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Outline

♦ Syntax

♦ Semantics

♦ Parameterized distributions
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Bayesian networks

♦ Graphical network that encodes conditional independence assertions:

• a set of nodes, one per variable

• a directed, acyclic graph (link ≈ “directly influences”)

• a conditional distribution P(Xi | Parents(Xi)) for each node Xi

Weather Cavity

Toothache Catch

� Weather is independent of the other variables

� Toothache and Catch are conditionally independent given Cavity

♦ For each node Xi, P(Xi | Parents(Xi)) is represented as a
conditional probability table (CPT); we’ll have examples later
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Example

♦ Example from Judea Pearl at UCLA:

I’m at work, neighbor John calls to say my alarm is ringing, but neighbor
Mary doesn’t call. Sometimes it’s set off by minor earthquakes. Is there
a burglar?

♦ Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls

♦ Network topology reflects “causal” knowledge:

• A burglar can set
the alarm off

• So can an
earthquake

• The alarm
can cause
Mary to call

• It can also
cause John
to call
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Compactness

♦ For a Boolean node Xi with k Boolean parents, the CPT
has 2k rows, one for each combination of parent values

♦ Each row requires one number p for Xi = true
(the number for Xi = false is just 1− p)

♦ If there are n variables and if each variable has no more than k parents,
the complete network requires no more than n · 2k numbers

• Grows linearly with n,
vs. O(2n) for the full
joint distribution

♦ How many
numbers
for the
burglary net?
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Semantics of Bayesian nets

♦ In general, semantics = “what things mean”

• Here, we’re interested in what a Bayesian net means

♦ We’ll look at global and local semantics
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Global semantics

♦ Global semantics defines the full joint distribution as the product of the
local conditional distributions

• If X1, . . . , Xn are the random variables, the chain rule and conditional

independence give us P (X1, . . . , Xn) = Πn
i=1P (Xi | parents(Xi))

♦ E.g., P (j ∧m ∧ a ∧ ¬b ∧ ¬e)
= P (j | a) P (m | a) P (a | ¬b,¬e) P (¬b) P (¬e)
= 0.9× 0.7× 0.001× 0.999× 0.998

≈ 0.00063
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Local semantics

♦ Local semantics: each node is conditionally independent
of its nondescendants given its parents
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♦ Theorem: Local semantics ⇔ global semantics
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Markov blanket

♦ Each node is conditionally independent of all others given its
Markov blanket:

• parents + children + children’s parents
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Constructing Bayesian networks

♦ Given a set of random variables

1. Choose an ordering X1, . . . , Xn

� In principle, any ordering will work

2. For i = 1 to n, add Xi to the network as follows:

� For Parents(Xi), choose a subset of {X1, . . . , Xi−1}
such that Xi is conditionally independent of
the other nodes in {X1, . . . , Xi−1}

� i.e., P(Xi | Parents(Xi)) = P(Xi | X1, . . . , Xi−1)

♦ This choice of parents guarantees the global semantics:

P(X1, . . . , Xn) = Πn
i=1P(Xi | X1, . . . , Xi−1) (chain rule)

= Πn
i=1P(Xi | Parents(Xi)) (by construction)
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Example

♦ Suppose we choose the ordering M , J , A, B, E

MaryCalls

JohnCalls

P (J |M) = P (J)?
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Example

♦ Suppose we choose the ordering M , J , A, B, E

MaryCalls

Alarm

JohnCalls

P (J |M) = P (J)? No
P (A | J,M) = P (A | J)? P (A | J,M) = P (A)?
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Example

♦ Suppose we choose the ordering M , J , A, B, E

MaryCalls

Alarm

Burglary

JohnCalls

P (J |M) = P (J)? No
P (A | J,M) = P (A | J)? P (A | J,M) = P (A)? No
P (B | A, J,M) = P (B | A)?
P (B | A, J,M) = P (B)?
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Example

♦ Suppose we choose the ordering M , J , A, B, E

MaryCalls

Alarm

Burglary

Earthquake

JohnCalls

P (J |M) = P (J)? No
P (A | J,M) = P (A | J)? P (A | J,M) = P (A)? No
P (B | A, J,M) = P (B | A)? Yes
P (B | A, J,M) = P (B)? No
P (E | B,A, J,M) = P (E | A)?
P (E | B,A, J,M) = P (E | A,B)?
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Example

♦ Suppose we choose the ordering M , J , A, B, E

MaryCalls

Alarm

Burglary

Earthquake

JohnCalls

P (J |M) = P (J)? No
P (A | J,M) = P (A | J)? P (A | J,M) = P (A)? No
P (B | A, J,M) = P (B | A)? Yes
P (B | A, J,M) = P (B)? No
P (E | B,A, J,M) = P (E | A)? No
P (E | B,A, J,M) = P (E | A,B)? Yes
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Example, continued

MaryCalls

Alarm

Burglary

Earthquake

JohnCalls

♦ In noncausal directions,

• Deciding conditional independence is hard

• Assessing conditional probabilities is hard

• Network is less compact: 1 + 2 + 4 + 2 + 4 = 13 numbers needed
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Example: Car diagnosis

♦ Initial evidence: car won’t start

• Testable variables (green), “broken, so fix it” variables (orange)

• Hidden variables (gray) ensure sparse structure, reduce parameters

lights

no oil no gas starter
broken

battery age alternator
  broken

fanbelt
broken

battery
  dead no charging

battery
    flat

gas gauge

fuel line
blocked

oil light

battery
 meter

car won’t
    start dipstick
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Compact conditional distributions

♦ Problem: CPT grows exponentially with number of parents.

♦ Can overcome this if the causes don’t interact: use Noisy-OR distribution

1) Parents U1 . . . Uk include all causes (can add leak node)

2) Independent failure probability qi for each cause Ui by itself

⇒ P (¬X | U1 . . . Uj,¬Uj+1 . . .¬Uk) = Πj
i=1qi

♦ Number of parameters linear in number of parents

Cold F lu Malaria P (Fever) P (¬Fever)
F F F 0.0 1.0
F F T 0.9 0.1
F T F 0.8 0.2
F T T 0.98 0.02 = 0.2× 0.1
T F F 0.4 0.6
T F T 0.94 0.06 = 0.6× 0.1
T T F 0.88 0.12 = 0.6× 0.2
T T T 0.988 0.012 = 0.6× 0.2× 0.1
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Compact conditional distributions, continued

♦ Problem: CPT becomes infinite with continuous-valued parent or child

♦ Solution: canonical distributions that are defined compactly

• i.e., standard math formulas

♦ Deterministic nodes are the simplest case:
X = f (Parents(X)) for some function f

♦ Examples:

• Boolean functions

NorthAmerican ⇔ Canadian ∨ US ∨Mexican

• Numerical relationships among continuous variables

∂Level

∂t
= inflow + precipitation - outflow - evaporation

♦ More details in the book
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Inference tasks

♦ Simple queries: compute posterior marginal distribution P(Xi | E = e)

• e.g., P (NoGas | Gauge= empty, Lights= on, Starts= false)

♦ Conjunctive queries:

• P(Xi, Xj | E = e) = P(Xi | E = e)P(Xj | Xi,E = e)

♦ Optimal decisions: decision networks include utility information;
probabilistic inference required for P (outcome | action, evidence)

♦ Value of information: which evidence to seek next?

♦ Sensitivity analysis: which probability values are most critical?

♦ Explanation: why do I need a new starter motor?
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Inference by enumeration
B E

J

A

M

♦ Simple query on the burglary network

• probability of burglary, given John and Mary both call

P(B | j,m)

= P(B, j,m)/P (j,m) (def. of cond. probability)

= αP(B, j,m) (normalization constant)

= α
∑

e

∑
a P(B, e, a, j,m) (sum over hidden variables)

where
∑

a P(. . . , a, . . .) means P(. . . ,¬a, . . .) + P(. . . , a, . . .)

= α
∑

e

∑
a P(B) P (e) P(a|B, e) P (j|a) P (m|a) (cond. indep.)

= αP(B)
∑

e P (e)
∑

a P(a|B, e) P (j|a) P (m|a) (move out of Σ)

♦ Recursive depth-first enumeration: O(n) space, O(dn) time

• Algorithm is in the book

• It’s like evaluating the tree representation of an arithmetic expression
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Inference by enumeration
B E

J

A

M

P(j|a)
.90

P(m|a)
.70 .01

P(m|    a)

.05
P(j|    a) P(j|a)
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P(   e)
.998

P(a|b,e)
.95 .06

P(   a|b,   e)
.05
P(   a|b,e)

.94
P(a|b,   e)

♦ P(B | j,m) = α P(B)
∑

e P (e)
∑

a P(a | B, e) P (j | a) P (m | a)

♦ Inefficient: computes P (j | a) P (m | a) repeatedly, for each value of e
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Inference by variable elimination

♦ Variable elimination: carry out summations right-to-left,
storing intermediate results (factors) to avoid recomputation

• Below, × represents pointwise multiplication of tables

� i.e., multiply the corresponding elements

P(B | j,m) = αP(B)︸ ︷︷ ︸
f1(B)

∑
e P (e)︸︷︷︸
f2(E)

∑
a P(a | B, e)︸ ︷︷ ︸

f3(A,B,E)

P (j | a)︸ ︷︷ ︸
f4(A)

P (m | a)︸ ︷︷ ︸
f5(A)

= αf1(B)×
∑

e f2(E)×
∑
a

f3(A,B,E)× f4(A)× f5(A)︸ ︷︷ ︸
f6(B,E)

= αf1(B)×
∑
e

f2(E)× f6(B,E)︸ ︷︷ ︸
f7(B)

= αf1(B)× f7(B)

B E

J

A

M
♦ Less complicated than it looks

• Just cache the probability tables, going up from the bottom of the tree
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Caching the probability tables

P(B | j,m) = αf1(B)×Σef2(E)×Σaf3(A,B,E)× f4(A)× f5(A)︸ ︷︷ ︸
f6(B,E)

= αf1(B)×Σef2(E)× f6(B,E)︸ ︷︷ ︸
f7(B)

f7(B)
  

f6(B,E)  
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Irrelevant variables

♦ What’s the probability that John calls, given that there’s a burglary?

P (J | b) = αP (b)
∑
e

P (e)
∑
a

P (a | b, e) P (J | a)
∑
m

P (m | a)

• Sum over m is 1; M is irrelevant to the query

♦ Theorem: For query X , hidden variable Y is irrelevant unless
Y ∈Ancestors({X}∪E)

B E

J

A

M

♦ Here, X = J ,
E = {B},
Ancestors({J,B}) = {J,B,A,E}

• so M is irrelevant
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Complexity of exact inference

♦ Singly connected networks (or polytrees):

• any two nodes are connected by at most one (undirected) path

• complexity of inference is linear in the size of the network

� size = total number of entries in the probability tables

♦ Multiply connected networks:

• exponential time and space in the worst case

• includes propositional inference as a special case

• as hard as counting the number of ways to satisfy a propositional formula

A B C D

1 2 3

AND

0.5 0.50.50.5

LL

L

L

1.  A  v  B  v  C

2.  C  v  D  v    A

3.  B  v  C  v    D
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Inference by stochastic simulation

Outline:

♦ Sampling from an empty network:
1) Generate N random samples of events in the network
2) Average the results
3) For each event x, this gives us a posterior probability P̂ (x)
4) As N →∞ this converges to x’s true probability P (x)

♦ Rejection sampling, given evidence e:
1) Generate N random samples of events in the network
2) Reject samples that disagree with the evidence e, average the others
3) For each event x, this gives us a posterior probability P̂ (x | e)
4) As N →∞ this converges to x’s true conditional probability P (x | e)

♦ Likelihood weighting: use evidence to weight samples
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Sampling from an empty network

♦ Sampling from an empty network:
1) Generate N random samples of events in the network
2) Average the results
3) For each event x, this gives us a posterior probability P̂ (x)
4) As N →∞ this converges to x’s true probability P (x)

function Prior-Sample(bn) returns an event sampled from bn

inputs: bn, a belief network specifying joint distribution P(X1, . . . , Xn)

x ← an event with n elements

for i = 1 to n do

xi ← a random sample from P(Xi | parents(Xi))

given the values of Parents(Xi) in x

return x
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Example: find prob. of Wet Grass
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Sampling from an empty network, continued

♦ Probability that PriorSample generates a particular set of events

• SPS(x1 . . . xn) = Πn
i=1P (xi | parents(Xi)) = P (x1 . . . xn)

♦ i.e., the true prior probability of x1, . . . , xn

• E.g., SPS(t, f, t, t) = 0.5× 0.9× 0.8× 0.9 = 0.324 = P (t, f, t, t)

♦ Suppose we collect N samples. Let NPS(x1 . . . xn) be the number of
samples in which x1, . . . , xn occurred

♦ Then we have

lim
N→∞

P̂ (x1, . . . , xn) = lim
N→∞

NPS(x1, . . . , xn)/N

= SPS(x1, . . . , xn)

= P (x1 . . . xn)

• That is, estimates derived from PriorSample are consistent

♦ Shorthand: P̂ (x1, . . . , xn) ≈ P (x1 . . . xn)
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Example: prob. of Wet Grass, given Sprinkler
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Example: prob. of Wet Grass, given Sprinkler
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Example: prob. of Wet Grass, given Sprinkler
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Example: prob. of Wet Grass, given Sprinkler
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♦ Reject this sample, start running the next one
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Rejection sampling

♦ P̂(X | e) estimated from samples agreeing with e

function Rejection-Sampling(X,e, bn,N) returns an estimate of P (X |e)

local variables: N, a vector of counts over X, initially zero

for j = 1 to N do

x ← Prior-Sample(bn)

if x is consistent with e then

N[x] ← N[x]+1 where x is the value of X in x

return Normalize(N[X])

♦ E.g., estimate P(Rain | Sprinkler= true) using 100 samples

• 27 samples have Sprinkler= true

• Of these, 8 have Rain= true and 19 have Rain= false.

• P̂(Rain | Sprinkler= true) = Normalize(〈8, 19〉) = 〈0.296, 0.704〉

♦ Similar to a basic real-world empirical estimation procedure
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Analysis of rejection sampling

P̂(X | e) = αNPS(X, e) (algorithm def.)

= NPS(X, e)/NPS(e) (normalized by NPS(e))

≈ P(X, e)/P (e) (property of PriorSample)

= P(X | e) (def. of conditional probability)

♦ Hence rejection sampling returns consistent posterior estimates

♦ Problem:

• if P (e) is small, this is hopelessly expensive to compute:

� must reject most of the samples because they disagree with e

• P (e) drops off exponentially with number of evidence variables!
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Likelihood weighting

♦ Idea: fix evidence variables, sample only nonevidence variables,
and weight each sample by the likelihood it accords the evidence

function Likelihood-Weighting(X,e, bn,N) returns an estimate of P (X |e)

local variables: W, a vector of weighted counts over X, initially zero

for j = 1 to N do

x,w ←Weighted-Sample(bn)

W[x ] ←W[x ] + w where x is the value of X in x

return Normalize(W[X ])

function Weighted-Sample(bn,e) returns an event and a weight

x ← an event with n elements; w ← 1

for i = 1 to n do

if Xi has a value xi in e

then w ← w × P (Xi = xi | parents(Xi))

else xi ← a random sample from P(Xi | parents(Xi))

return x, w
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Likelihood weighting example

Cloudy

RainSprinkler

 Wet
Grass

C

T
F

.80

.20

P(R|C)C

T
F

.10

.50

P(S|C)

S R

T T
T F
F T
F F

.90

.90

.99

P(W|S,R)

P(C)
.50

.01

w = 1.0

CMSC 421: Chapter 14, Sections 1–5 44
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Likelihood weighting analysis

♦ Sampling probability for WeightedSample is

• SWS(z, e) = Πl
i=1P (zi | parents(Zi))

• Note: pays attention to evidence in ancestors only Cloudy

RainSprinkler

 Wet
Grass

⇒ somewhere “in between” prior and
posterior distribution

♦ Weight for a given sample z, e is

• w(z, e) = Πm
i=1P (ei | parents(Ei))

♦ Weighted sampling probability is

• SWS(z, e)w(z, e)

= Πl
i=1P (zi | parents(Zi)) Πm

i=1P (ei | parents(Ei))
= P (z, e) (by standard global semantics of network)

♦ Hence likelihood weighting returns consistent estimates
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Summary

♦ Bayes nets provide a natural representation for (causally induced)
conditional independence

♦ Topology + CPTs = compact representation of joint distribution

♦ Generally easy for (non)experts to construct

♦ Canonical distributions (e.g., noisy-OR) = compact representation of CPTs

♦ Continuous variables ⇒ parameterized distributions (e.g., linear Gaussian)

♦ Exact inference by variable elimination:

• polytime on polytrees, NP-hard on general graphs

• space = time, very sensitive to topology

♦ Approximate inference by stochastic simulation

• Convergence can be very slow with probabilities close to 1 or 0
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Homework assignment

♦ Here is Homework 6, the last homework assignment of the semester:

• Problems 13.8, 13.17, 13.21, 13.24, and 14.14.

• 10 points each, 50 points total.

♦ Due date: Dec 11

♦ No late date!
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