
Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 1

Section 11.2: Hierarchical Planning

Dana S. Nau

CMSC 421, Fall 2012

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 2

Motivation
  For some planning problems, we may already have ideas about good ways

to solve them
  Example: travel to a destination that's far away:

  Domain-independent planner:
»  many combinations vehicles and routes

  Experienced human: small number of “recipes”
e.g., flying:

1.  buy ticket from local airport to remote airport
2.  travel to local airport
3.  fly to remote airport
4.  travel to final destination

  How to get planning systems to use such recipes?
  General approach: Hierarchical Task Network (HTN) planning
  We'll look at a simpler special case: Task-List Planning

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 3

Task-List Planning
  States and operators: same as in classical planning
  Instead of achieving a goal, we will want to accomplish a list of tasks

  Recursively decompose tasks into smaller and smaller subtasks
  At the bottom, actions that we know how to accomplish directly

  Task: an expression of the form t(u1,…,un)
  t is a task symbol, and each ui is a term

  Two kinds of task symbols (and tasks):
  primitive: tasks that we know how to execute directly

»  task symbol is the head of an operator
  nonprimitive: tasks that must be decomposed into subtasks

»  use methods (next slide)

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 4

Methods
  Method: a 4-tuple m = (head, task, precond, subtasks)

  head: the method's name, followed by list of variable symbols (x1,…,xn)
  task: a nonprimitive task
  precond: preconditions (literals)
  subtasks: a sequence of tasks 〈t1, …, tk〉

air-travel(x,y,u,v)
 task: travel(x,y)
 precond: far(x,y), airport(x,u), airport(y,v)
 subtasks: get-ticket(u,v), travel(x,u),

 fly(u,v), travel(v,y) travel(x,y)

get-ticket (u,v) travel (x, u) fly (u,v) travel (v,y) get-taxi ride-taxi(x,y) pay-driver

Precond: far(x,y), airport(x,u), airport(y,v) Precond: ¬far(x,y)

taxi-travel(x,y) air-travel(x,y,u,v)

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 5

Domains, Problems, Solutions
  Task-list planning domain: methods, operators
  Task-list planning problem: methods, operators, initial state, initial

task list

  Solution: any executable plan
that can be generated by
recursively applying
  methods to

nonprimitive tasks
  operators to

primitive tasks

nonprimitive task

precond

method instance

s0 precond effects precond effects s1 s2

primitive task primitive task

operator instance operator instance

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 6

method instance

travel(UMD,UCLA)

get-ticket (UMD,UCLA) travel (UMD,BWI) fly (BWI,LAX) travel (LAX,UCLA)

nonprimitive task

Precond: far(UMD,UCLA),
airport(UMD,BWI),

airport(LAX,UCLA)

get-taxi ride-taxi (UMD,BWI) pay-driver

Precond: ¬far(UMD,BWI)

get-taxi ride-taxi (LAX,UCLA) pay-driver

Precond: ¬far(LAX,UCLA)

Example
Task: travel from UMD to UCLA
  Use air-travel method
  Use taxi-travel method for

some of the subtasks
  The other subtasks

(get-taxi, etc.)
are primitive

taxi-travel(UMD,BWI) taxi-travel(LAX,UCLA)

air-travel(UMD,UCLA)

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 7

Solving Task-List Planning Problems
  TFD(s,(t1,…,tk))

  if k=0 (i.e., no tasks) then return the empty plan
  else if there is an action a such that head(a) = t1 then

»  if s satisfies precond(a) then
•  return TFD(γ(s,t1),(t2,…,tk))

»  else return failure
  else

»  A = {m : m is a method instance such that
 task(m)=t1, and s satisfies precond(m)}

»  if active is empty then return failure
»  nondeterministically choose m in A
»  let u1…, uj be m's subtasks
»  return TFD(s, (u1…, uj, t2, …, tk))

state s; task list T=(t1 ,t2,…)

 action a

state γ(s,a) ; task list T=(t2, …)

task list T=(u1,…,uj ,t2,…)

 task list T=(t1 ,t2,…)

 method instance m

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 8

Example
  TFD(s,(t1,…,tk))

  if k=0 (i.e., no tasks) then return the empty plan
  else if there is an action a such that head(a) = t1 then

»  if s satisfies precond(a) then
•  return TFD(γ(s,t1),(t2,…,tk))

»  else return failure
  else

»  A = {m : m is a method instance such that
 task(m)=t1, and s satisfies precond(m)}

»  if active is empty then return failure
»  nondeterministically choose m in A
»  let u1…, uj be m's subtasks
»  return TFD(s, (u1…, uj, t2, …, tk))

〈travel(UMD,UCLA)〉

get-ticket (u,v) travel (x, u) fly (u,v) travel (v,y) get-taxi ride-taxi(x,y) pay-driver

Precond: far(x,y), airport(x,u), airport(y,v) Precond: ¬far(x,y)

s0 : far(UMD,UCLA),
airport(UMD,BWI),
airport(UCLA,LAX)

task
list:

〈get-ticket (UMD,UCLA)
travel (UMD,BWI)

fly (BWI,LAX)
travel (LAX,UCLA)〉

apply
get-
ticket
action:

far(UMD,UCLA),
airport(UMD,BWI),
airport(UCLA,LAX)
ticket(UCLA,LAX)

apply
air-travel
method:

〈get-taxi
ride-taxi(UMD,BWI)

pay-driver
fly (BWI,LAX)

travel (LAX,UCLA)〉

apply
taxi-travel
method:

air-travel(x,y,u,v) taxi-travel(x,y)

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 9

Comparison to Classical Planners
  Advantages:

  Can encode “recipes” (standard ways do planning in a given
domain) as collections of methods and operators

» Helps the planning system do more-intelligent search - can
speed up planning by many orders of magnitude (e.g.,
polynomial time versus exponential time)

»  Produces plans that correspond to how a human might solve
the problem

  Greater expressive power
»  Preconditions and effects aren’t limited to just sets of literals

  Disadvantages:
  More complicated than just writing classical operators
  The author needs knowledge about planning in the given domain

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 10

SHOP and SHOP2

  SHOP and SHOP2:
  http://www.cs.umd.edu/projects/shop
  Generalized versions of TFD
  SHOP2 an award in the AIPS-2002 Planning Competition

  Freeware, open source
  Downloaded more than 13,000 times – I stopped keeping track
  Used in hundreds (thousands?) of projects worldwide

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 11

HTN planning with
state variables

  Simple travel-planning domain
  Go from one location to another

  Represent states as collections of variables
  Equivalent expressive power, but easier

to understand

(a,x,y)

(a,x,y)

(a,x,y)

(a,x,y)

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 12

Precond: distance(home,park) ≤ 2 Precond: cash(me) ≥ 1.50 + 0.50*distance(home,park)

Initial task: travel(me,home,park)

Precondition succeeds

travel-by-foot travel-by-taxi

Precondition fails
Decomposition into subtasks

home" park"

Planning Problem: I am at home, I have $20, 
I want to go to a park 8 miles away"

Initial
 state

call-taxi(me,home) ride(me,home,park) pay-driver(me,home,park)

Precond: …
Effects: …

Precond: …
Effects: …

Precond: …
Effects: …

 s1 =
{location(me)=home,
 location(taxi)=home,
 cash(me)=20,
 distance(home,park)=8}

 s0 =
{location(me)=home,
 cash(me)=20,
 distance(home,park)=8}

 s2 =
{location(me)=park,
 location(taxi)=park,
 cash(me)=20,
 distance(home,park)=8}

 s3 =
{location(me)=park,
 location(taxi)=park,
 cash(me)=14.50,
 distance(home,park)=8}

Final
state

 s1 s2 s3 s0

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 13

Pyhop
  A simple HTN planner written in Python; works in Python 2.7 and 3.2
  Somewhat similar to SHOP
  The main differences:

  HTN operators and methods are Python functions
  States are collections of variables, not logical atoms.

»  Instead of writing on(a,b), you might write something like loc[a] = b
  The current state is a python object; must refer to it explicitly in the operator

and method definitions
»  In the above example, what you would really write is state.loc[a] = b

  You can define a goal as a python object
»  You might write goal.loc[a] = b to specify that your goal of having block

a on block b
»  Pyhop doesn't explicitly check to see if the goal is achieved, but you can

use it to hold information that you might want to use in your operators
and methods

