?
  General approach: Hierarchical Task Network (HTN) planning
  We'll look at a simpler special case: Task-List Planning

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 3

Task-List Planning
  States and operators: same as in classical planning
  Instead of achieving a goal, we will want to accomplish a list of tasks

  Recursively decompose tasks into smaller and smaller subtasks
  At the bottom, actions that we know how to accomplish directly

  Task: an expression of the form t(u1,…,un)
  t is a task symbol, and each ui is a term

  Two kinds of task symbols (and tasks):
  primitive: tasks that we know how to execute directly

»  task symbol is the head of an operator
  nonprimitive: tasks that must be decomposed into subtasks

»  use methods (next slide)

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 4

Methods
  Method: a 4-tuple m = (head, task, precond, subtasks)

  head: the method's name, followed by list of variable symbols (x1,…,xn)
  task: a nonprimitive task
  precond: preconditions (literals)
  subtasks: a sequence of tasks 〈t1, …, tk〉

air-travel(x,y,u,v)
 task: travel(x,y)
 precond: far(x,y), airport(x,u), airport(y,v)
 subtasks: get-ticket(u,v), travel(x,u),

 fly(u,v), travel(v,y) travel(x,y)

get-ticket (u,v) travel (x, u) fly (u,v) travel (v,y) get-taxi ride-taxi(x,y) pay-driver

Precond: far(x,y), airport(x,u), airport(y,v) Precond: ¬far(x,y)

taxi-travel(x,y) air-travel(x,y,u,v)

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 5

Domains, Problems, Solutions
  Task-list planning domain: methods, operators
  Task-list planning problem: methods, operators, initial state, initial

task list

  Solution: any executable plan
that can be generated by
recursively applying
  methods to

nonprimitive tasks
  operators to

primitive tasks

nonprimitive task

precond

method instance

s0 precond effects precond effects s1 s2

primitive task primitive task

operator instance operator instance

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 6

method instance

travel(UMD,UCLA)

get-ticket (UMD,UCLA) travel (UMD,BWI) fly (BWI,LAX) travel (LAX,UCLA)

nonprimitive task

Precond: far(UMD,UCLA),
airport(UMD,BWI),

airport(LAX,UCLA)

get-taxi ride-taxi (UMD,BWI) pay-driver

Precond: ¬far(UMD,BWI)

get-taxi ride-taxi (LAX,UCLA) pay-driver

Precond: ¬far(LAX,UCLA)

Example
Task: travel from UMD to UCLA
  Use air-travel method
  Use taxi-travel method for

some of the subtasks
  The other subtasks

(get-taxi, etc.)
are primitive

taxi-travel(UMD,BWI) taxi-travel(LAX,UCLA)

air-travel(UMD,UCLA)

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 7

Solving Task-List Planning Problems
  TFD(s,(t1,…,tk))

  if k=0 (i.e., no tasks) then return the empty plan
  else if there is an action a such that head(a) = t1 then

»  if s satisfies precond(a) then
•  return TFD(γ(s,t1),(t2,…,tk))

»  else return failure
  else

»  A = {m : m is a method instance such that
 task(m)=t1, and s satisfies precond(m)}

»  if active is empty then return failure
»  nondeterministically choose m in A
»  let u1…, uj be m's subtasks
»  return TFD(s, (u1…, uj, t2, …, tk))

state s; task list T=(t1 ,t2,…)

 action a

state γ(s,a) ; task list T=(t2, …)

task list T=(u1,…,uj ,t2,…)

 task list T=(t1 ,t2,…)

 method instance m

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 8

Example
  TFD(s,(t1,…,tk))

  if k=0 (i.e., no tasks) then return the empty plan
  else if there is an action a such that head(a) = t1 then

»  if s satisfies precond(a) then
•  return TFD(γ(s,t1),(t2,…,tk))

»  else return failure
  else

»  A = {m : m is a method instance such that
 task(m)=t1, and s satisfies precond(m)}

»  if active is empty then return failure
»  nondeterministically choose m in A
»  let u1…, uj be m's subtasks
»  return TFD(s, (u1…, uj, t2, …, tk))

〈travel(UMD,UCLA)〉

get-ticket (u,v) travel (x, u) fly (u,v) travel (v,y) get-taxi ride-taxi(x,y) pay-driver

Precond: far(x,y), airport(x,u), airport(y,v) Precond: ¬far(x,y)

s0 : far(UMD,UCLA),
airport(UMD,BWI),
airport(UCLA,LAX)

task
list:

〈get-ticket (UMD,UCLA)
travel (UMD,BWI)

fly (BWI,LAX)
travel (LAX,UCLA)〉

apply
get-
ticket
action:

far(UMD,UCLA),
airport(UMD,BWI),
airport(UCLA,LAX)
ticket(UCLA,LAX)

apply
air-travel
method:

〈get-taxi
ride-taxi(UMD,BWI)

pay-driver
fly (BWI,LAX)

travel (LAX,UCLA)〉

apply
taxi-travel
method:

air-travel(x,y,u,v) taxi-travel(x,y)

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 9

Comparison to Classical Planners
  Advantages:

  Can encode “recipes” (standard ways do planning in a given
domain) as collections of methods and operators

» Helps the planning system do more-intelligent search - can
speed up planning by many orders of magnitude (e.g.,
polynomial time versus exponential time)

»  Produces plans that correspond to how a human might solve
the problem

  Greater expressive power
»  Preconditions and effects aren’t limited to just sets of literals

  Disadvantages:
  More complicated than just writing classical operators
  The author needs knowledge about planning in the given domain

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 10

SHOP and SHOP2

  SHOP and SHOP2:
  http://www.cs.umd.edu/projects/shop
  Generalized versions of TFD
  SHOP2 an award in the AIPS-2002 Planning Competition

  Freeware, open source
  Downloaded more than 13,000 times – I stopped keeping track
  Used in hundreds (thousands?) of projects worldwide

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 11

HTN planning with
state variables

  Simple travel-planning domain
  Go from one location to another

  Represent states as collections of variables
  Equivalent expressive power, but easier

to understand

(a,x,y)

(a,x,y)

(a,x,y)

(a,x,y)

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 12

Precond: distance(home,park) ≤ 2 Precond: cash(me) ≥ 1.50 + 0.50*distance(home,park)

Initial task: travel(me,home,park)

Precondition succeeds

travel-by-foot travel-by-taxi

Precondition fails
Decomposition into subtasks

home" park"

Planning Problem: I am at home, I have $20, 
I want to go to a park 8 miles away"

Initial
 state

call-taxi(me,home) ride(me,home,park) pay-driver(me,home,park)

Precond: …
Effects: …

Precond: …
Effects: …

Precond: …
Effects: …

 s1 =
{location(me)=home,
 location(taxi)=home,
 cash(me)=20,
 distance(home,park)=8}

 s0 =
{location(me)=home,
 cash(me)=20,
 distance(home,park)=8}

 s2 =
{location(me)=park,
 location(taxi)=park,
 cash(me)=20,
 distance(home,park)=8}

 s3 =
{location(me)=park,
 location(taxi)=park,
 cash(me)=14.50,
 distance(home,park)=8}

Final
state

 s1 s2 s3 s0

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 13

Pyhop
  A simple HTN planner written in Python; works in Python 2.7 and 3.2
  Somewhat similar to SHOP
  The main differences:

  HTN operators and methods are Python functions
  States are collections of variables, not logical atoms.

»  Instead of writing on(a,b), you might write something like loc[a] = b
  The current state is a python object; must refer to it explicitly in the operator

and method definitions
»  In the above example, what you would really write is state.loc[a] = b

  You can define a goal as a python object
»  You might write goal.loc[a] = b to specify that your goal of having block

a on block b
»  Pyhop doesn't explicitly check to see if the goal is achieved, but you can

use it to hold information that you might want to use in your operators
and methods

