Last update: December 11, 2012

FIRST-ORDER LOGIC

CMSC 421: Chapter 8

CMSC 421: Chapter 8 1

Motivation

 \diamondsuit **Problem**: propositional logic has limited expressive power

- E.g., can't say "pits cause breezes in adjacent squares"
 Instead, must write one sentence for each square
- \diamondsuit Need a logic that's more expressive
 - \Rightarrow First Order Logic (FOL)

Outline

- $\diamondsuit~$ Syntax and semantics of FOL
- \diamond Examples of sentences
- \diamondsuit Wumpus world in FOL

Basic entities in FOL

- \diamond Propositional logic assumes world contains *facts* (statements that are true)
- \diamond First-order logic (like natural language) assumes the world contains
 - *Objects*: people, houses, numbers, theories, colors, Testudo, baseball games, homework assignments, wars, centuries ...
 - *Relations*: x is red, x is prime, x is at bat, x is y's brother, x's color is y, x owns y, x pwned y, x occurred after y, x is between y and z, x, y, and z sum to w, ...
 - *Functions*: the sister of x and y, x's domain name server, the third inning of x, the product of x, y, and z, the end of x, ...

Logics in general

Language	What things it talks about	What it says about those things
Propositional logic	facts	true/false/unknown
First-order logic	facts, objects, relations	true/false/unknown
Temporal logic	facts, objects, relations, times	true/false/unknown
Probability theory	facts	degree of belief
Fuzzy logic	facts + degree of truth	known interval value

Syntax of FOL: Basic elements

- \diamond Constant symbols *King_John*, 2, *University_of_Maryland*, ...
- \diamond Predicate symbols *Brother*, >,...
- \diamond Function symbols *Sqrt*, *Left_leg_of*,...
- \diamond Variable symbols x, y, a, b, \ldots
- $\diamondsuit \text{ Connectives } \land \lor \neg \Rightarrow \Leftrightarrow$
- \diamond Equality =
- \diamond Quantifiers $\forall \exists$
- \diamond Punctuation (),

Atomic sentences

 \diamond Atomic sentence = $predicate(term_1, \dots, term_n)$ or $term_1 = term_2$

 $\diamondsuit \quad \text{E.g.},$

- $\bullet \quad Brother(King_John, Richard)$
- $\bullet \ > (Length(Left_leg_of(Richard)), Length(Left_leg_of(King_John))) \\$

Complex sentences

 \diamond Complex sentences are made from atomic sentences using connectives $\neg S, S_1 \land S_2, S_1 \lor S_2, S_1 \Rightarrow S_2, S_1 \Leftrightarrow S_2$

 $\diamondsuit \ E.g.,$

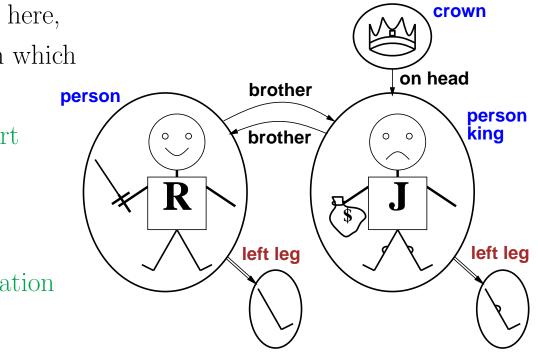
$$\begin{split} Sibling(King_John, Richard) \ \Rightarrow \ Sibling(Richard, King_John) \\ > (1,2) \ \lor \ \leq (1,2) \\ > (1,2) \ \land \ \neg > (1,2) \end{split}$$

Truth in first-order logic

- \Diamond In FOL, a *world* is a pair M = (D, I), where
 - *D* is a *domain*:
 - ♦ nonempty set of objects (*domain elements*)
 - $\diamond~$ functions and relations among those objects
 - I is an *interpretation*: a function that maps
 - \diamond constant symbols \rightarrow objects in the domain
 - \diamond predicate symbols \rightarrow relations over objects in the domain
 - \diamond function symbols \rightarrow functions over objects in the domain
- \Diamond An atomic sentence $predicate(term_1, \ldots, term_n)$ is true in M iff
 - the objects that $term_1, \ldots, term_n$ refer to satisfy the relation that *predicate* refers to
- \diamond As before, we say *M* is a model of a sentence α if α is true in *M*

Truth example

- \diamondsuit Suppose M = (D, I), where
 - *D* is the domain shown here,
 - I is an interpretation in which
 - $\diamond \ \frac{Richard}{Richard} \rightarrow$ Richard the lionheart
 - $\diamond \ \, \underbrace{John}_{\text{the evil King John}} \rightarrow$
 - $\diamond \ \frac{Brother}{} \rightarrow \\ \text{the brotherhood relation}$



Brother(Richard, John) is true in world M iff

• the pair (Richard the lionheart, the evil King John) satisfies the brotherhood relation

Models for FOL: Lots!

- \diamond Entailment in propositional logic can be computed by enumerating all of the possible worlds (i.e., model checking)
- \diamond How to enumerate possible worlds in FOL?
 - For each number of domain elements n = 1 to ∞ For each k-ary predicate P_k in the vocabulary For each possible k-ary relation on n objects For each constant symbol C in the vocabulary For each choice of referent for C from n objects ...
- \diamond Computing entailment in this way is not easy!

Universal quantification

 $\forall \langle variables \rangle \ \langle sentence \rangle$

 \diamondsuit Everyone at the University of Maryland is smart:

- $\forall x \ At(x, UMD) \Rightarrow Smart(x)$
- $\diamondsuit \forall x \ P(x)$ is true in a world *m* iff
 - P(x) is true for **every** possible object x in m

 $\wedge \ldots$

Existential quantification

 $\exists \langle variables \rangle \ \langle sentence \rangle$

 \diamondsuit Someone at the University of Maryland is smart:

- $\exists x \; At(x, UMD) \land Smart(x)$
- $\diamondsuit \exists x \ P(x)$ is true in a world *m* iff
 - P(x) is true for **at least one** object x in m

 \diamond Roughly equivalent to the disjunction of all instantiations of P(x)

 $(At(King_John, UMD) \land Smart(King_John))$

- $\lor \ (At(Richard, \mathit{UMD}) \land Smart(Richard))$
- $\lor \ (\textit{At(UMD, UMD)} \land \textit{Smart(UMD)})$
- \vee ...

Properties of quantifiers

- $\diamondsuit \ \forall x \ \forall y \ \text{ is the same as } \forall y \ \forall x$
- $\diamondsuit \exists x \exists y \text{ is the same as } \exists y \exists x$
- $\Diamond \exists x \forall y \text{ is not the same as } \forall y \exists x$
- $\diamondsuit \ \exists x \ \forall y \ Loves(x,y)$
 - "There is a person who loves everyone in the world"
- $\diamondsuit \ \forall y \ \exists x \ Loves(x,y)$
 - "Everyone in the world is loved by at least one person"
- \diamondsuit Quantifier duality: each can be expressed using the other
 - $\forall x \ Likes(x, IceCream)$ is the same as $\neg \exists x \ \neg Likes(x, IceCream)$
 - $\exists x \ Likes(x, Broccoli)$ is the same as $\neg \forall x \ \neg Likes(x, Broccoli)$

Examples of sentences

- \diamond Brothers are siblings
 - $\forall x, y \; Brother(x, y) \Rightarrow Sibling(x, y)$
- \diamond "Sibling" is symmetric
 - $\forall x, y \ Sibling(x, y) \Leftrightarrow Sibling(y, x)$
- \diamondsuit One's mother is one's female parent
 - $\bullet \ \forall x,y \ Mother(x,y) \ \Leftrightarrow \ (Female(x) \land Parent(x,y))$
- \diamondsuit A first cousin is a child of a parent's sibling
 - $\forall x, y \; FirstCousin(x, y) \Leftrightarrow$ $\exists px, py \; Parent(px, x) \land Sibling(px, py) \land Parent(py, y)$

Equality

- $\diamondsuit \ term_1 = term_2 \text{ is true under a given interpretation iff} \\ term_1 \text{ and } term_2 \text{ refer to the same object}$
- \diamond Examples
 - 1 = 2 and $\forall x \times (Sqrt(x), Sqrt(x)) = x$ are *satisfiable* (true under at least one interpretation)
 - 2 = 2 is *valid* (true in every interpretation)

Substitutions

- \diamond *Substitution*: a set of variable bindings
- \diamond Consider a substitution σ that assigns x = 1, y = f(z)
 - $\diamond~$ A logician would write $\sigma = \{1/x, f(z)/y\}$
 - $\diamond~$ Russell and Norvig write $\sigma = \{x/1, y/f(z)\}$
 - To try to avoid ambiguity, I'll write $\sigma = \{x = 1, y = f(z)\}$
- \diamond Given a sentence *S* and a substitution σ ,
 - $S\sigma$ (postfix notation) is the result of applying σ to S
 - $\diamond \ S = \ GreaterThan(x,y)$

$$\diamond \ \sigma = \{x = 1, y = f(z)\}$$

 $\diamond \ S\sigma = \ GreaterThan(1,f(z))$

- Applied simultaneously, like (x,y) = (1,f(z)) in Python
 - $\diamond \ S = \ GreaterThan(x,y)$

$$\diamond \ \sigma = \{y = g(x), x = 2\}$$

 $\diamond \ S\sigma = \ GreaterThan(2,g(x)), \, {\rm not} \ GreaterThan(2,g(2))$

Numbers

- \diamondsuit The book gives axioms for natural numbers and addition
 - Natnum(0)
 - $\forall n \ Natnum(n) \Rightarrow natNum(S(n))$
 - $\forall n \ 0 \neq S(n)$
 - $\bullet \ \forall \, m,n \ m \neq n \ \Rightarrow \ S(m) \neq S(n)$
 - $\forall m \ NatNum(m) \Rightarrow +(0,m) = m$
 - $\bullet \ \forall \, m,n \ \ NatNum(m) \land NatNum(n) \ \Rightarrow \ + (S(m),n) = S(+(m,n))$
- \Diamond If we introduce infix notation and rewrite S(n) as n+1, we can write
 - $\forall m \; NatNum(m) \Rightarrow 0 + m = m$
 - $\bullet \ \forall m,n \ NatNum(m) \land NatNum(n) \ \Rightarrow \ (m+1)+n = (m+n)+1$
- \diamondsuit Useful for proving mathematical theorems, but inefficient computationally
 - In practical implementations, one would just compute it directly
 - Problem if the expression is only partly instantiated

Sets and lists

- \diamondsuit The book also has axioms for finite sets, finite lists
 - These are more practical
 - There's a programming language called Prolog that does things like this

Interacting with FOL KBs

 \diamondsuit Suppose KB is a first-order-logic KB of axioms for the Wumpus world

- A model of KB consists of a domain (an actual Wumpus World) and interpretation that makes every sentence in KB true
- $\diamond Tell(KB, S)$ adds S to KB
- $\diamond Ask(KB, S)$ returns some/all σ such that $KB \models S\sigma$
- \diamond Suppose we have a way to do inference in KB (see next chapter)
 - Suppose that time t = 5, the agent perceives stench, breeze, glitter, no bump, no scream
- $\diamondsuit \ Tell(KB, Percept([Stench, Breeze, Glitter, None, None], 5))$
- $\diamondsuit \ Ask(KB, \exists \ a \ Action(a, 5))$
 - I.e., does KB entail an action at t = 5?
- \diamond Answer: Yes, $\{a = Grab\}$ = substitution

Knowledge base for the wumpus world

 \diamondsuit Perception

- $\bullet \ \forall t, s, g, m, c \ Percept([s, Breeze, g, m, c], t) \ \Rightarrow \ Breeze(t)$
- $\forall t, s, b, m, c \ Percept([s, b, Glitter, m, c], t) \Rightarrow Glitter(t)$
- \diamond Reflex actions (if we want a simple reflex agent)
 - $\forall t \; Glitter(t) \Rightarrow BestAction(Grab, t)$
- \diamondsuit Reflex with internal state: do we have the gold already?
 - $\bullet \ \forall t \ Glitter(t) \land \neg Holding(Gold, t) \ \Rightarrow \ BestAction(Grab, t)$
- \diamondsuit Example of a successor state axiom:
 - $\forall t \; HaveArrow(t+1) \Leftrightarrow [HaveArrow(t) \land \neg Action(Shoot, t)]$

Reasoning about locations

 \diamondsuit Adjacency:

- $\forall x, y, a, b \ Adjacent([x, y], [a, b]) \Leftrightarrow x = a \land (y = b 1 \lor y = b + 1)) \lor (y = b \land (x = a 1 \lor x = a + 1))$
- \diamondsuit Agent can only be in one location:
 - $\forall x, s_1, s_2, t \; At(x, s_1, t) \land At(x, s_2, t) \Rightarrow s_1 = s_2$
- \diamondsuit Properties of locations:
 - $\forall x, t \; At(Agent, x, t) \land Breeze(t) \Rightarrow Breezy(x)$
 - . . .
- \diamondsuit Axiom to infer whether a pit is nearby:

 $\diamond \ \forall s \ Breezy(s) \ \Leftrightarrow \ [Adjacent(r,s) \land Pit(r)]$

Summary

 \diamond First-order logic:

- objects and relations are semantic primitives
- syntax: constants, functions, predicates, equality, quantifiers
- \diamondsuit Increased expressive power compared to propositional logic