
10/31/12

1

Buffer Overflows 3	

Heap Overflows 	

and 	

Defenses	

Heap Buffer Overflow	

•  Global variables	

•  Static variables	

•  Dynamically allocated

memory	

–  malloc()	

Stack

Heap

DLLs

Data
Text

Heap

FF

BF
C0

80
7F

40
3F

08
00

10/31/12

2

Heap Operation	

•  Opposite of
stack	

Top of memory

Bottom of memory

buffer2

buffer1

Heap growth

Juicy targets #define BUFSIZE 16!
int main()!
 {!
 u_long diff;!
 char *buf1 = (char *)malloc(BUFSIZE);!
 char *buf2 = (char *)malloc(BUFSIZE);!
 // declare and allocate mem for !
 // juicy targets here!

Ex. Vulnerable Program 1	

 #define BUFSIZE 16!
 #define OVERSIZE 8 /* overflow buf2 by OVERSIZE bytes */!
 int main()!
 {!
 u_long diff;!
 char *buf1 = (char *)malloc(BUFSIZE);!
 char *buf2 = (char *)malloc(BUFSIZE);!
!
 diff = (u_long)buf2 - (u_long)buf1;!
 printf("buf1 = %p, buf2 = %p, diff = 0x%x bytes\n", buf1, buf2, diff);!
!
 memset(buf2, 'A', BUFSIZE-1); !
 buf2[BUFSIZE-1] = '\0';!
!
 printf("before overflow: buf2 = %s\n", buf2);!
 memset(buf1, 'B', (u_int)(diff + OVERSIZE));!
 printf("after overflow: buf2 = %s\n", buf2);!
 return 0;!
 }!

[dliu@omega heap]$./a.out!
buf1 = 0x8faf008, buf2 = 0x8faf020, diff = 0x18 bytes!
before overflow: buf2 = AAAAAAAAAAAAAAA!
after overflow: buf2 = BBBBBBBBAAAAAAA!

10/31/12

3

Ex. Vulnerable Program 2	

 #define BUFSIZE 16!
 #define ADDRLEN 4 /* # of bytes in an address */!
!
 int main()!
 {!
 u_long diff;!
 static char buf[BUFSIZE], *bufptr;!
!
 bufptr = buf, diff = (u_long)&bufptr - (u_long)buf;!
!
 printf("bufptr (%p) = %p, buf = %p, diff = 0x%x (%d) bytes\n",!
 &bufptr, bufptr, buf, diff, diff);!
!
 memset(buf, 'A', (u_int)(diff + ADDRLEN));!
!
 printf("bufptr (%p) = %p, buf = %p, diff = 0x%x (%d) bytes\n", !
 &bufptr, bufptr, buf, diff, diff);!
!
 return 0;!
 }!

[dliu@omega heap]$./a.out!
bufptr (0x8049630) = 0x8049620, buf = 0x8049620, diff = 0x10 (16) bytes!
bufptr (0x8049630) = 0x41414141, buf = 0x8049620, diff = 0x10 (16) bytes!

Overwriting File Pointers	

#define BUFSIZE 16!
!
int main(int argc, char **argv)!
{!
 FILE *tmpfd;!
 static char buf[BUFSIZE], *tmpfile;!
!
 tmpfile = ”/tmp/vulprog.tmp";!
 printf("before: tmpfile = %s\n", tmpfile);!
!
 printf("Enter one line of data to put in %s:
", tmpfile);!
 gets(buf);!
!
 printf("\nafter: tmpfile = %s\n", tmpfile);!
!
 tmpfd = fopen(tmpfile, "w");!
 if (tmpfd == NULL) exit(ERROR);!
 !
 fputs(buf, tmpfd);!
 fclose(tmpfd);!
}!

Top of memory

Bottom of memory

tmpfile

Buf[BUFSIZE]

… overflow “/etc/shadow”!

10/31/12

4

Overwrite Function
Pointers	

•  Dynamically modify a function 	

– E.g., int (*funcptr)(char *str)!

•  Taking advantage	

– System() method: using library functions	

– argv[] method: store shell code in the

input	

– Heap method: store shell code in the heap	

System() Method	

•  System() function	

–  library function	

–  Address is usually fixed	

•  Steps	

–  Guess the address of system() function.	

–  Overwrite the function pointer in the heap	

–  Let it point to the system() function.	

10/31/12

5

argv[] and Heap Methods	

•  Inject shell code 	

–  Store in an argument to the program	

•  The shell code will be in the stack	

–  Or in the heap	

•  Guess the address of the code	

–  How can we make this easier?	

•  Overwrite the function pointer 	

–  let it point to our shell code in the stack	

Overflow Defenses	

How to Find Vulns, Stop Attacks
+ Vista Examples	

10/31/12

6

Vulnerable Code	

•  Unsafe library calls	

– Gets, strcpy, strcat, sprintf, scanf	

•  Safer ones	

–  fgets, strncpy, strncat, snprintf	

High-level Defense
Approaches	

•  Programmer	

•  Compiler	

•  System	

10/31/12

7

Programmer Solutions	

•  Type-safe languages	

– Ex:	

•  Libraries	

– Always checking for bounds	

Programmer Solutions	

•  Improve programming	

•  Limited	

•  But OpenBSD has a good record	

10/31/12

8

Compiler Solutions	

•  Compiler help	

– May not work for speed-critical programs
with lots of pointers	

Preventing Stack
Smashing	

•  Backwards stack?	

10/31/12

9

StackGuard	

•  [Cowan et al., 1998]	

•  Buffer overflows	

–  “Canary in the coal mine”	

•  Canary	

Stack Shield	

•  GCC add-on	

10/31/12

10

Randomization	

•  Randomize addresses	

Other Addresses	

•  The return address	

–  Is protecting it enough?	

•  Function pointers	

–  Generalized code	

•  Generic sorting (numbers, strings, objects, reverse sorting,

etc.)	

–  Callback functions, e.g. for a GUI	

•  Create a button as a generic call	

•  Not one function for each type of button	

void (*foo)(int);
foo = &my_int_func;

10/31/12

11

Non-Executable Stack	

•  Hardware protection
•  AMD - NX (No eXecute) bit	

•  Intel - XD (eXecute Disabled)	

•  Some cost	

– A slight performance hit	

– Some functions need executable stack	

•  Linux signal handler	

Non-Executable Stack	

•  Not a guarantee	

– Stack overflow and point to code in the heap	

– Return-to-libc	

•  Alter the return address,	

•  Direct return to a C library function	

–  Not shell code	

•  C Library function usually has fixed address	

•  System(“/bin/sh”)	

10/31/12

12

Windows Vista	

•  BO Protections	

– Only applies to “unmanaged,” non-.Net

code (C and C++)	

– Support for no-execute bits (NX)	

•  Data Execution Prevention (DEP)	

•  Self-modifying code will fail	

–  Can specially mark the code	

Windows Vista	

•  Randomization	

– Address Space Layout Randomization	

•  Different for each boot	

•  Shell code is hard to find	

– Heap randomization	

– Stack randomization	

•  Heap corruption detection	

– A variety of illegal operations	

10/31/12

13

Visual C++	

•  More BO protections	

– StackGuard-based	

•  /GS compiler flag	

•  Enabled by default	

•  Estimated 3% performance penalty	

– Move buffers higher in memory than other
data	

•  Why?	

Visual C++	

•  More BO protections	

– Safe exception handling (SafeSEH)	

– Exception handlers	

•  Address on the function’s stack frame	

•  Can be overwritten	

– Store valid handler addresses	

•  XP SP2 on, won’t use other addresses	

– Any performance impact?	

10/31/12

14

MS Security Priorities	

Defense Priority	

Address space layout randomization opt-in Critical

DEP opt-in Critical

/GS stack-based buffer overrun detection High

/SafeSEH exception handler protection High

Stack randomization testing Moderate

Heap randomization testing Moderate

Heap corruption detection Moderate

The End	

