

For the following statements about DNA replication & referring to the above picture (if necessary) Mark A for True and B for False.

- 1. Left strand, lagging strand synthesis, reading the template 3' to 5'
- 2. Right strand, leading strand sysnthesis, reading the template 3' to 5'
- 3. Okazaki fragments on the right
- 4. The beta clamp is involved in DNA synthesis on both the left and right
- 5. supercoiling the DNA duplex occurs near E
- 6. Single strand binding proteins promote duplex (double stranded) DNA

Identify the following 3 to the letters in the above picture of Replication

- 7. Helicase
- 8. Gyrase
- 9. Ligase
- 10. Polymerase I
- 11. Polymerase III

Match the following to the next 4 questions

- A. Mismatch B. Direct Repair C. Primer Excision D. Base excision E. Nucleotide Excision
- 12. Repair that involves DNA Polymerase III
- 13. Repair that involves only the Klenow Fragment's activities
- 14. Type of repair that fixes pyrimidine dimers using a photolyase
- 15. Repair that involves all the activities of DNA Polymerase I

page 1 of 6	print name:

- 16. Can DNA Polymerase I fragment remove the RNA primer from Okazaki fragments?
 - A. Yes, it has the ability to ligate the DNA nicks together
 - B. No, because it is not a very processive enzyme
 - C. No, because it lacks the 5'-> 3' exonuclease
 - D. No, because it lacks the 3'-> 5' exonuclease
 - E. The RNA primer does not need to be removed
- 17. What are the common functions of DNA polymerase III and Klenow fragment?
 - A. 3' to 5' polymerase & 3' to 5' exonuclease
 - B. 5' to 3' polymerase & 5' to 3' exonuclease
 - C. 5' to 3' polymerase & 3' to 5' exonuclease
 - D. 5' to 3' polymerase, 3' to 5' exonuclease, & 5' to 3' exonuclease
 - E. 5' to 3' polymerase & 3' to 5' endonuclease
- 18. What is the role TATA or Pribnow box in the initiation of transcription in prokaryotes?
 - A. It binds of the sigma subunit which can then recruit RNA polymerase
 - B. It forces the sigma subunit from the RNA polymerase holoenzyme to initiate transcription
 - C. It marks the place where the mRNA transcript is begun
 - D. It is the area where a helicase unwinds the DNA
 - E. It is recognized by the sigma subunit of the RNA polymerase holoenzyme
- 19. Which of the following is a false statement about initiation of prokaryotic transciption:
 - A. The first DNA base that is transcribed is usually a purine on the template strand
 - B. Formation of the open promoter complex involves the sigma subunit and tighter binding of the complex to DNA
 - C. It ends when the sigma subunit is released after about 8 nucleotides are added
 - D. The first RNA base added is usually an adenosine triphosphate or guanosine triphosphate, which retains its triposphate
 - E. Initiation does not require a primer.
- 20. Which of the following is a false statement about elongation in prokaryotic transciption:
 - A. The core RNA polymerase synthesizes the mRNA transcript by pairing complementary NTPs to the DNA template strand
 - B. Polymerization of RNA is similar to polymerization of DNA. Both involve the addition of a nucleoside triphosphate to a free 3' hydroxyl
 - C. Unwinding of the DNA occurs in front of the transcription bubble and rewinding of the DNA occurs after it.
 - D. RNA & DNA polyemerases both contain a 3'->5' proofreading exonuclease
 - E. The error rate of RNA polymerase during transcription is greater than DNA polymerase
- 21. Termination of prokaryotic transcription ...
 - A. occurs through either a stem loop pausing or a helicase separating strands.
 - B. occurs once the RNA polymerase reaches a nonsense codon.
 - C. Involves the binding of snRNPs to guide the removal of the RNA:DNA hybrid
 - D. involves interactions with concurrent translational machinery.
 - E. Occurs after the last intron has been transcribed

page 2 of 6	print name:

- 22. Which of the following is true about post-transcriptional RNA modifications in prokaryotes
 - A. The 5' end of the transcript is capped and the 3' end is polyadenylated.
 - B. Introns are spliced out of the transcript to form the mature mRNA.
 - C. They do not occur, since translation and trascription are coupled
 - D. Splicing of the transcript can be ATP dependent or independent
 - E. The operon is usually cut into separate different transcripts to allow concurrent translation
- 23. Leucine zipper, zinc fingers, and helix turn helix are
 - A. protein dimerization motifs to work as protein activators and repressors
 - B. motifs that bind DNA through hydrogen bonding only in the major groove.
 - C. DNA binding motifs hydrogen bond with the sugar backbone using Mg²⁺
 - D. motifs that bind DNA through hydrogen bonding only in the minor groove.
 - E. chaperones for RNA folding into the ribosome.
- 24. What are the forces that stabilize the DNA double helix.
 - A. None of the below
 - B. All of the below
 - C. Base pairing
 - D. Hydrophobic interactions
 - E. Ionic interactions
- 25. What are the main reasons for the high fidelity of DNA Polymerase III?
 - A. 3'-5' exonuclease, β-clamp, and helicase
 - B. 5'-3' exonuclease, topoisomerase, and base-pairing
 - C. balanced dNTP's, base-pairing (hydrogen bonding/shape), and 3'-5' exonuclease
 - D. balanced NTP's, base-pairing (ionic interactions), and 3'-5' exonuclease
 - E. SSB, Pol I, and ligase
- 26. Charging of tRNA with an amino acid
 - A. in both Type I and II amino-acyl synthetases places the amino acid at the 3' hydroxyl
 - B. involves the hydrolysis of ATP to ADP + Pi
 - C. initially attaches the amino acid to AMP through the 5' phosphate
 - D. always involves the recognition of the tRNA anti-codon to specificy the correct amino acid
 - E. takes into account the wobble found at the first residue in the anti-codon
- 27. Amino acids which are most susceptible to wobble: point mutations at the 3rd position of the codon.
 - A. M & W
 - B. G, P, & A
 - C. W, Y, & F
 - D. Hydrophobics
 - E. G & C
- 28. Amino acids which are least susceptible to wobble: point mutations at the 3rd position of the codon.
 - A. G, P, & A
 - B. W, Y, & F
 - C. R, L, & S
 - D. charged amino acids

page 3 of 6	print name:
page o or o	print name.

- E. A & T
- 29. Which of the following is true about the initial of prokaryotic translation.
 - A. The large as well as the small subunit or the ribosome are involved throughout the initiation process
 - B. IF-3 is responsible for delivering the initiator tRNA to the P site
 - C. IF-1 blocks the A site from binding any other tRNA's
 - D. ATP is required to place the initial tRNA as well as kick off the initiation factors from the ribosome
 - E. Does not require a special formylated methionine as the initiator residue
- 30. Which of the following is not true about elongation in prokaryotic translation.
 - A. EF-TU places the new incoming charged tRNA in the A site, requiring GTP hydrolysis
 - B. The N-terminus remains covalently attached to tRNA
 - C. The growing peptide in the P site is transferred onto the open N-terminus of new amino acid in the A site
 - D. Movement of the growing peptide attached to the tRNA from the A site to P site rquires EF-G and GTP.
 - E. The uncharged tRNA moves from the P site into the E site
- 31. During termination of translation in prokaryotes
 - A. a helicase unwinds the mRNA from the growing peptide
 - B. release factors recognize sense codons
 - C. the ribosomes peptidyl transferase activity converts to hydrolyze the peptide from the tRNA in the P site
 - D. GTP is required for the tRNA to move from the P to E sites
 - E. recogniation of the stop codon causes a pause in translation which allows for small and large subunits of the ribosome to disassociate.
- 32. The primary energy source in prokaryotic translation is
 - A. ATP
 - B. dATP
 - C. GTP
 - D. dGTP
 - E. requires no energy
- 33. If Pol I's 5'->3' exonuclease were deleted, the following would be effected:
 - A. mismatch repair
 - B. base excision repair
 - C. both B & D
 - D. lagging strand synthesis
 - E. A, B, and D
- 34. Reverse transcriptase has the following activities used in the following order.
 - A. RNA directed DNA polymerase, RNAse H, DNA directed DNA polymerase
 - B. Primase, RNA directed DNA polymerase, RNAse H, DNA directed DNA polymerase,
 - C. RNA directed RNA polymerase, RNAse H, RNA directed DNA polymerase,

page 4 of 6	print name:

- D. RNA directed DNA polymerase, RNAse H, DNA directed DNA polymerase, Ligase
- E. 5'->3' exonuclease and 5'->3' DNA polymerase
- 35. Which of the following statement(s) about topoisomerase I is/are true?
 - A. Uses ATP
 - B. Changes linking number by 1
 - C. Changes linking number by 2
 - D. Both A & C
 - E. Splices introns
- 36. Which of the following statement(s) about topoisomerase II is/are true?
 - A. Uses ATP
 - B. Changes linking number by 1
 - C. Changes linking number by 2
 - D. Both A & C
 - E. Splices introns
- 37. Topoisomerases change the linking number by ...
 - A. physically breaking the covalent DNA backbone
 - B. increasing the writhe by 3 and decreasing the twist by 3
 - C. adding a nucleotide to the chain
 - D. modifying the base
 - E. None of the above
- 38. Initiation of transcription in prokaryotes (E. coli specifically) is defined by
 - A. sigma's involvement in the holoenzyme
 - B. the amount of single stranded DNA in the transcription bubble
 - C. the topoisomerase preceding the RNA polymerase
 - D. the helicase rewinding the DNA
 - E. the length of the operon
- 39. Base modifications in rRNA, tRNA, and mRNA mainly involve
 - A. transesterification
 - B. methylation
 - C. amidation
 - D. base hydrolysis
 - E. glycosylation
- 40. Besides the many proteins, what best describes the reagents (substrates, energy sources, building blocks, & co-factors) needed for complete DNA replication.
 - A. magnesium, NTP's, ddNTP's, single stranded DNA
 - B. NTP's, dNTP's, magnesium
 - C. zinc, NTP's, dNTP's, double stranded DNA
 - D. NTP's, dNTP's, double stranded DNA, magnesium
 - E. NTP's and magnesium
- 41. In comparison to DNA polymerase, RNA polymerase differs in the following ways.
 - A. Has a 3' to 5' exonuclease
 - B. Uses dNTP's instead of NTP's

page 5 of 6	print name:

Homework 3.4 CHEM151: Biochemistry I Prof. Tsai

- C. Is more accurate
- D. Is slower
- E. None of the above
- 42. How many possible DNA sequences can code for the polypeptide GAW (just the coding region)?
 - A. 24
 - B. 288
 - C. 9
 - D. 200
 - E. 1
- 43. If you had only one tRNA synthetase per amino acid, would a cell be viable? And why?
 - A. Yes each amino acid is represented
 - B. No the code is degenerate
 - C. Yes synthetases are not important to translational fidelity
 - D. No the nonsense codons would prematurely truncate proteins
 - E. No the concentration of tRNA would not be high enough

page 6 of 6	print name:
page e e. e	o interiamo.