Last update: November 29, 2012

QUANTIFYING UNCERTAINTY

CMSC 421: Chapter 13

CMSC 421: Chapter 13 1

Motivation

- \diamond Let action A_t = leave for airport t minutes before flight
 - Will A_t get me there on time?
- \diamond Problems:
 - 1) partial observability (road state, other drivers' plans, etc.)
 - 2) noisy sensors (radio traffic reports)
 - 3) uncertainty in action outcomes (flat tire, etc.)
 - 4) immense complexity of modelling and predicting traffic
- \diamondsuit Hence a purely logical approach either
 - 1) risks falsehood: " A_{25} will get me there on time", or
 - 2) leads to conclusions that are too weak for decision making:

Methods for handling uncertainty

 \Diamond *Default* or *nonmonotonic* logic:

Assume my car does not have a flat tire Assume A_{25} works unless contradicted by evidence

- What assumptions are reasonable? How to handle contradiction?
- $\diamondsuit Rules with fudge factors:$ $A_{25} \mapsto_{0.3} AtAirportOnTime$ $Sprinkler \mapsto_{0.99} WetGrass$ $WetGrass \mapsto_{0.7} Rain$
 - Problems with combination, e.g., *Sprinkler* causes *Rain*?

 \diamond Probability

Given the available evidence, A_{25} will get me there on time with probability 0.04

- Mahaviracarya (9th C.), Cardamo (1565) theory of gambling
 - ♦ Note: *Fuzzy logic* handles **degree of truth**, **not** uncertainty e.g., *WetGrass* is true to degree 0.2

Outline

\diamond Probability

- \diamondsuit Syntax and Semantics
- \diamondsuit Inference
- $\diamondsuit\,$ Independence and Bayes' Rule

Probability

- \diamondsuit Probabilistic assertions **summarize** effects of
 - laziness: failure to enumerate exceptions, qualifications, etc.
 - ignorance: lack of relevant facts, initial conditions, etc.
- \diamond *Subjective* or *Bayesian* probability:
 - Probabilities relate propositions to one's own state of knowledge e.g., $P(A_{25}|\text{no reported accidents}) = 0.06$
 - They are **not** claims of a "probabilistic tendency" in the current situation
 - They might be learned from past experience of similar situations
 - Probabilities of propositions change with new evidence: e.g., $P(A_{25}|\text{no reported accidents}, 5 \text{ a.m.}) = 0.15$

Making decisions under uncertainty

 \diamondsuit Suppose I believe the following:

 $P(A_{25} \text{ gets me there on time}|...) = 0.04$ $P(A_{90} \text{ gets me there on time}|...) = 0.70$ $P(A_{120} \text{ gets me there on time}|...) = 0.95$ $P(A_{1440} \text{ gets me there on time}|...) = 0.9999$

- Which action to choose?
- \diamondsuit Depends on both the probabilities and my preferences
 - e.g., P(missing flight) vs. getting to airport early and waiting
- \diamond Utility theory (Chapter 16) is used to represent and infer preferences
- \Diamond *Decision theory* = utility theory + probability theory

Probability basics

- $\diamondsuit~$ Begin with a set Ω called the sample space
- ♦ Each $\omega \in \Omega$ is called a *sample point*, *possible world*, or *atomic event*
- \diamond Probability space or probability model:
 - given a sample space Ω , assign a number $P(\omega)$ (the *probability* of ω) to every atomic event $\omega \in \Omega$
- \diamondsuit A probability space must satisfy the following properties:

$$\diamond \ 0 \le P(\omega) \le 1 \text{ for every } \omega \in \Omega$$

$$\diamond \ \sum_{\omega \in \Omega} P(\omega) = 1$$

- e.g., for rolling a die,
 - ♦ $P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = \frac{1}{6}$
 - ♦ P(1) + P(2) + P(3) + P(4) + P(5) + P(6) = 1
- \diamondsuit An *event* A is any subset of Ω
- $\diamondsuit \ P(A) = \sum_{\omega \in A} P(\omega)$
 - E.g., $P(\text{die roll} < 4) = P(1) + P(2) + P(3) = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{1}{2}$

Random variables

 \diamond A *random variable* is a function from sample points to some range

- \diamondsuit The book uses capitalized words for random variables
 - e.g., rolling the die: $Odd(\omega) = \begin{cases} true \text{ if } \omega \text{ is even,} \\ false \text{ otherwise} \end{cases}$

 \diamond A *probability distribution* gives a probability for every possible value.

 \diamondsuit If X is a random variable, then

•
$$P(X = x_i) = \sum \{P(\omega) : X(\omega) = x_i\}$$

 \uparrow
 X here, not $X(\omega)$

♦ E.g.,
$$P(Odd = true) = P(1) + P(3) + P(5) = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{1}{2}$$

Why use probability?

- \diamondsuit The definitions imply that certain logically related events must have related probabilities
 - E.g., $P(A = true \lor B = true)$

 $= P(A = true) + P(B = true) - P(A = true \land B = true)$

True

- \diamond de Finetti (1931): an agent who bets according to probabilities that violate the axioms of probability can be forced to bet so as to lose money, regardless of the outcome
 - Related to rational preferences, utility theory

Propositions

- \diamond A random variable is *Boolean* or *propositional* if its range is {*true*, *false*}
- \diamondsuit To represent the event that a propositional random variable is true, we'll use the corresponding lower-case word

 $\diamondsuit \text{ In the die example, } Odd(\omega) = \begin{cases} true \text{ if } \omega \text{ is even,} \\ false \text{ otherwise} \end{cases}$

•
$$P(odd) = P(Odd = true) = \frac{1}{6}$$

•
$$P(\neg odd) = P(Odd = false) = \frac{5}{6}$$

- \diamond Boolean formula = disjunction of the sample points in which it is true
 - E.g., suppose that
 - $\diamond a$ is the event A = true
 - $\diamond b$ is the event B = true
 - Then

$$\begin{array}{l} (a \lor b) \ \equiv \ (\neg a \land b) \ \lor \ (a \land \neg b) \ \lor \ (a \land b) \\ P(a \lor b) = P(\neg a \land b) + P(a \land \neg b) + P(a \land b) \end{array}$$

Syntax for propositions

- \diamond *Propositional* or *Boolean* random variables
 - e.g., *Cavity* (do I have a cavity in one of my teeth?)
 - Cavity = true is a proposition, also written cavity
- \diamond *Discrete* random variables (finite or infinite)
 - e.g., Weather = sunny, rain, cloudy, or snow
 - ♦ Values must be exhaustive and mutually exclusive
 - Weather = rain is a proposition
- \diamond *Continuous* random variables (bounded or unbounded)
 - e.g., Temp = 21.6
 - also allow propositions such as Temp < 22.0.
- \diamondsuit Arbitrary Boolean combinations of basic propositions
 - e.g., $\neg cavity$ means Cavity = false
- \diamond *Probabilities* of propositions
 - e.g., P(cavity) = 0.1 and P(Weather = sunny) = 0.72

Syntax for probability distributions

- \diamondsuit Represent a discrete probability distribution as a vector of probability values that sum to 1:
 - $\mathbf{P}(Weather) = \langle 0.72, 0.1, 0.08, 0.1 \rangle$
 - probabilities of *sunny*, *rain*, *cloudy*, *snow*
- \diamond If B is a Boolean random variable, then $\mathbf{P}(B) = \langle P(b), P(\neg b) \rangle$
- \diamond A *joint probability distribution* for a set of *n* random variables gives the probability of every atomic event on those variables (i.e., every sample point)
 - Represent it as an n-dimensional matrix

			Weat	ther =	
$\wedge \circ \sigma \mathbf{P}(W_{oathor} C_{avital})$		sunny	rain	cloudy	snow
\diamond e.g., $\mathbf{P}(w \ eather, C \ avity)$:	Cavity = true	0.144	0.02	0.016	0.02
	Cavity = false	0.576	0.08	0.064	0.08

 \diamondsuit Every event is a sum of sample points

• its probability is determined by the joint distribution

Probability for continuous variables

 \diamond Express continuous probability distributions using parameterized probability density functions that integrate to 1

Uniform density between 18 and 26:

• f(x) = U[18, 26](x)

$$P(20 \le X \le 22) = \int_{20}^{22} 0.125 \, dx = 0.25$$

Conditional probability

- \diamond Conditional or posterior probabilities
 - P(cavity|toothache) = 0.8
 - $\diamond~$ i.e., given that toothache is all I know
 - \diamond **not** "if *toothache* then 80% chance of *cavity*"
- \diamondsuit Suppose we get more evidence, e.g., cavity is also given. Then
 - P(cavity|toothache, cavity) = 1
- \diamondsuit The less specific belief **remains valid**, but is not always **useful**
- \diamondsuit New evidence may be irrelevant, allowing simplification, e.g.,
 - $\bullet \ \ P(cavity | toothache, Orioles Win) = P(cavity | toothache) = 0.8$
- \diamondsuit Notation for conditional distributions:
 - $\mathbf{P}(Cavity \mid Toothache)$ represents a set of conditional probabilities: $\{P(cavity \mid toothache), P(\neg cavity \mid toothache), P(cavity \mid \neg toothache), P(\neg cavity \mid \neg toothache)\}$

Conditional probability

- ♦ Definition of conditional probability: $P(a | b) = P(a \land b)/P(b)$
 - Product rule holds even if P(b) = 0: $P(a \land b) = P(a \mid b) P(b)$
- $\label{eq:probability} \begin{array}{l} & \mbox{\diamond} \end{array} \mbox{A general version holds for an entire probability distribution, e.g.,} \\ & \mbox{$\mathbf{P}(Weather, Cavity) = \mathbf{P}(Weather \mid Cavity) \ \mathbf{P}(Cavity) } \end{array} \end{array}$
- $\diamondsuit That isn't matrix multiplication, it's quantification. It means:$ $<math display="block"> \forall w, c \ P(Weather = w, Cavity = c)$ $= P(Weather = w \mid Cavity = c) \ P(Cavity = c)$
 - i.e.,

$$\begin{array}{l} P(sunny, cavity) \,=\, P(sunny \mid cavity) \; P(cavity) \\ P(sunny, \neg cavity) \,=\, P(sunny \mid \neg cavity) \; P(\neg cavity) \\ P(rain, cavity) \,=\, P(rain \mid cavity) \; P(cavity) \\ P(rain, \neg cavity) \,=\, P(rain \mid \neg cavity) \; P(\neg cavity) \\ P(cloudy, cavity) \,=\, P(cloudy \mid cavity) \; P(cavity) \\ P(cloudy, \neg cavity) \,=\, P(cloudy \mid \neg cavity) \; P(\neg cavity) \\ P(snow, cavity) \,=\, P(snow \mid cavity) \; P(cavity) \\ P(snow, \neg cavity) \,=\, P(snow \mid \neg cavity) \; P(\neg cavity) \end{array}$$

Chain rule

 \diamond The *chain rule* is derived by successive application of the product rule:

$$\mathbf{P}(X_{1},...,X_{n}) = \mathbf{P}(X_{1},...,X_{n-1}) \mathbf{P}(X_{n} \mid X_{1},...,X_{n-1})
= \mathbf{P}(X_{1},...,X_{n-2}) \mathbf{P}(X_{n-1} \mid X_{1},...,X_{n-2}) \mathbf{P}(X_{n} \mid X_{1},...,X_{n-1})
= ...
= \prod_{i=1}^{n} \mathbf{P}(X_{i} \mid X_{1},...,X_{i-1})$$

Inference by enumeration

	toothache		¬ toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

- \diamondsuit Start with the joint distribution
- \diamond For any proposition ϕ , sum the probabilities of the atomic events where ϕ is true:

$$P(\phi) = \sum_{\omega:\omega\models\phi} P(\omega)$$

P(toothache) = 0.108 + 0.012 + 0.016 + 0.064= 0.2

$$\begin{split} P(cavity \lor toothache) &= 0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064 \\ &= 0.28 \end{split}$$

Inference by enumeration (example)

	toothache		¬ toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

♦ You have a toothache, and want the probability that you have a cavity: $P(cavity \mid toothache) = P(cavity, toothache)/P(toothache)$ = (.108 + .012)/(.108 + .012 + .016 + .064) = .6

$$\begin{split} P(\neg cavity \mid toothache) &= P(\neg cavity, toothache) / P(toothache) \\ &= (.016 + .064) / (.108 + .012 + .016 + .064) = .4 \end{split}$$

- ♦ We computed the conditional distribution on a **query variable**, *Cavity*, from a known value of an **evidence variable**, *Toothache*, with a **hidden variable**, *Catch*
- \diamond Don't know *Catch*'s value, so sum over all possible values

Inference by enumeration (example)

	toothache		⊐ toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

$$\begin{split} P(cavity \mid toothache) &= P(cavity, toothache) / P(toothache) \\ &= (.108 + .012) / (.108 + .012 + .016 + .064) = .6 \end{split}$$

$$\begin{split} P(\neg cavity \mid toothache) &= P(\neg cavity, toothache) / P(toothache) \\ &= (.016 + .064) / (.108 + .012 + .016 + .064) = .4 \end{split}$$

 $\alpha = 1/(.108 + .012 + .016 + .064)$ is a normalization coefficient

- It's the multiplier that we need to use, to get $P(cavity \mid toothache)$ and $P(\neg cavity \mid toothache)$ to sum to 1
- \diamond Don't need to compute α explicitly
 - Can get it as a by-product of other computations

Inference by enumeration (example)

	toothache		¬ toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

 $\mathbf{P}(Cavity \mid toothache) = \alpha \, \mathbf{P}(Cavity, toothache)$

- $= \alpha \left[\mathbf{P}(Cavity, toothache, catch) + \mathbf{P}(Cavity, toothache, \neg catch) \right]$
- $= \alpha [\langle 0.108, 0.016 \rangle + \langle 0.012, 0.064 \rangle]$
- $= \alpha \langle 0.12, 0.08 \rangle$
- \diamond The two entries must sum to 1, so $\alpha = 1/(0.12 + 0.08) = 5$
- \diamond Thus $\mathbf{P}(Cavity \mid toothache) = 5(0.12, 0.08) = (0.6, 0.4)$

Inference by enumeration (in general)

- \diamond Let $\mathbf{X} = \{$ all the variables $\}$
 - *Evidence variables* E ⊆ X = {the variables we know the values of},
 e = {the values of the evidence variables}
 - Query variables $\mathbf{Y} \subseteq \mathbf{X} = \{$ the variables we want find out about $\}$, i.e., we want $\mathbf{P}(\mathbf{Y} \mid \mathbf{E} = \mathbf{e})$
 - Hidden variables $\mathbf{H} = \mathbf{X} \mathbf{Y} \mathbf{E}$

 $\diamondsuit \ E.g., \mathbf{E} = \{Toothache\}, \mathbf{e} = \{toothache\}, \mathbf{Y} = \{Cavity\}, \mathbf{H} = \{Catch\}$

 \diamond Get $\mathbf{P}(\mathbf{Y} \mid \mathbf{E} = \mathbf{e})$ by *summing out* the hidden variables

- Sum over all possible combinations of values for ${\bf H}$

 $\mathbf{P}(\mathbf{Y} \mid \mathbf{E}\!=\!\mathbf{e}) = \alpha \mathbf{P}(\mathbf{Y}, \mathbf{E}\!=\!\mathbf{e}) = \alpha \sum_{\mathbf{h}} \mathbf{P}(\mathbf{Y}, \mathbf{E}\!=\!\mathbf{e}, \mathbf{H}\!=\!\mathbf{h})$

- \Diamond Problems:
 - Time complexity $O(d^n)$, where $d = \max_{h \in \mathbf{H}} |\{\text{possible values for } h\}|$
 - Space complexity $O(d^n)$ to store everything
 - How to find the numbers for $O(d^n)$ entries?

Independence

 \diamond Random variables A and B are *independent* iff

 $\mathbf{P}(A \mid B) = \mathbf{P}(A) \quad \text{or} \quad \mathbf{P}(B \mid A) = \mathbf{P}(B) \quad \text{or} \quad \mathbf{P}(A, B) = \mathbf{P}(A) \ \mathbf{P}(B)$

- $\begin{array}{l} \diamondsuit \quad \mathbf{P}(Toothache, Catch, Cavity, Weather) \\ \quad = \mathbf{P}(Toothache, Catch, Cavity) \; \mathbf{P}(Weather) \end{array}$
 - $2 \times 2 \times 2 \times 4 = 32$ entries reduced to $(2 \times 2 \times 2) + 4 = 12$ entries
- \diamondsuit For *n* independent biased coins, 2^n entries reduced to *n*
- \diamondsuit Absolute independence is powerful, but rare
 - E.g., dentistry is a large field with hundreds of variables, none of which are independent.
 - What to do?

Conditional independence

- \diamond Consider **P**(*Toothache*, *Cavity*, *Catch*)
- \diamond If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
 - $P(catch \mid toothache, cavity) = P(catch \mid cavity)$
- \diamondsuit The same independence holds if I haven't got a cavity:
 - $P(catch \mid toothache, \neg cavity) = P(catch \mid \neg cavity)$
- \diamond Thus *Catch* is *conditionally independent* of *Toothache*, given *Cavity*:
 - $\mathbf{P}(Catch \mid Toothache, Cavity) = \mathbf{P}(Catch \mid Cavity)$
- \diamondsuit Or equivalently:
 - $\mathbf{P}(Toothache \mid Catch, Cavity) = \mathbf{P}(Toothache \mid Cavity)$
 - $\mathbf{P}(Toothache, Catch \mid Cavity)$

 $= \mathbf{P}(Toothache \mid Cavity) \ \mathbf{P}(Catch \mid Cavity)$

Conditional independence, continued

 \diamondsuit Use the chain rule on the full joint distribution:

- $\mathbf{P}(Toothache, Catch, Cavity)$
- $= \mathbf{P}(Toothache \mid Catch, Cavity) \ \mathbf{P}(Catch, Cavity)$
- $= \mathbf{P}(Toothache \mid Catch, Cavity) \ \mathbf{P}(Catch \mid Cavity) \ \mathbf{P}(Cavity)$
- $= \mathbf{P}(Toothache \mid Cavity) \; \mathbf{P}(Catch \mid Cavity) \; \mathbf{P}(Cavity)$
- \diamond In many cases, conditional independence can reduce the size of the representation of the joint distribution from exponential in n to linear in n.
 - Example in next chapter: Bayes nets

Bayes' Rule

Product rule:
$$P(a \land b) = P(a \mid b) P(b) = P(b \mid a) P(a)$$

 $\Rightarrow Bayes' rule P(a \mid b) = \frac{P(b \mid a) P(a)}{P(b)}$

or in probability distribution form,

$$\mathbf{P}(Y \mid X) = \frac{\mathbf{P}(X \mid Y) \ \mathbf{P}(Y)}{\mathbf{P}(X)} = \alpha \mathbf{P}(X \mid Y) \ \mathbf{P}(Y)$$

Useful for assessing *diagnostic* probability from *causal* probability:

$$P(Cause \mid \textit{Effect}) = \frac{P(\textit{Effect} \mid \textit{Cause}) \ P(Cause)}{P(\textit{Effect})}$$

E.g., let M be meningitis, S be stiff neck:

$$P(m \mid s) = \frac{P(s \mid m) \ P(m)}{P(s)} = \frac{0.8 \times 0.0001}{0.1} = 0.0008$$

Note: posterior probability of meningitis still very small!

Bayes' Rule and conditional independence

 $\mathbf{P}(Cavity \mid toothache \land catch)$

- $= \mathbf{P}(toothache \wedge catch \mid Cavity) \mathbf{P}(Cavity) / P(toothache \wedge catch)$
- $= \alpha \mathbf{P}(toothache \wedge catch \mid Cavity) \mathbf{P}(Cavity)$
- = $\alpha \mathbf{P}(toothache \mid Cavity) \mathbf{P}(catch \mid Cavity) \mathbf{P}(Cavity)$
- \diamond *Naive Bayes* model: a mathematical model that assumes the effects are conditionally independent, given the cause

 $\mathbf{P}(Cause, Effect_1, \dots, Effect_n) = \mathbf{P}(Cause)\Pi_i \mathbf{P}(Effect_i \mid Cause)$

 \diamond Naive Bayes model \Rightarrow total number of parameters is **linear** in n

Wumpus World

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
^{1,2} B OK	2,2	3,2	4,2
1,1	2,1 B	3,1	4,1
OK	OK		

- $P_{ij} = true$ iff [i, j]contains a pit
- $B_{ij} = true$ iff [i, j] is breezy
- \diamond The only breezes we care about are $B_{1,1}, B_{1,2}, B_{2,1}$; ignore all the others
- \diamondsuit Then the joint distribution is

 $\mathbf{P}(P_{1,1},\ldots,P_{4,4},B_{1,1},B_{1,2},B_{2,1})$

Specifying the probability model

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
^{1,2} B OK	2,2	3,2	4,2
1,1	^{2,1} B	3,1	4,1
OK	OK		

- First term: 1 if pits are adjacent to breezes, 0 otherwise
- Second term: pits are placed independently, probability 0.2 per square: $\mathbf{P}(P_{1,1}, \dots, P_{4,4}) = \prod_{i=1}^{4} \prod_{j=1}^{4} \mathbf{P}(P_{i,j})$

Inference by enumeration

 \diamondsuit In general, $\mathbf{P}(\mathbf{Y} \mid \mathbf{E} = \mathbf{e}) = \alpha \mathbf{P}(\mathbf{Y}, \mathbf{E} = \mathbf{e}) = \alpha \sum_{\mathbf{h}} \mathbf{P}(\mathbf{Y}, \mathbf{E} = \mathbf{e}, \mathbf{H} = \mathbf{h})$

- $\diamondsuit \ \ \text{Here, the evidence is from} \\ \text{the 3 squares we've visited}$
- $\diamondsuit \mathbf{e} = b^* \wedge p^*$, where
 - $b^* = \neg b_{1,1} \wedge b_{1,2} \wedge b_{2,1}$
 - $p^* = \neg p_{1,1} \land \neg p_{1,2} \land \neg p_{2,1}$

1,4	2,4	3,4	4,4
1,3 P ₁₃	2,3	3,3	4,3
^{1,2} B OK	2,2	3,2	4,2
1,1 OK	^{2,1} B OK	3,1	4,1

 \diamond So, $\mathbf{P}(P_{1,3} \mid p^*, b^*) = \alpha \sum_{unknown} \mathbf{P}(P_{1,3}, unknown, p^*, b^*)$

• $unknown = all P_{ij}s$ other than $P_{1,3}$ (the query variable)

and $P_{1,1}, P_{1,2}, P_{2,1}$ (evidence variables)

• Two values for each $P_{ij} \Rightarrow$ grows exponentially with number of squares!

Using conditional independence

- \diamond Basic insight:
 - Given the *fringe* squares,
 b is conditionally independent of the *other* hidden squares

♦ The unknown variables are $Unknown = Fringe \cup Other$ $\mathbf{P}(b^* \mid P_{1,3}, p^*, Unknown) = \mathbf{P}(b^* \mid P_{1,3}, p^*, Fringe, Other)$ $= \mathbf{P}(b^* \mid P_{1,3}, p^*, Fringe)$

• Need to translate the query into a form where we can use this

Looks easy, doesn't it? 🙂 $\mathbf{P}(P_{1,3}|p^*, b^*) = \mathbf{P}(P_{1,3}, p^*, b^*) / \mathbf{P}(p^*, b^*) = \alpha \mathbf{P}(P_{1,3}, p^*, b^*)$ $= \alpha \sum_{unknown} \mathbf{P}(P_{1,3}, unknown, p^*, b^*)$ $= \alpha \sum_{unknown} \mathbf{P}(b^* | P_{1,3}, p^*, unknown) \mathbf{P}(P_{1,3}, p^*, unknown)$ $= \alpha \sum_{fringe} \sum_{other} \mathbf{P}(b^* | p^*, P_{1,3}, fringe, other) \mathbf{P}(P_{1,3}, p^*, fringe, other)$ $= \alpha \sum_{fringe} \sum_{other} \mathbf{P}(b^* | p^*, P_{1,3}, fringe) \mathbf{P}(P_{1,3}, p^*, fringe, other)$ $= \alpha \Sigma_{fringe} \mathbf{P}(b^* | p^*, P_{1,3}, fringe) \Sigma_{other} \mathbf{P}(P_{1,3}, p^*, fringe, other)$ $= \alpha \sum_{fringe} \mathbf{P}(b^*|p^*, P_{1,3}, fringe) \sum_{other} \mathbf{P}(P_{1,3}) P(p^*) P(fringe) P(other)$ $= \alpha P(p^*) \mathbf{P}(P_{1,3}) \sum_{fringe} \mathbf{P}(b^* | p^*, P_{1,3}, fringe) P(fringe) \sum_{other} P(other)$ $= \alpha' \mathbf{P}(P_{1,3}) \sum_{fringe} \mathbf{P}(b^* | p^*, P_{1,3}, fringe) P(fringe) \sum_{other} P(other)$ = $\alpha' \mathbf{P}(P_{1,3}) \sum_{fringe} \mathbf{P}(b^* | p^*, P_{1,3}, fringe) P(fringe)$

 $\mathbf{P}(P_{1,3}|p^*,b^*) = \mathbf{P}(P_{1,3},p^*,b^*) / \underline{\mathbf{P}(p^*,b^*)}$

• Use the definition of conditional probability

 $\mathbf{P}(P_{1,3}|p^*,b^*) = \mathbf{P}(P_{1,3},p^*,b^*) / \underline{\mathbf{P}(p^*,b^*)} = \underline{\alpha} \mathbf{P}(P_{1,3},p^*,b^*)$

• $\mathbf{P}(p^*, b^*) = P(p^*, b^*)$ is a scalar constant; use as a normalization constant

 $\mathbf{P}(P_{1,3}|p^*,b^*) = \mathbf{P}(P_{1,3},p^*,b^*) / \mathbf{P}(p^*,b^*) = \alpha \mathbf{P}(P_{1,3},p^*,b^*)$

 $= \alpha \Sigma_{\underline{unknown}} \mathbf{P}(P_{1,3}, \underline{unknown}, p^*, b^*)$

• Sum over the unknowns

$$= \alpha \Sigma_{unknown} \mathbf{P}(P_{1,3}, unknown, p^*, \underline{b^*})$$

- $= \alpha \Sigma_{unknown} \mathbf{P}(\underline{b^*}|P_{1,3}, p^*, unknown) \mathbf{P}(P_{1,3}, p^*, unknown)$
- Use the product rule

$$= \alpha \Sigma_{unknown} \mathbf{P}(P_{1,3}, unknown, p^*, b^*)$$

- $= \alpha \Sigma_{unknown} \mathbf{P}(b^* | P_{1,3}, p^*, \underline{unknown}) \mathbf{P}(P_{1,3}, p^*, \underline{unknown})$
- $= \alpha \sum_{fringe} \sum_{other} \mathbf{P}(b^* | p^*, P_{1,3}, \underline{fringe, other}) \mathbf{P}(P_{1,3}, p^*, \underline{fringe, other})$
- Separate *unknown* into *fringe* and *other*

$$= \alpha \Sigma_{unknown} \mathbf{P}(P_{1,3}, unknown, p^*, b^*)$$

- $= \alpha \Sigma_{unknown} \mathbf{P}(b^* | P_{1,3}, p^*, unknown) \mathbf{P}(P_{1,3}, p^*, unknown)$
- $= \alpha \Sigma_{fringe} \Sigma_{other} \mathbf{P}(b^* | p^*, P_{1,3}, \underline{fringe}, other) \mathbf{P}(P_{1,3}, p^*, fringe, other)$
- $= \alpha \Sigma_{fringe} \Sigma_{other} \mathbf{P}(b^* | p^*, P_{1,3}, \underline{fringe}) \mathbf{P}(P_{1,3}, p^*, fringe, other)$
- b^* is conditionally independent of *other* given *fringe*

- $\mathbf{P}(P_{1,3}|p^*,b^*) = \mathbf{P}(P_{1,3},p^*,b^*) / \mathbf{P}(p^*,b^*) = \alpha \mathbf{P}(P_{1,3},p^*,b^*)$
 - $= \alpha \Sigma_{unknown} \mathbf{P}(P_{1,3}, unknown, p^*, b^*)$
 - $= \alpha \Sigma_{unknown} \mathbf{P}(b^* | P_{1,3}, p^*, unknown) \mathbf{P}(P_{1,3}, p^*, unknown)$
 - $= \alpha \Sigma_{fringe} \Sigma_{other} \mathbf{P}(b^* | p^*, P_{1,3}, fringe, other) \mathbf{P}(P_{1,3}, p^*, fringe, other)$
 - $= \alpha \sum_{fringe} \sum_{other} \mathbf{P}(b^* | p^*, P_{1,3}, fringe) \mathbf{P}(P_{1,3}, p^*, fringe, other)$
 - $= \alpha \Sigma_{fringe} \mathbf{P}(b^* | p^*, P_{1,3}, fringe) \Sigma_{\underline{other}} \mathbf{P}(P_{1,3}, p^*, fringe, other)$
 - Move $\mathbf{P}(b^*|p^*, P_{1,3}, fringe)$ outward

$$= \alpha \Sigma_{unknown} \mathbf{P}(P_{1,3}, unknown, p^*, b^*)$$

- $= \alpha \Sigma_{unknown} \mathbf{P}(b^* | P_{1,3}, p^*, unknown) \mathbf{P}(P_{1,3}, p^*, unknown)$
- $= \alpha \Sigma_{fringe} \Sigma_{other} \mathbf{P}(b^* | p^*, P_{1,3}, fringe, other) \mathbf{P}(P_{1,3}, p^*, fringe, other)$
- $= \alpha \sum_{fringe} \sum_{other} \mathbf{P}(b^* | p^*, P_{1,3}, fringe) \mathbf{P}(P_{1,3}, p^*, fringe, other)$
- $= \alpha \Sigma_{fringe} \mathbf{P}(b^*|p^*, P_{1,3}, fringe) \Sigma_{other} \mathbf{P}(P_{1,3}, p^*, fringe, other)$
- $= \alpha \Sigma_{fringe} \mathbf{P}(b^* | p^*, P_{1,3}, fringe) \Sigma_{other} \mathbf{P}(P_{1,3}) P(p^*) P(fringe) P(other)$
- All of the pit locations are independent

- $\mathbf{P}(P_{1,3}|p^*,b^*) = \mathbf{P}(P_{1,3},p^*,b^*) / \mathbf{P}(p^*,b^*) = \alpha \mathbf{P}(P_{1,3},p^*,b^*)$
 - $= \alpha \Sigma_{unknown} \mathbf{P}(P_{1,3}, unknown, p^*, b^*)$
 - $= \alpha \Sigma_{unknown} \mathbf{P}(b^* | P_{1,3}, p^*, unknown) \mathbf{P}(P_{1,3}, p^*, unknown)$
 - $= \alpha \Sigma_{fringe} \Sigma_{other} \mathbf{P}(b^* | p^*, P_{1,3}, fringe, other) \mathbf{P}(P_{1,3}, p^*, fringe, other)$
 - $= \alpha \Sigma_{fringe} \Sigma_{other} \mathbf{P}(b^* | p^*, P_{1,3}, fringe) \mathbf{P}(P_{1,3}, p^*, fringe, other)$
 - $= \alpha \Sigma_{fringe} \mathbf{P}(b^* | p^*, P_{1,3}, fringe) \Sigma_{other} \mathbf{P}(P_{1,3}, p^*, fringe, other)$
 - $= \alpha \Sigma_{fringe} \mathbf{P}(b^*|p^*, P_{1,3}, fringe) \Sigma_{other} \mathbf{P}(P_{1,3}) P(p^*) P(fringe) P(other)$
 - $= \alpha \underline{P(p^*)\mathbf{P}(P_{1,3})} \Sigma_{fringe} \mathbf{P}(b^*|p^*, P_{1,3}, fringe) \underline{P(fringe)} \Sigma_{other} P(other)$
 - Move $P(p^*)$, $\mathbf{P}(P_{1,3})$, and P(fringe) outward

- $\mathbf{P}(P_{1,3}|p^*,b^*) = \mathbf{P}(P_{1,3},p^*,b^*) / \mathbf{P}(p^*,b^*) = \alpha \mathbf{P}(P_{1,3},p^*,b^*)$
 - $= \alpha \Sigma_{unknown} \mathbf{P}(P_{1,3}, unknown, p^*, b^*)$
 - $= \alpha \Sigma_{unknown} \mathbf{P}(b^* | P_{1,3}, p^*, unknown) \mathbf{P}(P_{1,3}, p^*, unknown)$
 - $= \alpha \Sigma_{fringe} \Sigma_{other} \mathbf{P}(b^* | p^*, P_{1,3}, fringe, other) \mathbf{P}(P_{1,3}, p^*, fringe, other)$
 - $= \alpha \Sigma_{fringe} \Sigma_{other} \mathbf{P}(b^* | p^*, P_{1,3}, fringe) \mathbf{P}(P_{1,3}, p^*, fringe, other)$
 - $= \alpha \Sigma_{fringe} \mathbf{P}(b^* | p^*, P_{1,3}, fringe) \Sigma_{other} \mathbf{P}(P_{1,3}, p^*, fringe, other)$
 - $= \alpha \Sigma_{fringe} \mathbf{P}(b^* | p^*, P_{1,3}, fringe) \Sigma_{other} \mathbf{P}(P_{1,3}) P(p^*) P(fringe) P(other)$
 - $= \alpha P(p^*) \mathbf{P}(P_{1,3}) \Sigma_{fringe} \mathbf{P}(b^* | p^*, P_{1,3}, fringe) P(fringe) \underline{\Sigma_{other} P(other)}$
 - $= \alpha P(p^*) \mathbf{P}(P_{1,3}) \Sigma_{fringe} \mathbf{P}(b^* | p^*, P_{1,3}, fringe) P(fringe)$
 - Remove $\Sigma_{other} P(other)$ because it equals 1

- $\mathbf{P}(P_{1,3}|p^*,b^*) = \mathbf{P}(P_{1,3},p^*,b^*) / \mathbf{P}(p^*,b^*) = \alpha \mathbf{P}(P_{1,3},p^*,b^*)$
 - $= \alpha \Sigma_{unknown} \mathbf{P}(P_{1,3}, unknown, p^*, b^*)$
 - $= \alpha \Sigma_{unknown} \mathbf{P}(b^* | P_{1,3}, p^*, unknown) \mathbf{P}(P_{1,3}, p^*, unknown)$
 - $= \alpha \Sigma_{fringe} \Sigma_{other} \mathbf{P}(b^* | p^*, P_{1,3}, fringe, other) \mathbf{P}(P_{1,3}, p^*, fringe, other)$
 - $= \alpha \sum_{fringe} \sum_{other} \mathbf{P}(b^* | p^*, P_{1,3}, fringe) \mathbf{P}(P_{1,3}, p^*, fringe, other)$
 - $= \alpha \Sigma_{fringe} \mathbf{P}(b^* | p^*, P_{1,3}, fringe) \Sigma_{other} \mathbf{P}(P_{1,3}, p^*, fringe, other)$
 - $= \alpha \Sigma_{fringe} \mathbf{P}(b^* | p^*, P_{1,3}, fringe) \Sigma_{other} \mathbf{P}(P_{1,3}) P(p^*) P(fringe) P(other)$
 - $= \alpha P(p^*) \mathbf{P}(P_{1,3}) \Sigma_{fringe} \mathbf{P}(b^* | p^*, P_{1,3}, fringe) P(fringe) \Sigma_{other} P(other)$
 - $= \underline{\alpha P(p^*)} \mathbf{P}(P_{1,3}) \sum_{fringe} \mathbf{P}(b^*|p^*, P_{1,3}, fringe) P(fringe)$
 - $= \underline{\alpha'} \mathbf{P}(P_{1,3}) \sum_{fringe} \mathbf{P}(b^* | p^*, P_{1,3}, fringe) P(fringe)$
 - $P(p^*)$ is constant, so make it part of the normalization constant

How to get the answer?

 $\mathbf{P}(P_{1,3}|p^*,b^*) = \boldsymbol{\alpha'} \mathbf{P}(P_{1,3}) \Sigma_{fringe} \mathbf{P}(b^*|p^*,P_{1,3},fringe) P(fringe)$

 \diamondsuit Not hard to compute, because there are only four possible fringes:

 \diamond For each fringe, $P(b^*|p^*, p_{1,3}, fringe)$ is 1 if the breezes occur, 0 otherwise

- 1, 1, 1, and 0 for the four fringes above
- \diamond Similarly, for $P(b^*|p^*, \neg p_{1,3}, fringe)$, we get 1, 1, 0, and 0

Getting the answer

 $\sum_{fringe} P(b^*|p^*, p_{1,3}, fringe) P(fringe) = 1(0.04) + 1(0.16) + 1(0.16) + 0 = 0.36$ $\sum_{fringe} P(b^*|p^*, \neg p_{1,3}, fringe) P(fringe) = 1(0.04) + 1(0.16) + 0 + 0 = 0.2$ so $\mathbf{P}(P_{1,3}|p^*, b^*) = \alpha' \mathbf{P}(P_{1,3}) \sum_{fringe} \mathbf{P}(b^*|p^*, P_{1,3}, fringe) P(fringe)$ $= \alpha' \langle 0.2, \ 0.8 \rangle \ \langle 0.36, 0.2 \rangle = \alpha' \langle 0.072, 0.16 \rangle$ so $\alpha' = 1/(0.072 + 0.16) = 1/0.232 \approx 4.31$ so $\mathbf{P}(P_{1,3}|p^*, b^*) = \langle 0.072 \, \alpha', 0.16 \, \alpha' \rangle \approx \langle 0.31, 0.69 \rangle$

Additional answers

- \diamondsuit We have
 - $\mathbf{P}(P_{1,3}|p^*,b^*) \approx \langle 0.31, 0.69 \rangle$
- \diamondsuit Similarly,
 - $\mathbf{P}(P_{2,2}|p^*,b^*) \approx \langle 0.86, 0.14 \rangle$
 - $\mathbf{P}(P_{3,1}|p^*, b^*) \approx \langle 0.31, 0.69 \rangle$

1,4	2,4	3,4	4,4
1,3 P _{1,3}	2,3	3,3	4,3
^{1,2} B OK	2,2 P _{2,2}	3,2	4,2
1,1 OK	^{2,1} B OK	$P_{3,1}$	4,1

- \diamondsuit Questions:
 - Why don't these add up to 1?
 - Which square should we move to?

Summary

- \diamondsuit Probability is a rigorous formalism for uncertain knowledge
- *♦ Joint probability distribution* specifies probability of every *atomic event*
- ♦ Queries can be answered by *inference by enumeration* (summing over atomic events)
- \diamondsuit Can reduce combinatorial explosion using independence and conditional independence

Homework assignment

I'll post it on Piazza