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Motivation

♦ Let action At = leave for airport t minutes before flight

• Will At get me there on time?

♦ Problems:

1) partial observability (road state, other drivers’ plans, etc.)

2) noisy sensors (radio traffic reports)

3) uncertainty in action outcomes (flat tire, etc.)

4) immense complexity of modelling and predicting traffic

♦ Hence a purely logical approach either

1) risks falsehood: “A25 will get me there on time”, or

2) leads to conclusions that are too weak for decision making:

� “A25 will get me there on time if there’s no accident on the bridge,
and it doesn’t rain,
and I don’t get a flat tire,
and . . .”
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Methods for handling uncertainty

♦ Default or nonmonotonic logic:
Assume my car does not have a flat tire
Assume A25 works unless contradicted by evidence

• What assumptions are reasonable? How to handle contradiction?

♦ Rules with fudge factors:
A25 7→0.3 AtAirportOnTime
Sprinkler 7→0.99 WetGrass
WetGrass 7→0.7 Rain

• Problems with combination, e.g., Sprinkler causes Rain?

♦ Probability
Given the available evidence, A25 will get me there on time with
probability 0.04

• Mahaviracarya (9th C.), Cardamo (1565) theory of gambling

� Note: Fuzzy logic handles degree of truth, not uncertainty
e.g., WetGrass is true to degree 0.2

CMSC 421: Chapter 13 3



Outline

♦ Probability

♦ Syntax and Semantics

♦ Inference

♦ Independence and Bayes’ Rule
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Probability

♦ Probabilistic assertions summarize effects of

• laziness: failure to enumerate exceptions, qualifications, etc.

• ignorance: lack of relevant facts, initial conditions, etc.

♦ Subjective or Bayesian probability:

• Probabilities relate propositions to one’s own state of knowledge
e.g., P (A25|no reported accidents) = 0.06

• They are not claims of a “probabilistic tendency” in the current situation

• They might be learned from past experience of similar situations

• Probabilities of propositions change with new evidence:
e.g., P (A25|no reported accidents, 5 a.m.) = 0.15
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Making decisions under uncertainty

♦ Suppose I believe the following:

P (A25 gets me there on time| . . .) = 0.04

P (A90 gets me there on time| . . .) = 0.70

P (A120 gets me there on time| . . .) = 0.95

P (A1440 gets me there on time| . . .) = 0.9999

• Which action to choose?

♦ Depends on both the probabilities and my preferences

• e.g., P(missing flight) vs. getting to airport early and waiting

♦ Utility theory (Chapter 16) is used to represent and infer preferences

♦ Decision theory = utility theory + probability theory
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Probability basics

♦ Begin with a set Ω called the sample space

♦ Each ω ∈ Ω is called a sample point, possible world, or atomic event

♦ Probability space or probability model:

• given a sample space Ω, assign a number P (ω) (the probability of ω)
to every atomic event ω ∈ Ω

♦ A probability space must satisfy the following properties:

� 0 ≤ P (ω) ≤ 1 for every ω ∈ Ω

�
∑

ω∈Ω P (ω) = 1

• e.g., for rolling a die,

� P (1) =P (2) =P (3) =P (4) =P (5) =P (6) = 1
6

� P (1) + P (2) + P (3) + P (4) + P (5) + P (6) = 1

♦ An event A is any subset of Ω

♦ P (A) =
∑

ω∈A P (ω)

• E.g., P (die roll < 4) = P (1) + P (2) + P (3) = 1
6 + 1

6 + 1
6 = 1

2
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Random variables

♦ A random variable is a function from sample points to some range

♦ The book uses capitalized words for random variables

• e.g., rolling the die: Odd(ω) =

{
true if ω is even,
false otherwise

♦ A probability distribution gives a probability for every possible value.

♦ If X is a random variable, then

• P (X =xi) =
∑
{P (ω) : X(ω) =xi}

↑
X here, not X(ω)

♦ E.g., P (Odd= true) = P (1) + P (3) + P (5) = 1
6 + 1

6 + 1
6 = 1

2
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Why use probability?

♦ The definitions imply that certain logically related events must have
related probabilities

• E.g., P (A = true ∨B = true)

= P (A = true) + P (B = true)− P (A = true ∧B = true)

>A     B

True

A B

♦ de Finetti (1931): an agent who bets according to probabilities that
violate the axioms of probability can be forced to bet so as to lose
money, regardless of the outcome

• Related to rational preferences, utility theory
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Propositions

♦ A random variable is Boolean or propositional if its range is {true, false}

♦ To represent the event that a propositional random variable is true,
we’ll use the corresponding lower-case word

♦ In the die example, Odd(ω) =

{
true if ω is even,
false otherwise

• P (odd) = P (Odd= true) = 1
6

• P (¬odd) = P (Odd= false) = 5
6

♦ Boolean formula = disjunction of the sample points in which it is true

• E.g., suppose that

� a is the event A = true

� b is the event B = true

• Then
(a ∨ b) ≡ (¬a ∧ b) ∨ (a ∧ ¬b) ∨ (a ∧ b)
P (a ∨ b) = P (¬a ∧ b) + P (a ∧ ¬b) + P (a ∧ b)
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Syntax for propositions

♦ Propositional or Boolean random variables

• e.g., Cavity (do I have a cavity in one of my teeth?)

• Cavity= true is a proposition, also written cavity

♦ Discrete random variables (finite or infinite)

• e.g., Weather = sunny, rain, cloudy, or snow

� Values must be exhaustive and mutually exclusive

• Weather= rain is a proposition

♦ Continuous random variables (bounded or unbounded)

• e.g., Temp= 21.6

• also allow propositions such as Temp < 22.0.

♦ Arbitrary Boolean combinations of basic propositions

• e.g., ¬cavity means Cavity= false

♦ Probabilities of propositions

• e.g., P (cavity) = 0.1 and P (Weather= sunny) = 0.72
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Syntax for probability distributions

♦ Represent a discrete probability distribution as a vector of probability
values that sum to 1:

• P(Weather) = 〈 0.72, 0.1, 0.08, 0.1 〉
• probabilities of sunny, rain, cloudy, snow

♦ If B is a Boolean random variable, then P(B) = 〈P (b), P (¬b)〉

♦ A joint probability distribution for a set of n random variables gives the
probability of every atomic event on those variables (i.e., every sample point)

• Represent it as an n-dimensional matrix

♦ e.g., P(Weather, Cavity):

Weather=
sunny rain cloudy snow

Cavity= true 0.144 0.02 0.016 0.02
Cavity= false 0.576 0.08 0.064 0.08

♦ Every event is a sum of sample points

• its probability is determined by the joint distribution
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Probability for continuous variables

♦ Express continuous probability distributions using parameterized
probability density functions that integrate to 1

Uniform density between 18 and 26:

• f (x) = U [18, 26](x)

0.125

dx18 26

P (20 ≤ X ≤ 22) =

∫ 22

20

0.125 dx = 0.25

Gaussian density:

• P (x) = 1√
2πσ
e−(x−µ)2/2σ2

0
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Conditional probability

♦ Conditional or posterior probabilities

• P (cavity|toothache) = 0.8

� i.e., given that toothache is all I know

� not “if toothache then 80% chance of cavity”

♦ Suppose we get more evidence, e.g., cavity is also given. Then

• P (cavity|toothache, cavity) = 1

♦ The less specific belief remains valid, but is not always useful

♦ New evidence may be irrelevant, allowing simplification, e.g.,

• P (cavity|toothache,OriolesWin) = P (cavity|toothache) = 0.8

♦ Notation for conditional distributions:

• P(Cavity | Toothache) represents a set of conditional probabilities:

{P (cavity | toothache), P (¬cavity | toothache),
P (cavity | ¬toothache), P (¬cavity | ¬toothache)}
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Conditional probability

♦ Definition of conditional probability: P (a | b) = P (a ∧ b)/P (b)

• Product rule holds even if P (b) = 0: P (a ∧ b) = P (a | b) P (b)

♦ A general version holds for an entire probability distribution, e.g.,

P(Weather, Cavity) = P(Weather | Cavity) P(Cavity)

♦ That isn’t matrix multiplication, it’s quantification. It means:

∀w, c P (Weather = w,Cavity = c)
= P (Weather = w | Cavity = c) P (Cavity = c)

• i.e.,

P (sunny, cavity) = P (sunny | cavity) P (cavity)
P (sunny,¬cavity) = P (sunny | ¬cavity) P (¬cavity)

P (rain, cavity) = P (rain | cavity) P (cavity)
P (rain,¬cavity) = P (rain | ¬cavity) P (¬cavity)
P (cloudy, cavity) = P (cloudy | cavity) P (cavity)

P (cloudy,¬cavity) = P (cloudy | ¬cavity) P (¬cavity)
P (snow, cavity) = P (snow | cavity) P (cavity)

P (snow,¬cavity) = P (snow | ¬cavity) P (¬cavity)
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Chain rule

♦ The chain rule is derived by successive application of the product rule:

P(X1, . . . , Xn)

= P(X1, . . . , Xn−1) P(Xn | X1, . . . , Xn−1)

= P(X1, . . . , Xn−2) P(Xn−1 | X1, . . . , Xn−2) P(Xn | X1, . . . , Xn−1)

= . . .

= Πn
i= 1P(Xi | X1, . . . , Xi−1)
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Inference by enumeration

cavityL

toothache

cavity

catch catchL
toothacheL

catch catchL

.108 .012

.016 .064

.072

.144

.008

.576

♦ Start with the joint distribution

♦ For any proposition φ, sum the probabilities of the atomic events
where φ is true:

P (φ) =
∑

ω:ω|=φ
P (ω)

P (toothache) = 0.108 + 0.012 + 0.016 + 0.064
= 0.2

P (cavity ∨ toothache) = 0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064
= 0.28
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Inference by enumeration (example)

cavityL

toothache

cavity

catch catchL
toothacheL

catch catchL

.108 .012

.016 .064

.072

.144

.008

.576

♦ You have a toothache, and want the probability that you have a cavity:

P (cavity | toothache) = P (cavity, toothache)/P (toothache)

= (.108 + .012)/(.108 + .012 + .016 + .064) = .6

P (¬cavity | toothache) = P (¬cavity, toothache)/P (toothache)

= (.016 + .064)/(.108 + .012 + .016 + .064) = .4

♦ We computed the conditional distribution on a query variable, Cavity,
from a known value of an evidence variable, Toothache,
with a hidden variable, Catch

♦ Don’t know Catch’s value, so sum over all possible values
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Inference by enumeration (example)

cavityL

toothache

cavity

catch catchL
toothacheL

catch catchL

.108 .012

.016 .064

.072

.144

.008

.576

P (cavity | toothache) = P (cavity, toothache)/P (toothache)

= (.108 + .012)/(.108 + .012 + .016 + .064) = .6

P (¬cavity | toothache) = P (¬cavity, toothache)/P (toothache)

= (.016 + .064)/(.108 + .012 + .016 + .064) = .4

♦ α = 1/(.108 + .012 + .016 + .064) is a normalization coefficient

• It’s the multiplier that we need to use, to get
P (cavity | toothache) and P (¬cavity | toothache) to sum to 1

♦ Don’t need to compute α explicitly

• Can get it as a by-product of other computations
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Inference by enumeration (example)

cavityL

toothache

cavity

catch catchL
toothacheL

catch catchL

.108 .012

.016 .064

.072

.144

.008

.576

P(Cavity | toothache) = αP(Cavity, toothache)

= α [P(Cavity, toothache, catch) + P(Cavity, toothache,¬catch)]

= α [〈0.108, 0.016〉 + 〈0.012, 0.064〉]

= α 〈0.12, 0.08〉

♦ The two entries must sum to 1, so α = 1/(0.12 + 0.08) = 5

♦ Thus P(Cavity | toothache) = 5〈0.12, 0.08〉 = 〈0.6, 0.4〉
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Inference by enumeration (in general)

♦ Let X = {all the variables}
• Evidence variables E ⊆ X = {the variables we know the values of},

e = {the values of the evidence variables}
• Query variables Y ⊆ X = {the variables we want find out about},

i.e., we want P(Y | E = e)

• Hidden variables H = X−Y− E

♦ E.g., E = {Toothache}, e = {toothache}, Y = {Cavity}, H = {Catch}

♦ Get P(Y | E = e) by summing out the hidden variables

− Sum over all possible combinations of values for H

P(Y | E = e) = αP(Y,E = e) = α
∑

h P(Y,E = e,H = h)

♦ Problems:

• Time complexity O(dn), where d = maxh∈H |{possible values for h}|
• Space complexity O(dn) to store everything

• How to find the numbers for O(dn) entries?
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Independence

♦ Random variables A and B are independent iff

P(A | B) = P(A) or P(B | A) = P(B) or P(A,B) = P(A) P(B)

Weather

Toothache Catch

Cavity decomposes into

Weather

Toothache Catch
Cavity

♦ P(Toothache, Catch, Cavity,Weather)
= P(Toothache, Catch, Cavity) P(Weather)

• 2× 2× 2× 4 = 32 entries reduced to (2× 2× 2) + 4 = 12 entries

♦ For n independent biased coins, 2n entries reduced to n

♦ Absolute independence is powerful, but rare

• E.g., dentistry is a large field with hundreds of variables,
none of which are independent.

• What to do?
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Conditional independence

♦ Consider P(Toothache, Cavity, Catch)

♦ If I have a cavity, the probability that the probe catches in it
doesn’t depend on whether I have a toothache:

• P (catch | toothache, cavity) = P (catch | cavity)

♦ The same independence holds if I haven’t got a cavity:

• P (catch | toothache,¬cavity) = P (catch | ¬cavity)

♦ Thus Catch is conditionally independent of Toothache, given Cavity:

• P(Catch | Toothache, Cavity) = P(Catch | Cavity)

♦ Or equivalently:

• P(Toothache | Catch, Cavity) = P(Toothache | Cavity)

• P(Toothache, Catch | Cavity)
= P(Toothache | Cavity) P(Catch | Cavity)
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Conditional independence, continued

♦ Use the chain rule on the full joint distribution:

P(Toothache, Catch, Cavity)

= P(Toothache | Catch, Cavity) P(Catch, Cavity)

= P(Toothache | Catch, Cavity) P(Catch | Cavity) P(Cavity)

= P(Toothache | Cavity) P(Catch | Cavity) P(Cavity)

♦ In many cases, conditional independence can reduce the size of the
representation of the joint distribution
from exponential in n to linear in n.

• Example in next chapter: Bayes nets
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Bayes’ Rule

Product rule: P (a ∧ b) = P (a | b) P (b) = P (b | a) P (a)

⇒ Bayes’ rule P (a | b) =
P (b | a) P (a)

P (b)

or in probability distribution form,

P(Y | X) =
P(X | Y ) P(Y )

P(X)
= αP(X | Y ) P(Y )

Useful for assessing diagnostic probability from causal probability:

P(Cause | Effect) =
P(Effect | Cause) P(Cause)

P(Effect)

E.g., let M be meningitis, S be stiff neck:

P (m | s) =
P (s | m) P (m)

P (s)
=

0.8× 0.0001

0.1
= 0.0008

Note: posterior probability of meningitis still very small!
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Bayes’ Rule and conditional independence

P(Cavity | toothache ∧ catch)

= P(toothache ∧ catch | Cavity) P(Cavity)/P (toothache ∧ catch)

= αP(toothache ∧ catch | Cavity) P(Cavity)

= αP(toothache | Cavity) P(catch | Cavity) P(Cavity)

♦ Naive Bayes model: a mathematical model that assumes the effects are
conditionally independent, given the cause

P(Cause,Effect1 , . . . ,Effectn) = P(Cause)ΠiP(Effecti | Cause)

Toothache

Cavity

Catch

Cause

Effect1 Effectn

♦ Naive Bayes model ⇒ total number of parameters is linear in n
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Wumpus World

OK
 1,1  2,1  3,1  4,1

 1,2  2,2  3,2  4,2

 1,3  2,3  3,3  4,3

 1,4  2,4

OKOK

 3,4  4,4

B

B

♦ Pij = true iff [i, j] contains a pit

♦ Bij = true iff [i, j] is breezy

♦ The only breezes we care about are B1,1, B1,2, B2,1; ignore all the others

♦ Then the joint distribution is

P(P1,1, . . . , P4,4, B1,1, B1,2, B2,1)

CMSC 421: Chapter 13 27



Specifying the probability model

OK
 1,1  2,1  3,1  4,1

 1,2  2,2  3,2  4,2

 1,3  2,3  3,3  4,3

 1,4  2,4

OKOK

 3,4  4,4

B

B

♦ Apply the product rule to the joint distribution:

P(P1,1, . . . , P4,4, B1,1, B1,2, B2,1)

= P(B1,1, B1,2, B2,1 |P1,1, . . . , P4,4) P(P1,1, . . . , P4,4)

• First term: 1 if pits are adjacent to breezes, 0 otherwise

• Second term: pits are placed independently, probability 0.2 per square:

P(P1,1, . . . , P4,4) = Π4
i=1Π

4
j=1P(Pi,j)
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Inference by enumeration

♦ In general, P(Y | E = e) = αP(Y,E = e) = α
∑

h P(Y,E = e,H = h)

♦ Here, the evidence is from
the 3 squares we’ve visited

♦ e = b∗ ∧ p∗, where

• b∗ = ¬b1,1 ∧ b1,2 ∧ b2,1

• p∗ = ¬p1,1 ∧ ¬p1,2 ∧ ¬p2,1
OK

 1,1  2,1  3,1  4,1

 1,2  2,2  3,2  4,2

 1,3  2,3  3,3  4,3

 1,4  2,4

OKOK

 3,4  4,4

B

B

P13

♦ So, P(P1,3 | p∗, b∗) = α
∑

unknown P(P1,3, unknown, p∗, b∗)

• unknown = all Pijs other than P1,3 (the query variable)
and P1,1, P1,2, P2,1 (evidence variables)

• Two values for each Pij ⇒ grows exponentially with number of squares!
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Using conditional independence

♦ Basic insight:

• Given the fringe squares,
b is conditionally independent
of the other hidden squares

 1,1  2,1  3,1  4,1

 1,2  2,2  3,2  4,2

 1,3  2,3  3,3  4,3

 1,4  2,4  3,4  4,4

KNOWN
FRINGE

QUERY
OTHER

♦ The unknown variables are Unknown = Fringe ∪Other
P(b∗ | P1,3, p

∗, Unknown) = P(b∗ | P1,3, p
∗, F ringe,Other)

= P(b∗ | P1,3, p
∗, F ringe)

• Need to translate the query into a form where we can use this
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Looks easy, doesn’t it?

P(P1,3|p∗, b∗) = P(P1,3, p
∗, b∗)/P(p∗, b∗) = αP(P1,3, p

∗, b∗)

= αΣunknownP(P1,3, unknown, p∗, b∗)

= αΣunknownP(b∗|P1,3, p
∗, unknown)P(P1,3, p

∗, unknown)

= αΣfringeΣotherP(b∗|p∗, P1,3, fringe, other )P(P1,3, p
∗, fringe, other )

= αΣfringeΣotherP(b∗|p∗, P1,3, fringe)P(P1,3, p
∗, fringe, other )

= αΣfringeP(b∗|p∗, P1,3, fringe)ΣotherP(P1,3, p
∗, fringe, other )

= αΣfringeP(b∗|p∗, P1,3, fringe)ΣotherP(P1,3)P (p∗)P (fringe)P (other )

= αP (p∗)P(P1,3)ΣfringeP(b∗|p∗, P1,3, fringe)P (fringe)ΣotherP (other )

= α′P(P1,3)ΣfringeP(b∗|p∗, P1,3, fringe)P (fringe)ΣotherP (other )

= α′P(P1,3)ΣfringeP(b∗|p∗, P1,3, fringe)P (fringe)
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Same thing, step by step

P(P1,3|p∗, b∗) = P(P1,3, p
∗, b∗)/P(p∗, b∗)

• Use the definition of conditional probability
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Same thing, step by step

P(P1,3|p∗, b∗) = P(P1,3, p
∗, b∗)/P(p∗, b∗) = αP(P1,3, p

∗, b∗)

• P(p∗, b∗) = P (p∗, b∗) is a scalar constant; use as a normalization constant
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Same thing, step by step

P(P1,3|p∗, b∗) = P(P1,3, p
∗, b∗)/P(p∗, b∗) = αP(P1,3, p

∗, b∗)

= αΣunknownP(P1,3, unknown, p∗, b∗)

• Sum over the unknowns
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Same thing, step by step

P(P1,3|p∗, b∗) = P(P1,3, p
∗, b∗)/P(p∗, b∗) = αP(P1,3, p

∗, b∗)

= αΣunknownP(P1,3, unknown, p∗, b∗)

= αΣunknownP(b∗|P1,3, p
∗, unknown)P(P1,3, p

∗, unknown)

• Use the product rule
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Same thing, step by step

P(P1,3|p∗, b∗) = P(P1,3, p
∗, b∗)/P(p∗, b∗) = αP(P1,3, p

∗, b∗)

= αΣunknownP(P1,3, unknown, p∗, b∗)

= αΣunknownP(b∗|P1,3, p
∗, unknown)P(P1,3, p

∗, unknown)

= αΣfringeΣotherP(b∗|p∗, P1,3, fringe, other )P(P1,3, p
∗, fringe, other )

• Separate unknown into fringe and other
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Same thing, step by step

P(P1,3|p∗, b∗) = P(P1,3, p
∗, b∗)/P(p∗, b∗) = αP(P1,3, p

∗, b∗)

= αΣunknownP(P1,3, unknown, p∗, b∗)

= αΣunknownP(b∗|P1,3, p
∗, unknown)P(P1,3, p

∗, unknown)

= αΣfringeΣotherP(b∗|p∗, P1,3, fringe, other )P(P1,3, p
∗, fringe, other )

= αΣfringeΣotherP(b∗|p∗, P1,3, fringe)P(P1,3, p
∗, fringe, other )

• b∗ is conditionally independent of other given fringe
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Same thing, step by step

P(P1,3|p∗, b∗) = P(P1,3, p
∗, b∗)/P(p∗, b∗) = αP(P1,3, p

∗, b∗)

= αΣunknownP(P1,3, unknown, p∗, b∗)

= αΣunknownP(b∗|P1,3, p
∗, unknown)P(P1,3, p

∗, unknown)

= αΣfringeΣotherP(b∗|p∗, P1,3, fringe, other )P(P1,3, p
∗, fringe, other )

= αΣfringeΣotherP(b∗|p∗, P1,3, fringe)P(P1,3, p
∗, fringe, other )

= αΣfringeP(b∗|p∗, P1,3, fringe)ΣotherP(P1,3, p
∗, fringe, other )

• Move P(b∗|p∗, P1,3, fringe) outward
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Same thing, step by step

P(P1,3|p∗, b∗) = P(P1,3, p
∗, b∗)/P(p∗, b∗) = αP(P1,3, p

∗, b∗)

= αΣunknownP(P1,3, unknown, p∗, b∗)

= αΣunknownP(b∗|P1,3, p
∗, unknown)P(P1,3, p

∗, unknown)

= αΣfringeΣotherP(b∗|p∗, P1,3, fringe, other )P(P1,3, p
∗, fringe, other )

= αΣfringeΣotherP(b∗|p∗, P1,3, fringe)P(P1,3, p
∗, fringe, other )

= αΣfringeP(b∗|p∗, P1,3, fringe)ΣotherP(P1,3, p
∗, fringe, other )

= αΣfringeP(b∗|p∗, P1,3, fringe)ΣotherP(P1,3)P (p∗)P (fringe)P (other )

• All of the pit locations are independent
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Same thing, step by step

P(P1,3|p∗, b∗) = P(P1,3, p
∗, b∗)/P(p∗, b∗) = αP(P1,3, p

∗, b∗)

= αΣunknownP(P1,3, unknown, p∗, b∗)

= αΣunknownP(b∗|P1,3, p
∗, unknown)P(P1,3, p

∗, unknown)

= αΣfringeΣotherP(b∗|p∗, P1,3, fringe, other )P(P1,3, p
∗, fringe, other )

= αΣfringeΣotherP(b∗|p∗, P1,3, fringe)P(P1,3, p
∗, fringe, other )

= αΣfringeP(b∗|p∗, P1,3, fringe)ΣotherP(P1,3, p
∗, fringe, other )

= αΣfringeP(b∗|p∗, P1,3, fringe)ΣotherP(P1,3)P (p∗)P (fringe)P (other )

= αP (p∗)P(P1,3)ΣfringeP(b∗|p∗, P1,3, fringe)P (fringe)ΣotherP (other )

• Move P (p∗), P(P1,3), and P (fringe) outward
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Same thing, step by step

P(P1,3|p∗, b∗) = P(P1,3, p
∗, b∗)/P(p∗, b∗) = αP(P1,3, p

∗, b∗)

= αΣunknownP(P1,3, unknown, p∗, b∗)

= αΣunknownP(b∗|P1,3, p
∗, unknown)P(P1,3, p

∗, unknown)

= αΣfringeΣotherP(b∗|p∗, P1,3, fringe, other )P(P1,3, p
∗, fringe, other )

= αΣfringeΣotherP(b∗|p∗, P1,3, fringe)P(P1,3, p
∗, fringe, other )

= αΣfringeP(b∗|p∗, P1,3, fringe)ΣotherP(P1,3, p
∗, fringe, other )

= αΣfringeP(b∗|p∗, P1,3, fringe)ΣotherP(P1,3)P (p∗)P (fringe)P (other )

= αP (p∗)P(P1,3)ΣfringeP(b∗|p∗, P1,3, fringe)P (fringe) ΣotherP (other )

= αP (p∗)P(P1,3)ΣfringeP(b∗|p∗, P1,3, fringe)P (fringe)

• Remove ΣotherP (other ) because it equals 1
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Same thing, step by step

P(P1,3|p∗, b∗) = P(P1,3, p
∗, b∗)/P(p∗, b∗) = αP(P1,3, p

∗, b∗)

= αΣunknownP(P1,3, unknown, p∗, b∗)

= αΣunknownP(b∗|P1,3, p
∗, unknown)P(P1,3, p

∗, unknown)

= αΣfringeΣotherP(b∗|p∗, P1,3, fringe, other )P(P1,3, p
∗, fringe, other )

= αΣfringeΣotherP(b∗|p∗, P1,3, fringe)P(P1,3, p
∗, fringe, other )

= αΣfringeP(b∗|p∗, P1,3, fringe)ΣotherP(P1,3, p
∗, fringe, other )

= αΣfringeP(b∗|p∗, P1,3, fringe)ΣotherP(P1,3)P (p∗)P (fringe)P (other )

= αP (p∗)P(P1,3)ΣfringeP(b∗|p∗, P1,3, fringe)P (fringe)ΣotherP (other )

= αP (p∗)P(P1,3)ΣfringeP(b∗|p∗, P1,3, fringe)P (fringe)

= α′P(P1,3)ΣfringeP(b∗|p∗, P1,3, fringe)P (fringe)

• P (p∗) is constant, so make it part of the normalization constant
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How to get the answer?

P(P1,3|p∗, b∗) = α′P(P1,3)ΣfringeP(b∗|p∗, P1,3, fringe)P (fringe)

♦ Not hard to compute, because there are only four possible fringes:

♦ Start by rewriting as two separate equations:

P (p1,3|p∗, b∗) = α′ P (p1,3) ΣfringeP (b∗|p∗, p1,3, fringe)P (fringe)

P (¬p1,3|p∗, b∗) = α′ P (¬p1,3)ΣfringeP (b∗|p∗,¬p1,3, fringe)P (fringe)

♦ For each fringe, P (b∗|p∗, p1,3, fringe) is 1 if the breezes occur, 0 otherwise

• 1, 1, 1, and 0 for the four fringes above

♦ Similarly, for P (b∗|p∗,¬p1,3, fringe), we get 1, 1, 0, and 0
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Getting the answer

∑
fringe

P (b∗|p∗, p1,3, fringe)P (fringe) = 1(0.04) + 1(0.16) + 1(0.16) + 0 = 0.36∑
fringe

P (b∗|p∗,¬p1,3, fringe)P (fringe) = 1(0.04) + 1(0.16) + 0 + 0 = 0.2

so P(P1,3|p∗, b∗) = α′P(P1,3)
∑

fringe

P(b∗|p∗, P1,3, fringe)P (fringe)

= α′ 〈0.2, 0.8〉 〈0.36, 0.2〉 = α′ 〈0.072, 0.16〉

so α′ = 1/(0.072 + 0.16) = 1/0.232 ≈ 4.31

so P(P1,3|p∗, b∗) = 〈0.072α′, 0.16α′〉 ≈ 〈0.31, 0.69〉
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Additional answers

♦ We have

• P(P1,3|p∗, b∗) ≈ 〈0.31, 0.69〉

♦ Similarly,

• P(P2,2|p∗, b∗) ≈ 〈0.86, 0.14〉
• P(P3,1|p∗, b∗) ≈ 〈0.31, 0.69〉

OK
 1,1  2,1  3,1  4,1

 1,2  2,2  3,2  4,2

 1,3  2,3  3,3  4,3

 1,4  2,4

OKOK

 3,4  4,4

B

B

P1,3

P2,2

P3,1

♦ Questions:

• Why don’t these add up to 1?

• Which square should we move to?
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Summary

♦ Probability is a rigorous formalism for uncertain knowledge

♦ Joint probability distribution specifies probability of every atomic event

♦ Queries can be answered by inference by enumeration
(summing over atomic events)

♦ Can reduce combinatorial explosion using independence and conditional
independence
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Homework assignment

I’ll post it on Piazza
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