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BAYESIAN NETWORKS
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Outline

¢ Syntax

> Semantics

> Parameterized distributions
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Bayesian networks

> Graphical network that encodes conditional independence assertions:

e a set of nodes, one per variable
e a directed, acyclic graph (link ~ “directly influences”)
e a conditional distribution P (X, | Parents(X;)) for each node X;

Toothache @

o Weather is independent of the other variables

o Toothache and Clatch are conditionally independent given Cavity

{ For each node X;, P(X; | Parents(X,)) is represented as a
conditional probability table (CPT); we'll have examples later
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Example
$» Example from Judea Pearl at UCLA:

I'm at work, neighbor John calls to say my alarm is ringing, but neighbor
Mary doesn’t call. Sometimes it’s set off by minor earthquakes. Is there
a burglar?

& Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls
> Network topology reflects “causal” knowledge:

e A burglar can set P(E)

P(B)
the alarm off Burglary 001 Earthquake 002

e So can an

B E |P(ABE)
rthquak
carthquake T o
e The alarm T F| 94
F T .29
can cause F F| .001

Mary to call

PQIA
e It can also UIA) A |PMIA)
@ T .90 T1 .70
cause John F| .05 F| 01

to call
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Compactness

For a Boolean node X; with & Boolean parents, the CPT
has 2" rows, one for each combination of parent values

Each row requires one number p for X; =true
(the number for X, = false is just 1 — p)

[f there are n variables and if each variable has no more than &k parents,
the complete network requires no more than n - 2 numbers

e Grows linearly with n,

vs. O(2") for the full P(B) P(E)
joint distribution 001 002
How many B E |P(AB.E)
numbers T T| 95
T F| 94
for the E T
burglary net? F F| .001
A [P(MIA)
F| .05 F| .01
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Semantics of Bayesian nets

& In general, semantics = “what things mean”

e HHere, we're interested in what a Bayesian net means

& We'll look at global and local semantics

P(B)

Burglary

.001

B E |PA[BE)
T T| 95

T F| %

F T | .29

F F

.001

P(E)

Earthquake 002

-

.90
.05

A |P(M|A)
F| .01
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Global semantics

& Global semantics defines the full joint distribution as the product of the

local conditional distributions

® Ile,..

O Eg, P(jAmMAaN—bAN —e)

., X,, are the random variables, the chain rule and conditional
independence give us P(X,,....X,) = [I'_ , P(X, | parents(X;))

= P(j [ a) P(m|a) P(a|=b,—e) P(=b) P(=e)
= 0.9 x 0.7 x 0.001 x 0.999 x 0.998

~ (.00063

Burglary

B E |PABE)
T T| .95

T F| %

F T | .29

F F | .001

P(B)

.001

P(E)

Earthquake 002

PUJIA)

.90
.05

-

A |P(M|A)
F| .01
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Local semantics

< Local semantics: each node is conditionally independent
of its nondescendants given its parents

{» Theorem: Local semantics < global semantics
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Markov blanket

> Each node is conditionally independent of all others given its
Markov blanket:

e parents + children + children’s parents
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Constructing Bayesian networks

> Given a set of random variables
1. Choose an ordering Xy,...,.X,
¢ In principle, any ordering will work
2. For 2 = 1 to n, add X, to the network as follows:

o For Parents(X;), choose a subset of {X1,..., X, 1}
such that X is conditionally independent of
the other nodes in { Xy, ..., X; 1}

o ie., P(X; | Parents(X;)) =P(X; | X1, ..., X;1)

> This choice of parents guarantees the global semantics:

P(X,,....X,) = II'_ P(X;| X, ..., X;_1) (chain rule)
= II'_ |\ P(X, | Parents(X;)) (by construction)
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Example
{ Suppose we choose the ordering M, J, A, B, E
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Example
{ Suppose we choose the ordering M, J, A, B, E

P(J | M) = P(J)? No
P(A|J, M)=P(A|J)? P(A]|J, M) = P(A)?
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Example
{ Suppose we choose the ordering M, J, A, B, E
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Example
{ Suppose we choose the ordering M, J, A, B, E

P(J| M) = P(J)? No

P(A|J,M)=P(A|J)? P(A| J, M)=P(A)? No
P(B|A,J,M)=P(B|A)? Yes

P(B| A, J,M)=P(B)? No
P(E|B,A,J,M)=P(E| A)?
P(E|B,A,J,M)=P(E| A, B)?
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Example
{ Suppose we choose the ordering M, J, A, B, E

Burglary

| M) = P(J)? No
J | J)? P(A|J, M)=P(A)? No
M (B A)? Yes
M) = P(B)? No

J M)=P(E]|A? No
,J,M)=P(E| A, B)? Yes

a-Ba~Ba-la-BaNae
=
|
>
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Example, continued

Burglary
Earthquake

> In noncausal directions,
e Deciding conditional independence is hard
e Assessing conditional probabilities is hard
e Network is less compact: 1+ 2+ 4 + 2 + 4 =13 numbers needed
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Example: Car diagnosis

> Initial evidence: car won’t start
e Testable variables (green), “broken, so fix it” variables (orange)

e Hidden variables (gray) ensure sparse structure, reduce parameters

alternator fanbelt
broken broken

battery fuel line starter
flat blockec broken

dead
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Compact conditional distributions
¢ Problem: CPT grows exponentially with number of parents.

> Can overcome this if the causes don’t interact: use Noisy-OR distribution
1) Parents U ... U} include all causes (can add leak node)
2) Independent failure probability ¢; for each cause U; by itself
= P(-X|Uy...U;,~Ujyqp...—Up) =11 g

{» Number of parameters linear in number of parents

Cold Flu  Malaria| P(Fever)| P(—Fever)

F F F 0.0 1.0

F F T 0.9 0.1

F T F 0.8 0.2

F T T 0.98 0.02 =0.2 x 0.1

T F F 0.4 0.6

T F T 0.94 0.06 = 0.6 x 0.1

T T F 0.88 0.12=0.6 x 0.2

T T T 0.988 0.012 = 0.6 x 0.2 x 0.1
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Compact conditional distributions, continued

{» Problem: CPT becomes infinite with continuous-valued parent or child

¢ Solution: canonical distributions that are defined compactly

e iec., standard math formulas

& Deterministic nodes are the simplest case:
X = f(Parents(X)) for some function f
& Examples:
e Boolean functions
NorthAmerican < Canadian VvV US V Mexican
e Numerical relationships among continuous variables

OLevel
ot

= inflow + precipitation - outflow - evaporation

> More details in the book
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Inference tasks

Simple queries: compute posterior marginal distribution P(X; | E=e)
o cg., P(NoGas | Gauge =empty, Lights = on, Starts = false)
Conjunctive queries:

o P(X,, X, |E=e)=P(X;, | E=¢e)P(X, | X;,E=e)

Optimal decistons: decision networks include utility information;
probabilistic inference required for P(outcome | action, evidence)

Value of information: which evidence to seek next?
Sensitivity analysis: which probability values are most critical?

Ezplanation: why do I need a new starter motor?
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Inference by enumeration

®
¢ Simple query on the burglary network ﬁ
e probability of burglary, given John and Mary both call @ @
P(B | jm)
=P(B,j,m)/P(j,m) (def. of cond. probability)
= aP(B, j,m) (normalization constant)
=ay, . > . P(B,e,a,j,m) (sum over hidden variables)
where > P(...,a,...)means P(... ,—a,...)+P(...,a,...)
=ay. . > . P(B) Ple) Pla|B,e) P(jla) P(m|a) (cond. indep.)
=aP(B)>  P(e)>_, Pla|B,e) P(jla) P(m|a) (move out of ¥)
{ Recursive depth-first enumeration: O(n) space, O(d") time
e Algorithm is in the book

e It’s like evaluating the tree representation of an arithmetic expression
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P(|a)
.90

P(mla)
70

Inference by enumeration

Q

O

P(jl —.a)
.05

P(m| - a)
.01

O

O P(B|jm) =aP(B)Y, Ple)
& Inefficient: computes P(j | a) P(

2.

a

P(jl —.a)
.05

P(m| = a)
01

P(a| B,e) P(j | a) P(m | a)

| a) repeatedly, for each value of e
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Inference by variable elimination
> Variable elimination: carry out summations right-to-left,
storing intermediate results (factors) to avoid recomputation
e Below, X represents pointwise multiplication of tables

¢ 1.e., multiply the corresponding elements

P(B|jm)=aP(B P P(a| B,e)P(j|a)P
(B|j,m)=aP(B)5>, Ple)5,Pla| B.e)Pj| a)P(m | a)
f1(B) 1510) fya8E)  fi4) £

—= Oéfl(B) X Ze f2<E) X ng(A, B, E) X f4(A> X f5<A>

fo(B,E)
= af|(B) x Y f5,(F) x f5(B, F) @

t7(B)
= Ckfl(B) X f7(B) @ﬁ®

e Just cache the probability tables, going up from the bottom of the tree

> Less complicated than it looks
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Caching the probability tables
P(B | j,m) = afi(B) x Lhy(E) x L.f(A, B, E) x fi(A) x £5(A)
fG(EE)

= Cvf1<B) X \zjefé(E) X f6<B, El
£:(5)

o T
P(e) ¢ P(=e)
f(B) HE) /U\ 998

_— o~

—~ = N

P(alb,e) P(—na/b e) P(alb—e) X P(—albme)
13(4,B.E) g /b\ 94 /\)\06
fo(B.E) (3/// \\\r) o ~0

N

P(jla) P(jl—a) P(jla) P(jl—a)
90 14(4) 05 90 14(4) 05
O O O O
P(mla) P(ml=a) P(mla) P(ml=a)
70 1 f5(4) 01 70 f5(4) 01

O O O O
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Irrelevant variables

¢ What’s the probability that John calls, given that there’s a burglary?

P(J|b)=aP(b)) Ple)y Pla|be) P(J|a)) P(m]|a)

e Sum over m is 1; M is irrelevant to the query

> Theorem: For query X, hidden variable Y is irrelevant unless

Y € Ancestors({X} UE)

{ Here, X =J,
E={B}, @
Ancestors({J,B}) ={J,B, A, E} ﬁ

e so M is irrelevant @ @
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Complexity of exact inference

& Singly connected networks (or polytrees):
e any two nodes are connected by at most one (undirected) path
e complexity of inference is linear in the size of the network

¢ size = total number of entries in the probability tables

& Multiply connected networks:
e cxponential time and space in the worst case
e includes propositional inference as a special case

e as hard as counting the number of ways to satisfy a propositional formula

1. AvBv C
2. CvDv-A
3. Bv Cv-D
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Inference by stochastic simulation

Outline:

¢ Sampling from an empty network:
1) Generate N random samples of events in the network
2) Average the results
3) For each event x, this gives us a posterior probability P ()
4) As N — oo this converges to x’s true probability P(x)

& Rejection sampling, given evidence e:
1) Generate N random samples of events in the network
2) Reject samples that disagree with the evidence e, average the others
3) For each event x, this gives us a posterior probability P (x| e)
4) As N — oo this converges to z’s true conditional probability P(x | e)

> Likelihood weighting: use evidence to weight samples
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Sampling from an empty network

¢ Sampling from an empty network:
1) Generate N random samples of events in the network
2) Average the results
3) For each event x, this gives us a posterior probability P ()
4) As N — oo this converges to x’s true probability P(x

function PRIOR-SAMPLE(On) returns an event sampled from b
inputs: On, a belief network specifying joint distribution P(X7, ..., X,,)

x <— an event with n elements
for: = 1tondo
7; <— a random sample from P(X; | parents(X;))
given the values of Parents(X;) in x
return x

CMSC 421: Chapter 14, Sections 1-5
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Example: find prob. of Wet Grass

C [P(SIC)
T | .10
F| .50

P(C)

90

S R[P(WI|SR)
T T| 99
T F| 90
F T| .90
F F| .01

C [P(R|C)
T .80
F| .20
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Example: find prob. of Wet Grass

C [P(SIC)
T | .10
F| .50

P(C)

90

S R[P(WI|SR)
T T| 99
T F| 90
F T| .90
F F| .01

C [P(R|C)
T .80
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Example: find prob. of Wet Grass

C [P(SIC)
T | .10
F| .50

P(C)

90

S R[P(WI|SR)
T T| 99
T F| 90
F T| .90
F F| .01

C [P(R|C)
T .80
F| .20
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Example: find prob. of Wet Grass

C [P(SIC)
T | .10
F| .50

P(C)

90

S R[P(WI|SR)
T T| .99
T F| .90
F T| .90
F F| .01

C [P(R|C)
T .80
F| .20

CMSC 421: Chapter 14, Sections 1-5 32



Example: find prob. of Wet Grass

C |P(SIC)
T[] 10
F| .50

P(C)

90

S R[P(WI|SR)
T T| .99
T F| .90
F T| .90
F F| .01

C [P(R|C)
T .80
F| .20
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Example: find prob. of Wet Grass

C |P(SIC)
T[] 10
F| .50

P(C)

90

S R[P(WI|SR)
T T| .99
T F| .90
F T| .90
F F| .01

C [P(R|C)
T .80
F| .20
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Example: find prob. of Wet Grass

C |P(SIC)
T 10
F| .50

P(C)

90

S R[P(WI|SR)
T T| .99
T F| .90
F T| .90
F F| .01

P(RIC)
80
20
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Sampling from an empty network, continued

> Probability that PRIORSAMPLE generates a particular set of events
o Sps(xy...x,) =11'_ Pz | parents(X;)) = P(xy...x,)

{ 1i.e., the true prior probability of x,..., z,
o E.g., Sps(t, f,t,t) =05x0.9x0.8x0.9=0.324 = P(t, f,,1)

& Suppose we collect N samples. Let Npg(z ... x,) be the number of
samples in which x4, ...z, occurred

> Then we have

lim P(z1,...,2,) = lim Npg(ai,...,z,)/N

N—o0 N—oo
= Sps(T1,. .., Ty)
= P(xy...x,)

e That is, estimates derived from PRIORSAMPLE are consistent

& Shorthand: P(zy,...,xz,) ~ Pz ... x,)
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Example: prob. of Wet Grass, given Sprinkler

C |P(SIC)
T | .10
F| .50

P(C)

.90

S R|P(W|SR)
T T| .99
T F| .90
F T| .9
F F| .01

C |P(R|C)
T .80
F| .20
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Example: prob. of Wet Grass, given Sprinkler

C |P(SIC)
T | .10
F| .50

P(C)

.90

S R|P(W|SR)
T T| .99
T F| .90
F T| .9
F F| .01

C |P(R|C)
T .80
F| .20
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Example: prob. of Wet Grass, given Sprinkler

C |P(SIC)
T | .10
F| .50

P(C)

.90

S R|P(W|SR)
T T| .99
T F| .90
F T| .9
F F| .01

C |P(R|C)
T .80
F| .20
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Example: prob. of Wet Grass, given Sprinkler

P(C)
50

C |P(SIC) C [P(R[C)
F| .50 F| .20

S R|P(W|SR)
T T| .99
T F| .90
F T| .9
F F| .01

¢ Reject this sample, start running the next one
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Rejection sampling

¢ P(X | e) estimated from samples agreeing with e

function REJECTION-SAMPLING(X, e, bn, N) returns an estimate of P(.X|e)
local variables: N, a vector of counts over X, initially zero

for j=1to Ndo
X <— PRIOR-SAMPLE(bn)
if x is consistent with e then
N{[] <= N[2]4+1 where  is the value of X in x
return NORMALIZE(N[.X])

¢ E.g., estimate P(Rain | Sprinkler =true) using 100 samples
e 27 samples have Sprinkler =true
e Of these, 8 have Rain =true and 19 have Rain = false.
e P(Rain | Sprinkler =true) = NORMALIZE((8, 19)) = (0.296, 0.704)

> Similar to a basic real-world empirical estimation procedure
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Analysis of rejection sampling

P(X | e) = aNpg(X,e) (algorithm def.)
= Nps(X,e)/Nps(e) (normalized by Npg(e))
~P(X,e)/Ple) (property of PRIORSAMPLE)
=P(X | e) (def. of conditional probability)

> Hence rejection sampling returns consistent posterior estimates

> Problem:

e if P(e) is small, this is hopelessly expensive to compute:
¢ must reject most of the samples because they disagree with e

e P(e) drops off exponentially with number of evidence variables!
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Likelihood weighting

& Idea: fix evidence variables, sample only nonevidence variables,
and weight each sample by the likelihood it accords the evidence

function LIKELIHOOD-WEIGHTING(X, e, bn, N) returns an estimate of P(X|e)
local variables: W, a vector of weighted counts over X, initially zero

for y=1to Ndo

X, W <— WEIGHTED-SAMPLE(bn)

Wz] <~ W]z] + w where z is the value of X in x
return NORMALIZE(W [X])

function WEIGHTED-SAMPLE(bn, €) returns an event and a weight

x <— an event with n elements; w < 1
for 1=1ton do
if X, has a value z; in e
then w<+ w x P(X;,= z; | parents(X,))
else z; < a random sample from P(X; | parents(X;))
return x, w

CMSC 421: Chapter 14, Sections 1-5
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Likelihood weighting example

P(C)
50

C |P(SIc) TS C |P(RIC)
%‘:mm R ain
1B D M-

S R[P(WISR)
T T| .99
T F| .90
F T| .90
F F| .01
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Likelihood weighting example

P(C)
50

C |P(SIc) <~ C |P(RIC)
%‘:mm R ain
Coo e D M-

S R[P(WISR)
T T| .99
T F| .90
F T| .90
F F| 01
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Likelihood weighting example

P(C)
50

C [P(SIC) TR c PRIO)
%‘:mm PP ain
T QS wHE:

S R[P(WISR)
T T| .99
T F| .90
F T| .90
F F| 01
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Likelihood weighting example

P(C)
50

C [PS0)| ot CTRRG
%‘:mm PP ain
T QS wHE:

S R[P(WISR)
T T| .99
T F| .90
F T| .90
F F| 01

w=1.0x0.1
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Likelihood weighting example

P(C)
50

C [PS0)| ot CTRRG
%‘:mm PP -
Do =D T

S R[P(WISR)
T T| .99
T F| .90
F T| .90
F F| 01

w=1.0x0.1
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Likelihood weighting example

P(C)
50

C [PS0)| ot CTRRG
%‘:mm PP -
Do =D T

S R[P(WISR)
T T| .99
T F| .90
F T| .90
F F| 01

w=1.0x0.1
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Likelihood weighting example

w = 1.0x0.1x0.99 = 0.099

C IPS0) |
71 10 (S
F| .50

P(C)

.20

S R[P(WISR)
T T| .99
T F| .90
F T| .90
F F| 01

Rain

C [P(RIC)
T .80
F| .20
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Likelihood weighting analysis

¢ Sampling probability for WEIGHTEDSAMPLE is
o Sys(z,e) = Hi-:lP(zi | parents(Z;))
e Note: pays attention to evidence in ancestors only

= somewhere “in between” prior and
posterior distribution

& Weight for a given sample z, e is

o w(z,e)=II"",P(e; | parents(E;))
& Weighted sampling probability is

o Sys(z,e)w(z,e)

= HizlP(zi | parents(Z;)) 1I'_,P(e; | parents(E;))
= P(z,e) (by standard global semantics of network)

¢ Hence likelihood weighting returns consistent estimates
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Summary

{> Bayes nets provide a natural representation for (causally induced)
conditional independence

& Topology + CPTs = compact representation of joint distribution

{ Generally easy for (non)experts to construct

¢ Canonical distributions (e.g., noisy-OR) = compact representation of CPT's
¢ Continuous variables = parameterized distributions (e.g., linear Gaussian)

¢ Exact inference by variable elimination:
e polytime on polytrees, NP-hard on general graphs

e space = time, very sensitive to topology

< Approximate inference by stochastic simulation

e Convergence can be very slow with probabilities close to 1 or 0
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Homework assignment

> Here is Homework 6, the last homework assignment of the semester:
e Problems 13.8, 13.17, 13.21, 13.24, and 14.14.
e 10 points each, 50 points total.

> Due date: Dec 11
> No late date!
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