Last update: December 4, 2012

BAYESIAN NETWORKS

CMSC 421: Chapter 14, Sections 1–5

CMSC 421: Chapter 14, Sections 1–5 1

Outline

\diamondsuit Syntax

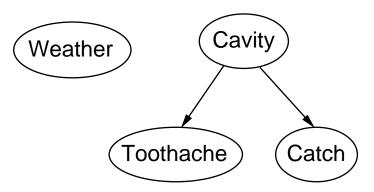
\diamondsuit Semantics

 \diamondsuit Parameterized distributions

Bayesian networks

 \diamondsuit Graphical network that encodes conditional independence assertions:

- a set of nodes, one per variable
- a directed, acyclic graph (link \approx "directly influences")
- a conditional distribution $\mathbf{P}(X_i \mid Parents(X_i))$ for each node X_i

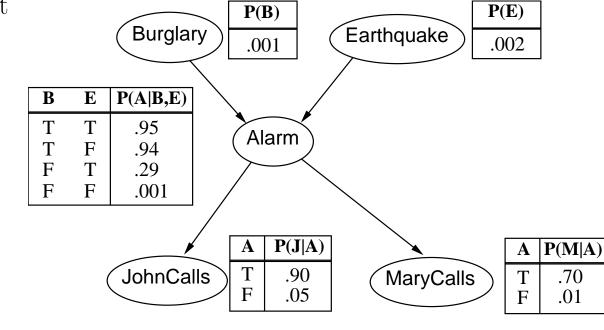


- \diamond *Weather* is independent of the other variables
- \diamond *Toothache* and *Catch* are conditionally independent given *Cavity*
- \diamond For each node X_i , $\mathbf{P}(X_i \mid Parents(X_i))$ is represented as a *conditional probability table* (CPT); we'll have examples later

 \diamondsuit Example from Judea Pearl at UCLA:

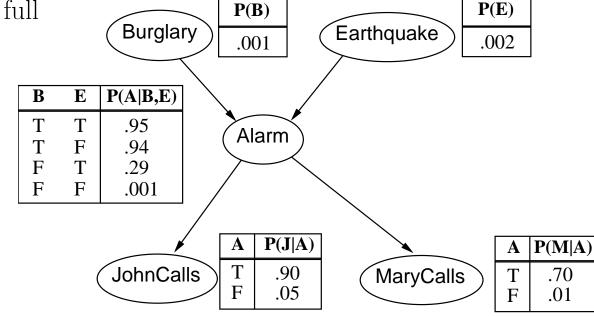
I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?

- ♦ Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls
- \diamondsuit Network topology reflects "causal" knowledge:
 - A burglar can set the alarm off
 - So can an earthquake
 - The alarm can cause Mary to call
 - It can also cause John to call



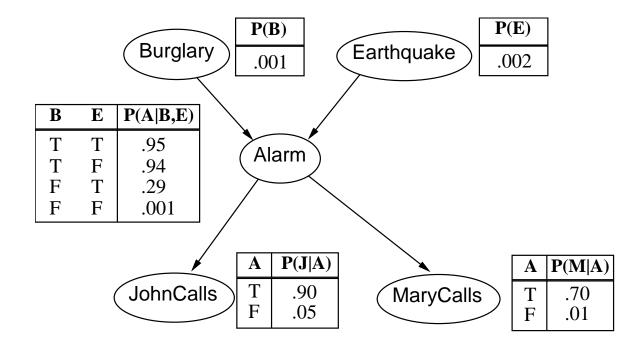
Compactness

- \diamond For a Boolean node X_i with k Boolean parents, the CPT has 2^k rows, one for each combination of parent values
- $\diamondsuit Each row requires one number p for X_i = true$ $(the number for X_i = false is just 1 - p)$
- \diamond If there are *n* variables and if each variable has no more than *k* parents, the complete network requires no more than $n \cdot 2^k$ numbers
 - Grows linearly with n, vs. $O(2^n)$ for the full joint distribution
- ♦ How many numbers for the burglary net?



Semantics of Bayesian nets

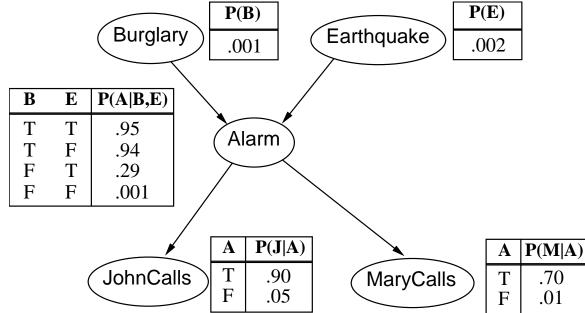
- \diamond In general, *semantics* = "what things mean"
 - Here, we're interested in what a Bayesian net means
- \diamondsuit We'll look at *global* and *local* semantics



Global semantics

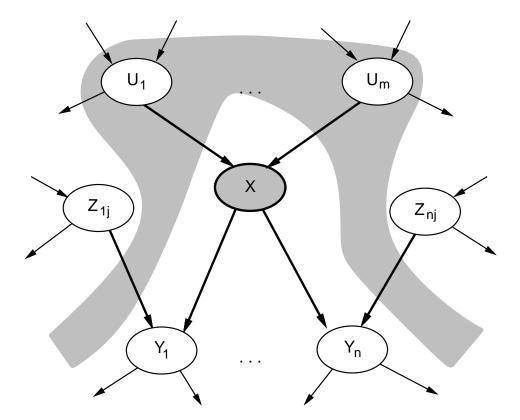
- \diamond *Global* semantics defines the full joint distribution as the product of the local conditional distributions
 - If X_1, \ldots, X_n are the random variables, the chain rule and conditional independence give us $P(X_1, \ldots, X_n) = \prod_{i=1}^n P(X_i \mid parents(X_i))$
- $\begin{array}{l} \diamondsuit \quad \text{E.g., } P(j \wedge m \wedge a \wedge \neg b \wedge \neg e) \\ = P(j \mid a) \ P(m \mid a) \ P(a \mid \neg b, \neg e) \ P(\neg b) \ P(\neg e) \\ = 0.9 \times 0.7 \times 0.001 \times 0.999 \times 0.998 \end{array}$

 ≈ 0.00063



Local semantics

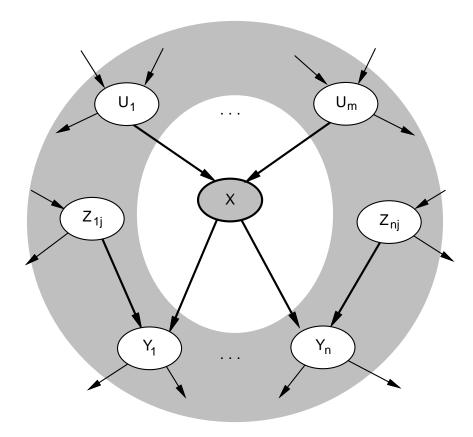
 \diamond *Local* semantics: each node is conditionally independent of its nondescendants given its parents



 \diamond Theorem: Local semantics \Leftrightarrow global semantics

Markov blanket

- \diamond Each node is conditionally independent of all others given its *Markov blanket*:
 - parents + children + children's parents



Constructing Bayesian networks

- \diamondsuit Given a set of random variables
 - 1. Choose an ordering X_1, \ldots, X_n
 - $\diamond~$ In principle, any ordering will work
 - 2. For i = 1 to n, add X_i to the network as follows:
 - ♦ For $Parents(X_i)$, choose a subset of $\{X_1, \ldots, X_{i-1}\}$ such that X_i is conditionally independent of the other nodes in $\{X_1, \ldots, X_{i-1}\}$

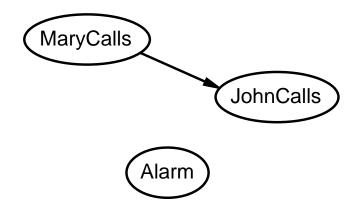
 \diamond i.e., $\mathbf{P}(X_i \mid Parents(X_i)) = \mathbf{P}(X_i \mid X_1, \dots, X_{i-1})$

 \diamond This choice of parents guarantees the global semantics:

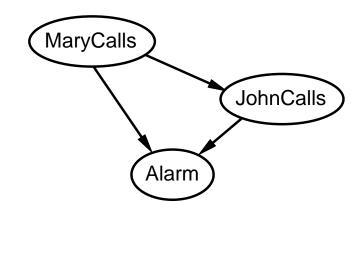
 $\mathbf{P}(X_1, \dots, X_n) = \prod_{i=1}^n \mathbf{P}(X_i \mid X_1, \dots, X_{i-1}) \quad \text{(chain rule)} \\ = \prod_{i=1}^n \mathbf{P}(X_i \mid Parents(X_i)) \quad \text{(by construction)}$

 \diamond Suppose we choose the ordering M, J, A, B, E

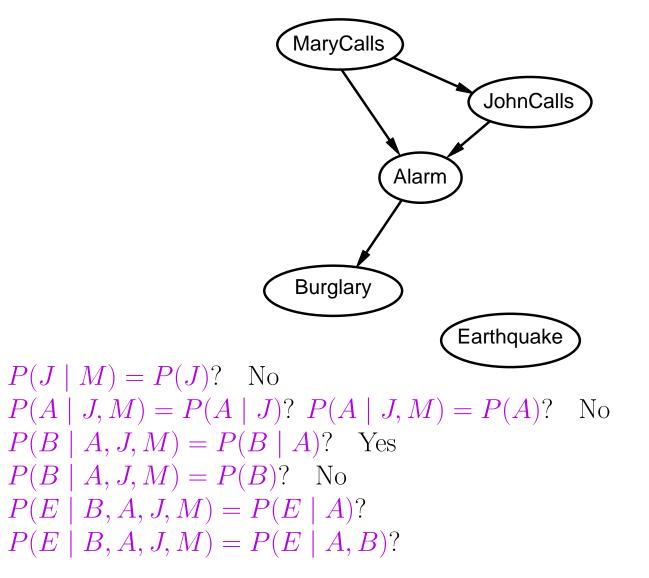
 $P(J \mid M) = P(J)?$

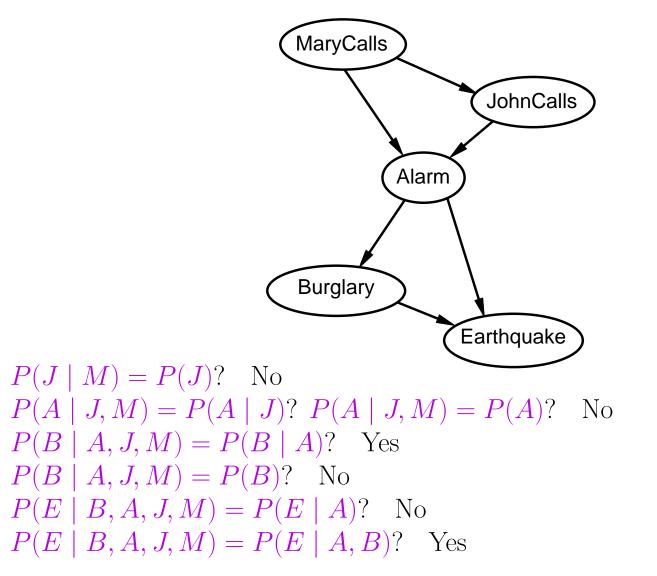


$$\begin{array}{ll} P(J \mid M) = P(J)? & \operatorname{No} \\ P(A \mid J, M) = P(A \mid J)? & P(A \mid J, M) = P(A)? \end{array}$$

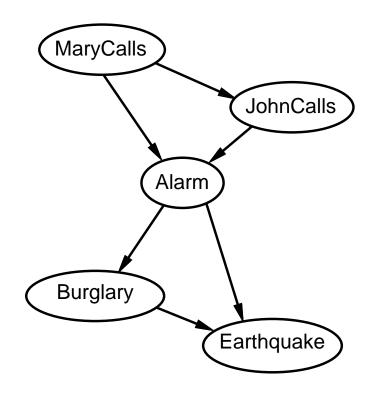


$$\begin{array}{ll} P(J \mid M) = P(J)? & \text{No} \\ P(A \mid J, M) = P(A \mid J)? & P(A \mid J, M) = P(A)? & \text{No} \\ P(B \mid A, J, M) = P(B \mid A)? \\ P(B \mid A, J, M) = P(B)? \end{array}$$





Example, continued

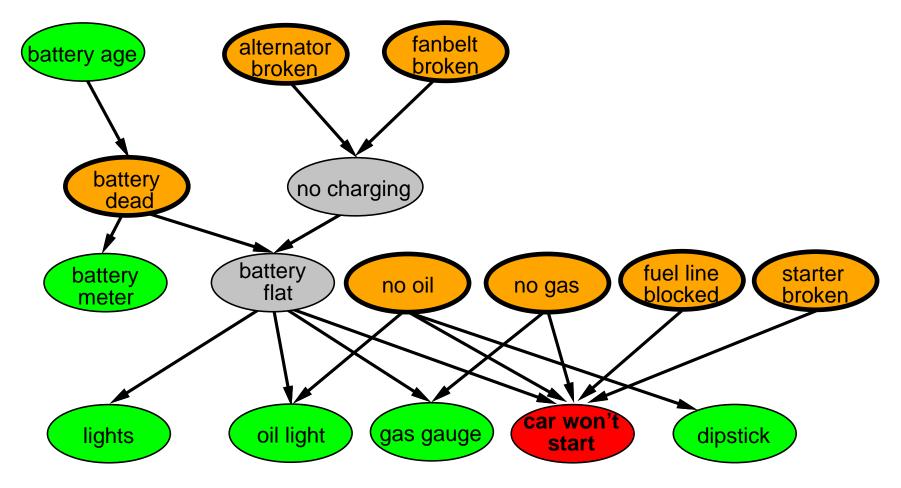


 \diamondsuit In noncausal directions,

- Deciding conditional independence is hard
- Assessing conditional probabilities is hard
- Network is less compact: 1 + 2 + 4 + 2 + 4 = 13 numbers needed

Example: Car diagnosis

- \diamondsuit Initial evidence: car won't start
 - Testable variables (green), "broken, so fix it" variables (orange)
 - Hidden variables (gray) ensure sparse structure, reduce parameters



Compact conditional distributions

- \diamondsuit Problem: CPT grows exponentially with number of parents.
- \diamondsuit Can overcome this if the causes don't interact: use $Noisy{\text -}OR$ distribution
 - 1) Parents $U_1 \dots U_k$ include all causes (can add *leak node*)
 - 2) Independent failure probability q_i for each cause U_i by itself

 $\Rightarrow P(\neg X \mid U_1 \dots U_j, \neg U_{j+1} \dots \neg U_k) = \prod_{i=1}^j q_i$

 \diamondsuit Number of parameters **linear** in number of parents

Cold	Flu	Malaria	P(Fever)	$P(\neg Fever)$
F	F	F	0.0	1.0
F	F	Т	0.9	0.1
F	Т	F	0.8	0.2
F	Т	Т	0.98	$0.02 = 0.2 \times 0.1$
Т	F	F	0.4	0.6
Т	F	Т	0.94	$0.06 = 0.6 \times 0.1$
Т	Т	F	0.88	$0.12 = 0.6 \times 0.2$
Т	Т	Т	0.988	$0.012 = 0.6 \times 0.2 \times 0.1$

Compact conditional distributions, continued

- \diamondsuit Problem: CPT becomes infinite with continuous-valued parent or child
- \diamondsuit Solution: *canonical* distributions that are defined compactly
 - i.e., standard math formulas
- $\diamondsuit \quad \frac{Deterministic}{X} \text{ nodes are the simplest case:} \\ X = f(Parents(X)) \text{ for some function } f$
- \diamondsuit Examples:
 - Boolean functions

 $NorthAmerican \ \Leftrightarrow \ Canadian \lor US \lor Mexican$

• Numerical relationships among continuous variables

 $\frac{\partial Level}{\partial t} = \text{ inflow + precipitation - outflow - evaporation}$

 \diamondsuit More details in the book

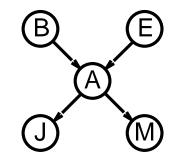
Inference tasks

 \Diamond Simple queries: compute posterior marginal distribution $\mathbf{P}(X_i \mid \mathbf{E} = \mathbf{e})$

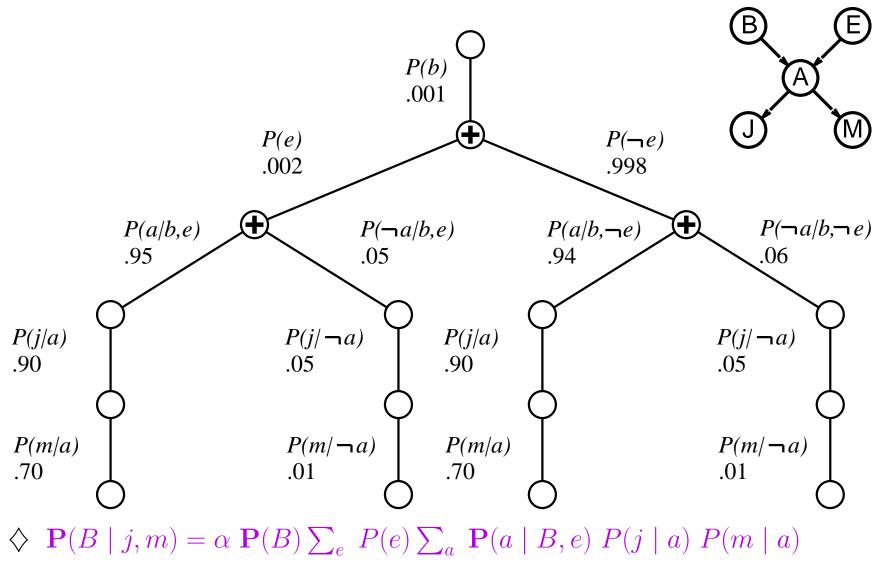
- e.g., $P(NoGas \mid Gauge = empty, Lights = on, Starts = false)$
- \diamond Conjunctive queries:
 - $\mathbf{P}(X_i, X_j \mid \mathbf{E} = \mathbf{e}) = \mathbf{P}(X_i \mid \mathbf{E} = \mathbf{e})\mathbf{P}(X_j \mid X_i, \mathbf{E} = \mathbf{e})$
- \diamond *Value of information*: which evidence to seek next?
- *♦ Sensitivity analysis*: which probability values are most critical?
- \diamond *Explanation*: why do I need a new starter motor?

Inference by enumeration

- \diamondsuit Simple query on the burglary network
 - probability of burglary, given John and Mary both call
 - $\mathbf{P}(B \mid j, m)$
 - $= \mathbf{P}(B, j, m) / P(j, m)$ (def. of cond. probability)
 - $= \alpha \mathbf{P}(B, j, m)$ (normalization constant)
 - $= \alpha \sum_{e} \sum_{a} \mathbf{P}(B, e, a, j, m)$ (sum over hidden variables)
 - where $\sum_{a} \mathbf{P}(\dots, a, \dots)$ means $\mathbf{P}(\dots, \neg a, \dots) + \mathbf{P}(\dots, a, \dots)$
 - $= \alpha \sum_{e} \sum_{a} \mathbf{P}(B) P(e) \mathbf{P}(a|B,e) P(j|a) P(m|a) \quad \text{(cond. indep.)}$
 - $= \alpha \mathbf{P}(B) \sum_{e} P(e) \sum_{a} \mathbf{P}(a|B, e) P(j|a) P(m|a) \quad (\text{move out of } \Sigma)$
- \diamondsuit Recursive depth-first enumeration: O(n) space, $O(d^n)$ time
 - Algorithm is in the book
 - It's like evaluating the tree representation of an arithmetic expression



Inference by enumeration

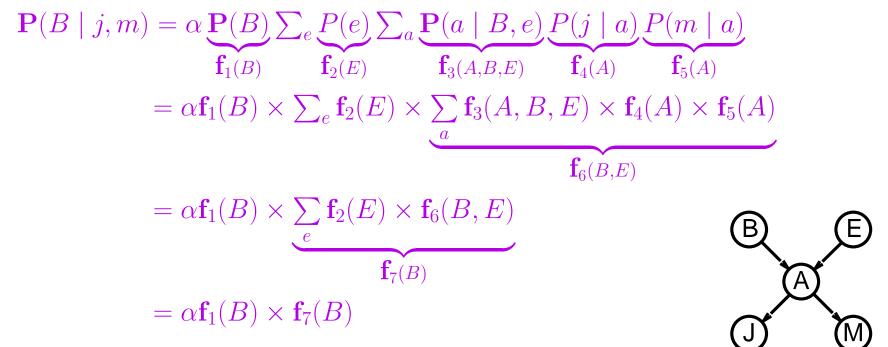


 \Diamond Inefficient: computes $P(j \mid a) P(m \mid a)$ repeatedly, for each value of e

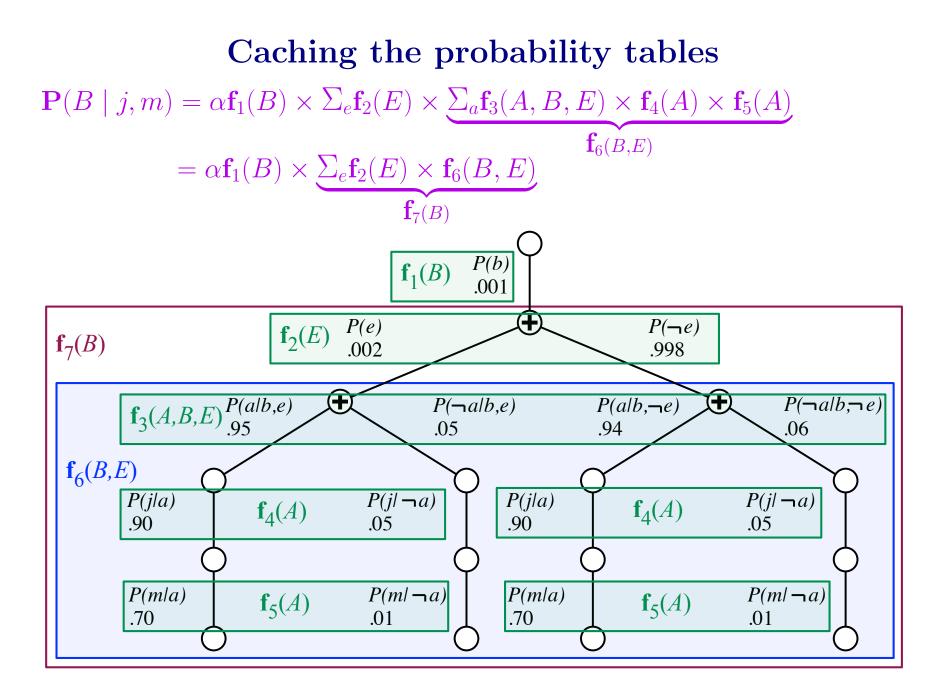
Inference by variable elimination

- \diamond Variable elimination: carry out summations right-to-left, storing intermediate results (*factors*) to avoid recomputation
 - Below, \times represents pointwise multiplication of tables

 $\diamond~$ i.e., multiply the corresponding elements



- \diamond Less complicated than it looks
 - Just cache the probability tables, going up from the bottom of the tree



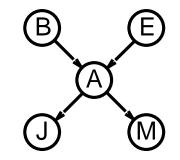
Irrelevant variables

 \diamondsuit What's the probability that John calls, given that there's a burglary?

 $P(J \mid b) = \alpha P(b) \sum_{e} P(e) \sum_{a} P(a \mid b, e) P(J \mid a) \sum_{m} P(m \mid a)$

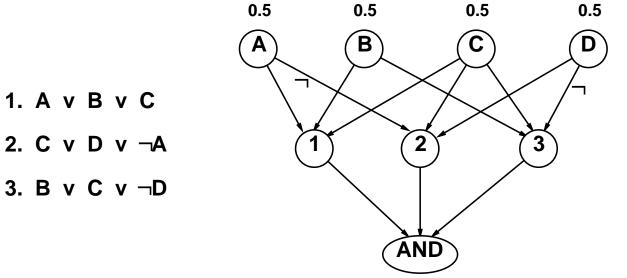
• Sum over m is 1; M is **irrelevant** to the query

- ♦ **Theorem:** For query X, hidden variable Y is irrelevant unless $Y \in Ancestors({X} \cup \mathbf{E})$
- $\label{eq:energy} \begin{array}{l} \diamondsuit & \text{Here, } X = J, \\ & \mathbf{E} = \{B\}, \\ & Ancestors(\{J,B\}) = \{J,B,A,E\} \end{array} \end{array}$
 - so M is irrelevant



Complexity of exact inference

- \diamond *Singly connected* networks (or *polytrees*):
 - any two nodes are connected by at most one (undirected) path
 - complexity of inference is linear in the size of the network
 size = total number of entries in the probability tables
- \diamond *Multiply connected* networks:
 - exponential time and space in the worst case
 - includes propositional inference as a special case
 - as hard as counting the number of ways to satisfy a propositional formula



Inference by stochastic simulation

Outline:

- \diamond Sampling from an empty network:
 - 1) Generate N random samples of events in the network
 - 2) Average the results
 - 3) For each event x, this gives us a posterior probability $\hat{P}(x)$
 - 4) As $N \to \infty$ this converges to x's true probability P(x)
- \diamond Rejection sampling, given evidence e:
 - 1) Generate ${\cal N}$ random samples of events in the network
 - 2) Reject samples that disagree with the evidence e, average the others
 - 3) For each event x, this gives us a posterior probability $\hat{P}(x \mid e)$
 - 4) As $N \to \infty$ this converges to x's true conditional probability $P(x \mid e)$
- \diamondsuit Likelihood weighting: use evidence to weight samples

Sampling from an empty network

 \diamond Sampling from an empty network:

- 1) Generate N random samples of events in the network
- 2) Average the results
- 3) For each event x, this gives us a posterior probability $\hat{P}(x)$
- 4) As $N \to \infty$ this converges to x's true probability P(x)

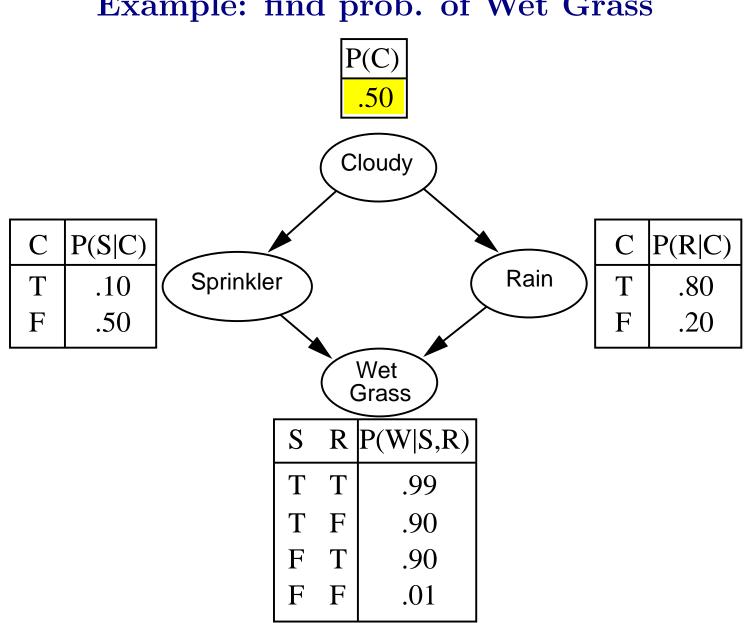
function PRIOR-SAMPLE(*bn*) **returns** an event sampled from *bn* **inputs**: *bn*, a belief network specifying joint distribution $\mathbf{P}(X_1, \ldots, X_n)$

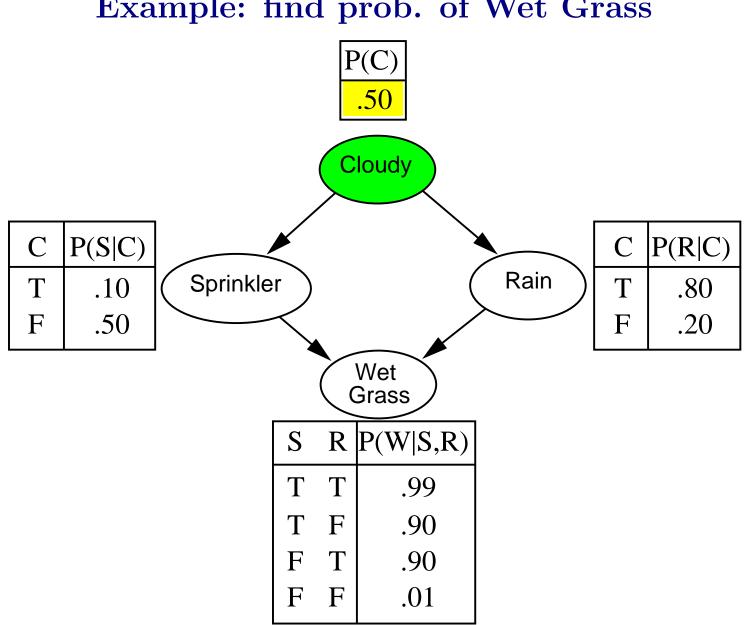
```
\mathbf{x} \leftarrow an event with n elements
```

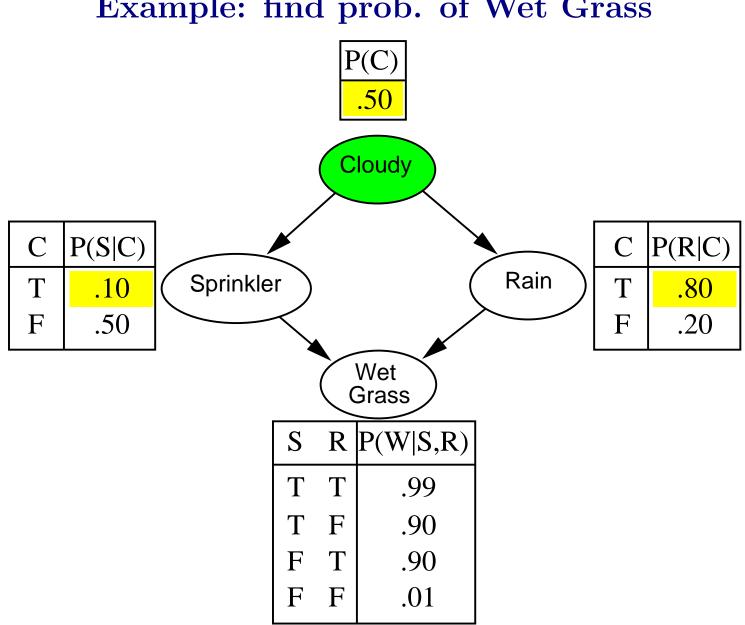
for i = 1 to n do

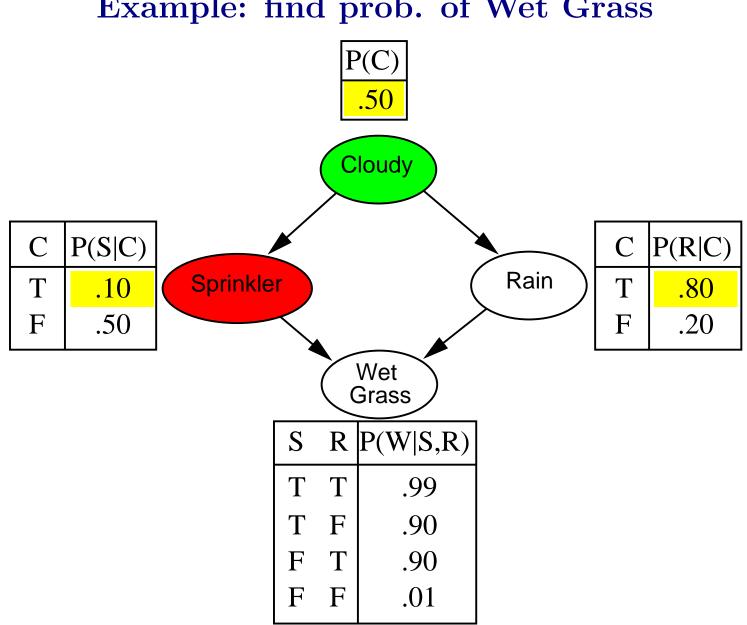
 $x_i \leftarrow a \text{ random sample from } \mathbf{P}(X_i \mid parents(X_i))$ given the values of $Parents(X_i)$ in \mathbf{x}

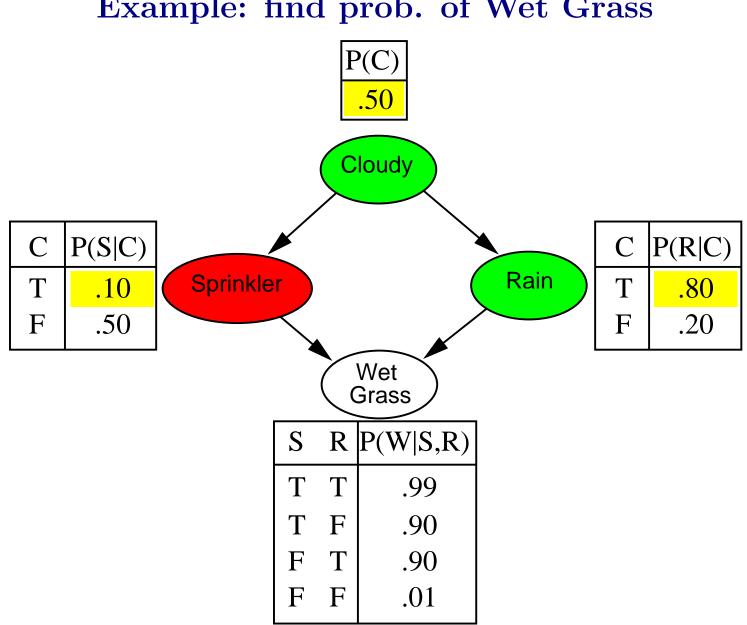
```
\mathbf{return} \ \mathbf{x}
```

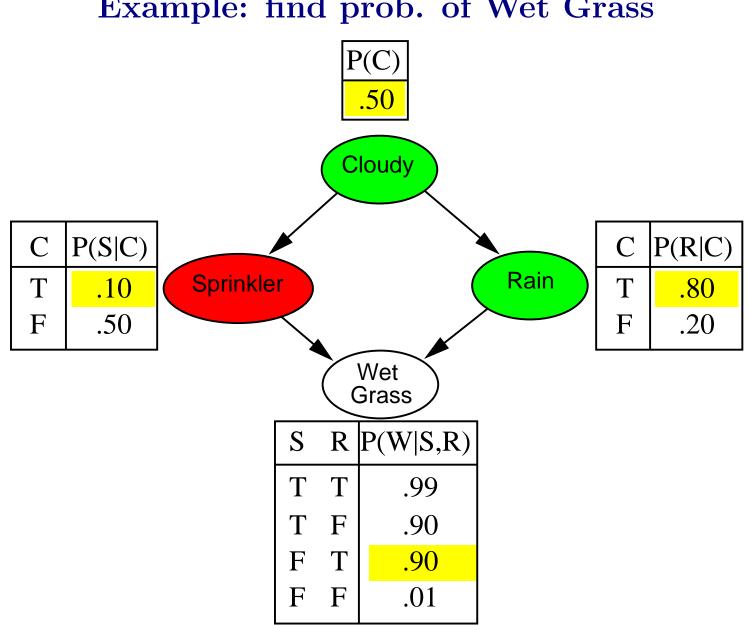


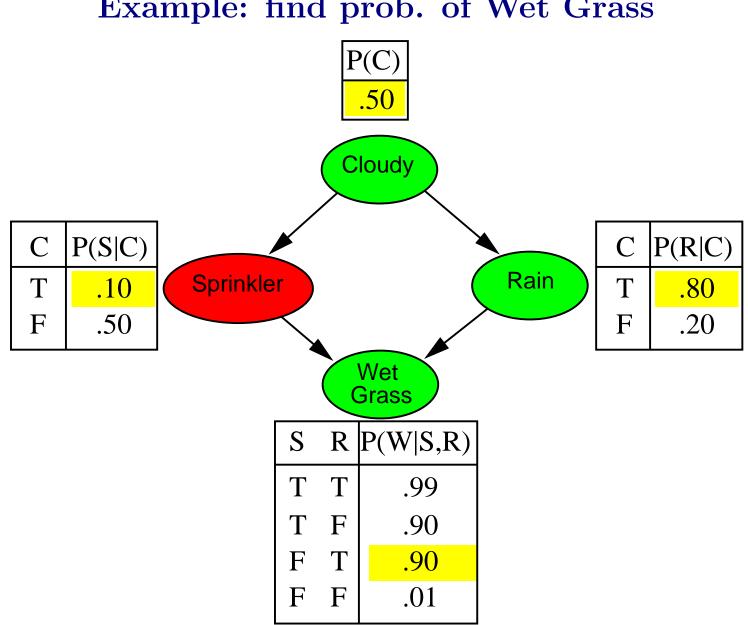












Sampling from an empty network, continued

 \diamond Probability that **PRIORSAMPLE** generates a particular set of events

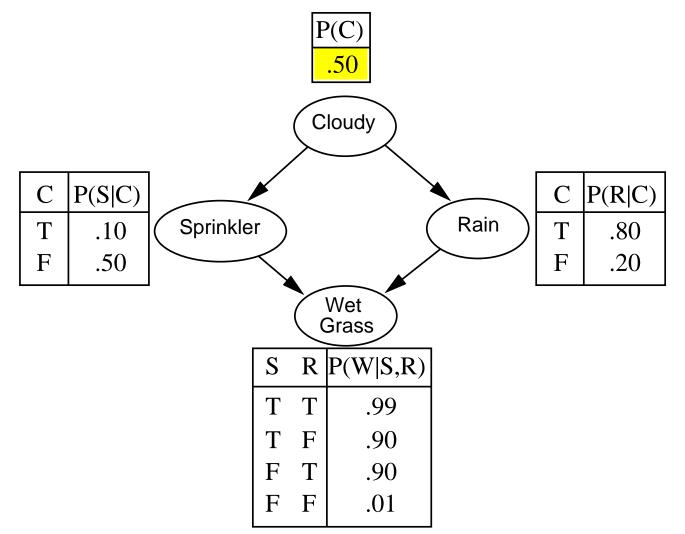
• $S_{PS}(x_1 \dots x_n) = \prod_{i=1}^n P(x_i \mid parents(X_i)) = P(x_1 \dots x_n)$

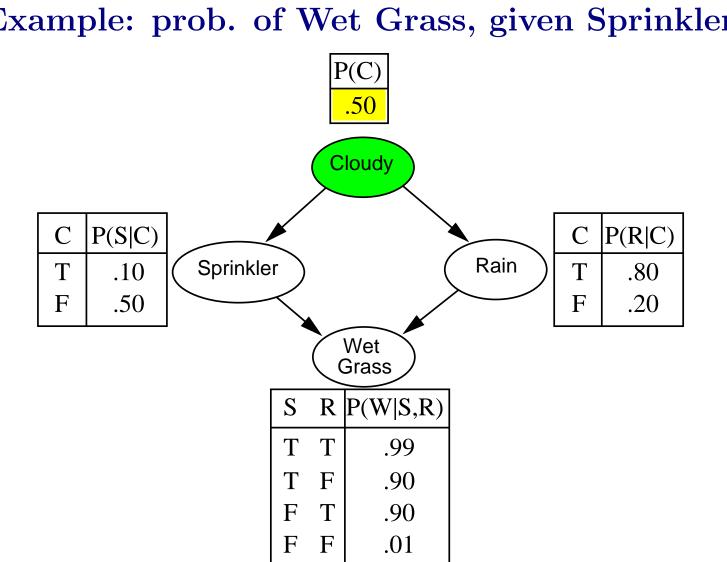
- \diamondsuit i.e., the true prior probability of x_1, \ldots, x_n
 - E.g., $S_{PS}(t, f, t, t) = 0.5 \times 0.9 \times 0.8 \times 0.9 = 0.324 = P(t, f, t, t)$
- \diamond Suppose we collect N samples. Let $N_{PS}(x_1 \dots x_n)$ be the number of samples in which x_1, \dots, x_n occurred
- \diamond Then we have

$$\lim_{N \to \infty} \hat{P}(x_1, \dots, x_n) = \lim_{N \to \infty} N_{PS}(x_1, \dots, x_n) / N$$
$$= S_{PS}(x_1, \dots, x_n)$$
$$= P(x_1 \dots x_n)$$

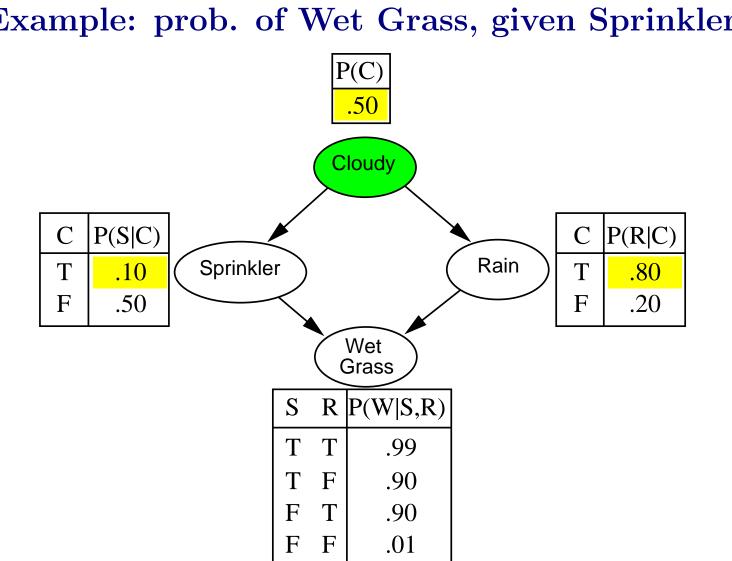
- That is, estimates derived from **PRIORSAMPLE** are *consistent*
- \diamondsuit Shorthand: $\hat{P}(x_1, \ldots, x_n) \approx P(x_1 \ldots x_n)$

Example: prob. of Wet Grass, given Sprinkler





Example: prob. of Wet Grass, given Sprinkler



Example: prob. of Wet Grass, given Sprinkler

Example: prob. of Wet Grass, given Sprinkler P(C).50 Cloudy P(S|C)С P(R|C)C Rain .10 Sprinkler .80 Т Т .50 .20 F F Wet Grass S R | P(W|S,R)Т Т .99 Т F .90 F Т .90 F F .01

 \diamondsuit Reject this sample, start running the next one

Rejection sampling

 $\Diamond \ \hat{\mathbf{P}}(X \mid \mathbf{e})$ estimated from samples agreeing with \mathbf{e}

```
function REJECTION-SAMPLING(X, \mathbf{e}, bn, N) returns an estimate of P(X|\mathbf{e})
local variables: \mathbf{N}, a vector of counts over X, initially zero
for j = 1 to N do
\mathbf{x} \leftarrow \text{PRIOR-SAMPLE}(bn)
if \mathbf{x} is consistent with \mathbf{e} then
\mathbf{N}[x] \leftarrow \mathbf{N}[x]+1 where x is the value of X in \mathbf{x}
return NORMALIZE(\mathbf{N}[X])
```

 \diamond E.g., estimate $\mathbf{P}(Rain \mid Sprinkler = true)$ using 100 samples

- 27 samples have Sprinkler = true
- Of these, 8 have Rain = true and 19 have Rain = false.
- $\hat{\mathbf{P}}(Rain \mid Sprinkler = true) = \text{NORMALIZE}(\langle 8, 19 \rangle) = \langle 0.296, 0.704 \rangle$
- \diamondsuit Similar to a basic real-world empirical estimation procedure

Analysis of rejection sampling

 $\hat{\mathbf{P}}(X \mid \mathbf{e}) = \alpha \mathbf{N}_{PS}(X, \mathbf{e})$ (algorithm def.) $= \mathbf{P}(X \mid \mathbf{e})$

 $= \mathbf{N}_{PS}(X, \mathbf{e}) / N_{PS}(\mathbf{e})$ (normalized by $N_{PS}(\mathbf{e})$) $\approx \mathbf{P}(X, \mathbf{e}) / P(\mathbf{e})$ (property of PRIORSAMPLE) (def. of conditional probability)

- Hence rejection sampling returns consistent posterior estimates $\langle \rangle$
- Problem: $\langle \rangle$
 - if $P(\mathbf{e})$ is small, this is hopelessly expensive to compute:
 - \diamond must reject most of the samples because they disagree with **e**
 - $P(\mathbf{e})$ drops off exponentially with number of evidence variables!

Likelihood weighting

 \diamondsuit Idea: fix evidence variables, sample only nonevidence variables, and weight each sample by the likelihood it accords the evidence

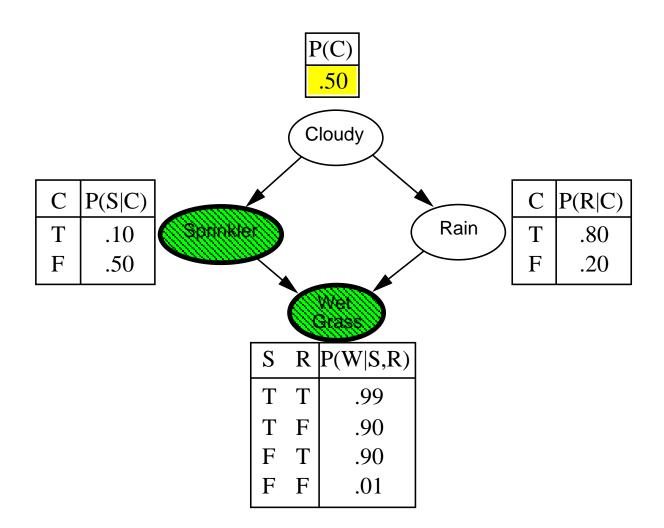
```
function LIKELIHOOD-WEIGHTING(X, \mathbf{e}, bn, N) returns an estimate of P(X|\mathbf{e})
local variables: W, a vector of weighted counts over X, initially zero
for j = 1 to N do
\mathbf{x}, w \leftarrow \text{WEIGHTED-SAMPLE}(bn)
\mathbf{W}[x] \leftarrow \mathbf{W}[x] + w where x is the value of X in x
return NORMALIZE(\mathbf{W}[X])
function WEIGHTED-SAMPLE(bn, \mathbf{e}) returns an event and a weight
\mathbf{x} \leftarrow an event with n elements; w \leftarrow 1
for i = 1 to n do
```

```
if X_i has a value x_i in e

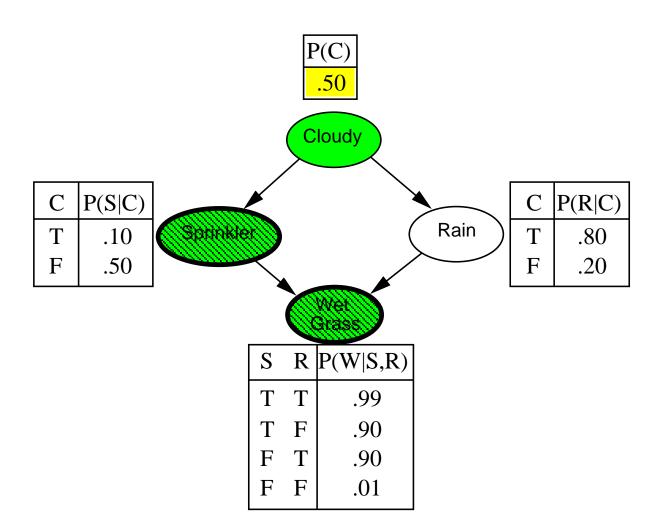
then w \leftarrow w \times P(X_i = x_i \mid parents(X_i))

else x_i \leftarrow a random sample from \mathbf{P}(X_i \mid parents(X_i))

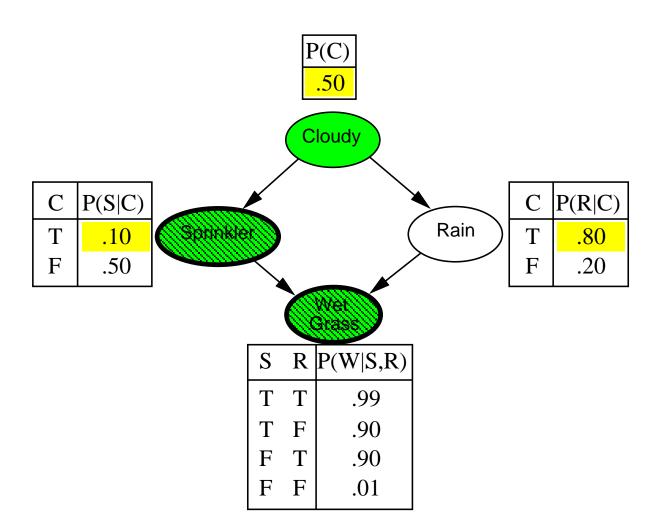
return \mathbf{x}, w
```



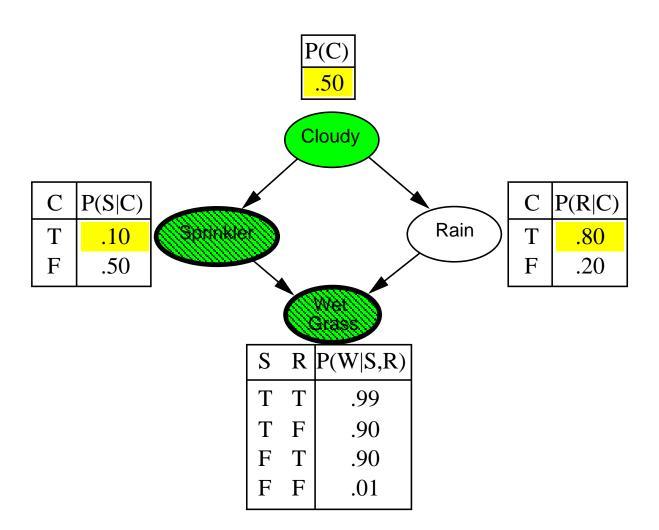
w = 1.0



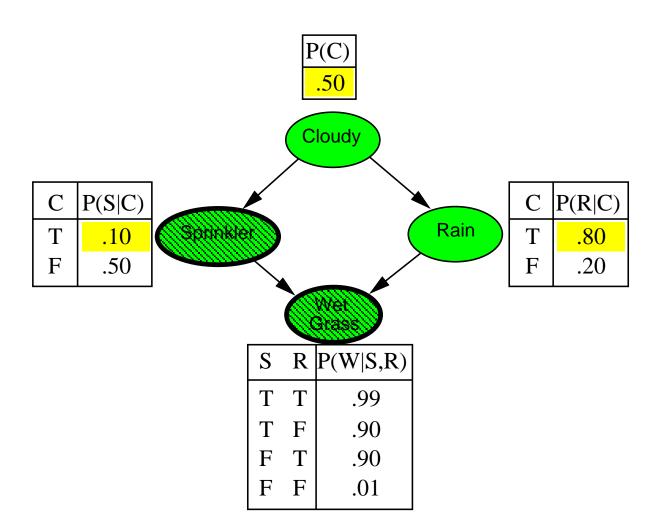
w = 1.0



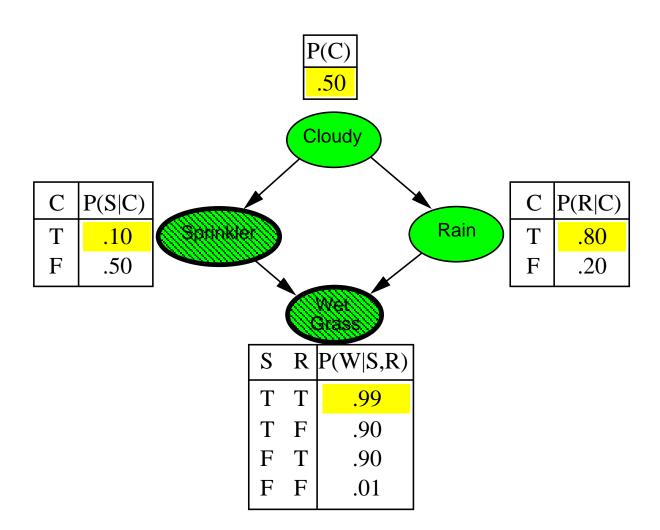
w = 1.0



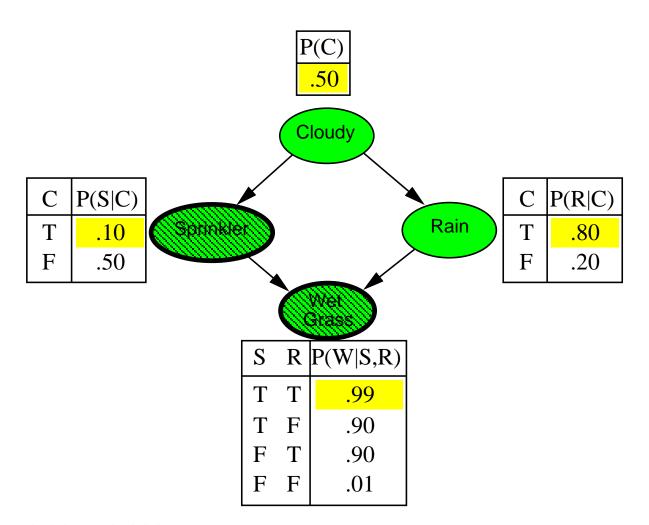
 $w = 1.0 \times 0.1$



 $w = 1.0 \times 0.1$



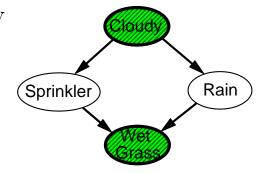
 $w = 1.0 \times 0.1$



 $w = 1.0 \times 0.1 \times 0.99 = 0.099$

Likelihood weighting analysis

- \diamondsuit Sampling probability for WeightedSample is
 - $S_{WS}(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{l} P(z_i \mid parents(Z_i))$
 - Note: pays attention to evidence in **ancestors** only
 ⇒ somewhere "in between" prior and posterior distribution
- \diamond Weight for a given sample \mathbf{z}, \mathbf{e} is
 - $w(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{m} P(e_i \mid parents(E_i))$
- \diamondsuit Weighted sampling probability is
 - $S_{WS}(\mathbf{z}, \mathbf{e})w(\mathbf{z}, \mathbf{e})$
 - $= \prod_{i=1}^{l} P(z_i \mid parents(Z_i)) \quad \prod_{i=1}^{m} P(e_i \mid parents(E_i))$
 - $= P(\mathbf{z}, \mathbf{e})$ (by standard global semantics of network)
- \diamondsuit Hence likelihood weighting returns consistent estimates



Summary

- \diamond Bayes nets provide a natural representation for (causally induced) conditional independence
- \diamond Topology + CPTs = compact representation of joint distribution
- \diamond Generally easy for (non)experts to construct
- \diamond Canonical distributions (e.g., noisy-OR) = compact representation of CPTs
- \diamond Continuous variables \Rightarrow parameterized distributions (e.g., linear Gaussian)
- \diamond Exact inference by variable elimination:
 - polytime on polytrees, NP-hard on general graphs
 - space = time, very sensitive to topology
- \diamondsuit Approximate inference by stochastic simulation
 - Convergence can be very slow with probabilities close to 1 or 0

Homework assignment

 \diamond Here is Homework 6, the last homework assignment of the semester:

- Problems 13.8, 13.17, 13.21, 13.24, and 14.14.
- 10 points each, 50 points total.
- \diamond Due date: Dec 11
- \diamond No late date!