Truth Assignments and Truth Tables

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Overview

Outline

2 Example

3 Extensions to Truth Assignments

- 4 Tautological Implication
- 5 P v. NP Problem
- 6 Where we Stand

Truth Assignments and Truth Tables

• Previously, defined which expressions are wffs.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

- Previously, defined which expressions are wffs.
- Now, semantics (i.e., true/false) for wffs.

- Previously, defined which expressions are wffs.
- Now, semantics (i.e., true/false) for wffs.
- Effective (but not efficient) procedure for determining if a wff is true:

- Previously, defined which expressions are wffs.
- Now, semantics (i.e., true/false) for wffs.
- Effective (but not efficient) procedure for determining if a wff is true:
 - under a particular truth assignment (to sentence symbols)

- Previously, defined which expressions are wffs.
- Now, semantics (i.e., true/false) for wffs.
- Effective (but not efficient) procedure for determining if a wff is true:
 - under a particular truth assignment (to sentence symbols)
 - ...under any truth assignment making some other finite set of sentences true.

- Previously, defined which expressions are wffs.
- Now, semantics (i.e., true/false) for wffs.
- Effective (but not efficient) procedure for determining if a wff is true:
 - under a particular truth assignment (to sentence symbols)
 - ...under any truth assignment making some other finite set of sentences true.
 - Infinite sets? (later...)

Outline

2 Example

3 Extensions to Truth Assignments

- 4 Tautological Implication
- 5 P v. NP Problem
- 6 Where we Stand

Truth Assignments and Truth Tables

Example

Consider $\tau = (\mathbf{A} \rightarrow (\mathbf{B} \lor (\neg \mathbf{B}))).$

Example

Consider $\tau = (\mathbf{A} \rightarrow (\mathbf{B} \lor (\neg \mathbf{B}))).$ \mathbf{B}/F \mathbf{B}/F

Truth assignment: $v(\mathbf{A}) = T$; $v(\mathbf{B}) = F$ Work truth values up tree, using common semantics of $\neg, \land, \lor, \rightarrow, \leftrightarrow$.

Truth Assignments and Truth Tables

Example

Consider $\tau = (\mathbf{A} \rightarrow (\mathbf{B} \lor (\neg \mathbf{B}))).$ A/T / / / B/F ¬/T \mathbf{B}/F

Truth assignment: $v(\mathbf{A}) = T$; $v(\mathbf{B}) = F$ Work truth values up tree, using common semantics of $\neg, \land, \lor, \rightarrow, \leftrightarrow$.

Truth Assignments and Truth Tables

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Example

Consider $\tau = (\mathbf{A} \rightarrow (\mathbf{B} \lor (\neg \mathbf{B}))).$ A/T v/T B/F ¬/T

Truth assignment: $v(\mathbf{A}) = T$; $v(\mathbf{B}) = F$ Work truth values up tree, using common semantics of $\neg, \land, \lor, \rightarrow, \leftrightarrow$.

Truth Assignments and Truth Tables

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Example

Consider $\tau = (\mathbf{A} \rightarrow (\mathbf{B} \lor (\neg \mathbf{B}))).$ $\mathbf{A}/T \qquad \mathbf{V}/T \\ \mathbf{B}/F \qquad \mathbf{V}/T \\ \mathbf$ \rightarrow /T

Truth assignment: $v(\mathbf{A}) = T$; $v(\mathbf{B}) = F$ Work truth values up tree, using common semantics of $\neg, \land, \lor, \rightarrow, \leftrightarrow$. Say v satisfies τ , since the root of the tree is T.

Truth Assignments and Truth Tables

Truth Table—One Row

Consider $(\mathbf{A} \rightarrow (\mathbf{B} \lor (\neg \mathbf{B}))).$

Truth Table—One Row

Consider
$$(\mathbf{A} \rightarrow (\mathbf{B} \lor (\neg \mathbf{B}))).$$

Truth Assignments and Truth Tables

<ロ> <同> <同> <巨> <巨> <三< => < 三<

Truth Table—One Row

Consider
$$(\mathbf{A} \rightarrow (\mathbf{B} \lor (\neg \mathbf{B})))$$
.

Truth Assignments and Truth Tables

Truth Table—One Row

Consider
$$(\mathbf{A} \rightarrow (\mathbf{B} \lor (\neg \mathbf{B})))$$
.

$$\overrightarrow{\mathbf{A} \quad \mathbf{B} \quad (\mathbf{A} \rightarrow (\mathbf{B} \lor (\mathbf{\neg B})))}_{T \quad F \quad T \quad F \quad T \quad F}$$

$$\mathbf{A}/T \quad \checkmark/T \quad \checkmark$$

$$\mathbf{B}/F \quad \neg/T \quad \checkmark$$

$$\mathbf{B}/F \quad \overrightarrow{\mathbf{B}/F}$$

Truth Assignments and Truth Tables

Truth Table—One Row

Consider
$$(\mathbf{A} \rightarrow (\mathbf{B} \lor (\neg \mathbf{B})))$$
.
 \rightarrow /T
 $\mathbf{A} \quad \mathbf{B} \quad (\mathbf{A} \rightarrow (\mathbf{B} \lor (\neg \mathbf{B})))$
 $T \quad F \quad T \quad T \quad F \quad T \quad T \quad F$
 $\mathbf{A}/T \quad \checkmark /T$
 $\mathbf{B}/F \quad \neg /T$
 \mathbf{B}/F

Truth Assignments and Truth Tables

Truth Table (All Rows)

Consider $(\mathbf{A} \rightarrow (\mathbf{B} \lor (\neg \mathbf{B})))$.

Α	В	(A	\rightarrow	(B	V	(¬	B)))
Т	Т						
F	Т						
Т	F						
F	F						

Truth Assignments and Truth Tables

Truth Table (All Rows)

Consider $(\mathbf{A} \rightarrow (\mathbf{B} \lor (\neg \mathbf{B}))).$

Α	В	(A	\rightarrow (I	B \	/ (¬	B)))
Т	Т	T	-	Т		Т
F	Т	F	-	Т		Т
Т	F	T		F		F
F	F	F		F		F

Truth Assignments and Truth Tables

Truth Table (All Rows)

Consider $(\mathbf{A} \rightarrow (\mathbf{B} \lor (\neg \mathbf{B}))).$

Α	В	(A	\rightarrow	(B	V	(¬	B)))
Т	Т	Т		Т		F	Т
F	Т	F		Т		F	Т
Т	F	T		F		Т	F
F	F	F		F		Т	F

Truth Assignments and Truth Tables

Truth Table (All Rows)

Consider $(\mathbf{A} \rightarrow (\mathbf{B} \lor (\neg \mathbf{B}))).$

Α	В	(A	\rightarrow	(B	V	(¬	B)))
Т	Т	Т		Т	Т	F	Т
F	Т	F		Т	Т	F	Т
Т	F	T		F	Т	Т	F
F	F	F		F	Т	Т	F

Truth Assignments and Truth Tables

Truth Table (All Rows)

Consider $(\mathbf{A} \rightarrow (\mathbf{B} \lor (\neg \mathbf{B}))).$

Wff is true for all assignments to relevant sentence symbols. A tautology.

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 • のへ⊙

Truth Table (All Rows)

Consider $(\mathbf{A} \rightarrow (\mathbf{B} \lor (\neg \mathbf{B}))).$

Α	В	(A	\rightarrow	(B	V	(¬	B)))
Т	Т	T	Т	Т	Т	F	Т
F	Т	F	Т	Т	Т	F	Т
Т	F	T	Т	F	Т	Т	F
F	F	F	Т	F	Т	Т	F

Wff is true for all assignments to relevant sentence symbols. A tautology. n = 2 sentence symbols and one row for each assignment to all the sentence symbols.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Truth Table (All Rows)

Consider $(\mathbf{A} \rightarrow (\mathbf{B} \lor (\neg \mathbf{B}))).$

Α	В	(A	\rightarrow	(B	V	(¬	B)))
Т	Т	T	Т	Т	Т	F	Т
F	Т	F	Т	Т	Т	F	Т
Т	F	T	Т	F	Т	Т	F
F	F	F	Т	F	Т	Т	F

Wff is true for all assignments to relevant sentence symbols. A tautology. n = 2 sentence symbols and one row for each assignment to all the sentence symbols.

How can we list all truth assignments systematically? How many are there?

All Truth Assignments

How can we list all truth assignments on *n* sentence symbols A_1, \ldots, A_n systematically? How many are there?

< □ > < □ > < □ > < □ > < □ > < Ξ > < Ξ > = Ξ

All Truth Assignments

How can we list all truth assignments on *n* sentence symbols A_1, \ldots, A_n systematically? How many are there?

n = 1: Two assignments: $v(\mathbf{A}) = T$ and $v(\mathbf{A}) = F$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

All Truth Assignments

How can we list all truth assignments on *n* sentence symbols A_1, \ldots, A_n systematically? How many are there?

$$n = 1$$
: Two assignments: $v(\mathbf{A}) = T$ and $v(\mathbf{A}) = F$

n > 1

- List all assignments to $A_1, ..., A_{n-1}$, recursively, and also put $v(A_n) = T$ in each assignment; then
- again list all assignments A_1, \ldots, A_{n-1} , recursively, but this time also put $v(A_n) = F$ in each assignment.

Inductively, there are 2^n .

Α	В
Т	Т
F	Т
Т	F
F	F

イロト (部) (日) (日) (日) (日)

Tautology and Truth Table Example

Give the truth table (all rows) for $(\neg(\mathbf{A} \land \mathbf{B})) \leftrightarrow ((\neg \mathbf{A}) \lor (\neg \mathbf{B}))$. How does one confirm that this is a tautology?

Tautology and Truth Table Example

Give the truth table (all rows) for $(\neg(A \land B)) \leftrightarrow ((\neg A) \lor (\neg B))$. How does one confirm that this is a tautology?

Α	В	(¬(A	\wedge	B))	\leftrightarrow	((¬ A)	V	(¬ B))
Т	Т	F	Т		Т		F	F	F
F	Т	Т	F		Т		Т	Т	F
Т	F	Т	F		Т		F	Т	Т
F	F	Т	F		Т		Т	Т	Т

The "top level" WFF is T under all truth assignments to the sentence symbols.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Note on Implication

This is our (common) semantics for \rightarrow . (No objections allowed.)

Truth Assignments and Truth Tables

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Outline

3 Extensions to Truth Assignments

- 4 Tautological Implication
- 5 P v. NP Problem
- 6 Where we Stand

Truth Assignments and Truth Tables

Extensions to Truth Assignments

Let S be a set of sentence symbols and \overline{S} be wffs constructible from S by the five rules.

Extensions to Truth Assignments

Let S be a set of sentence symbols and \overline{S} be wffs constructible from S by the five rules.

Given truth assignment $v: S \to \{T, F\}$, want an extension $\overline{v}: \overline{S} \to \{T, F\}$, satifying:

• If
$$A \in S$$
, then $\overline{v}(A) = v(A)$.
• $\overline{v}((\alpha \land \beta)) = \begin{cases} T, & \text{if } \overline{v}(\alpha) = \overline{v}(\beta) = T; \\ F, & \text{otherwise.} \end{cases}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Extensions to Truth Assignments

Let S be a set of sentence symbols and \overline{S} be wffs constructible from S by the five rules.

Given truth assignment $v: S \to \{T, F\}$, want an extension $\overline{v}: \overline{S} \to \{T, F\}$, satifying:

• If
$$A \in S$$
, then $\overline{v}(A) = v(A)$.
• $\overline{v}((\alpha \land \beta)) = \begin{cases} T, & \text{if } \overline{v}(\alpha) = \overline{v}(\beta) = T; \\ F, & \text{otherwise.} \end{cases}$

(Similarly for $\neg, \lor \rightarrow, \leftrightarrow$, using common semantics.)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●
Extensions to Truth Assignments

Let S be a set of sentence symbols and \overline{S} be wffs constructible from S by the five rules.

Given truth assignment $v: S \to \{T, F\}$, want an extension $\overline{v}: \overline{S} \to \{T, F\}$, satifying:

• If
$$A \in S$$
, then $\overline{v}(A) = v(A)$.
• $\overline{v}((\alpha \land \beta)) = \begin{cases} T, & \text{if } \overline{v}(\alpha) = \overline{v}(\beta) = T; \\ F, & \text{otherwise.} \end{cases}$

(Similarly for $\neg, \lor \rightarrow, \leftrightarrow$, using common semantics.) Extension $\overline{\nu}$ gives semantics to all wffs in \overline{S} .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Extensions to Truth Assignments

Let S be a set of sentence symbols and \overline{S} be wffs constructible from S by the five rules.

Given truth assignment $v: S \to \{T, F\}$, want an extension $\overline{v}: \overline{S} \to \{T, F\}$, satifying:

• If
$$A \in S$$
, then $\overline{v}(A) = v(A)$.
• $\overline{v}((\alpha \land \beta)) = \begin{cases} T, & \text{if } \overline{v}(\alpha) = \overline{v}(\beta) = T; \\ F, & \text{otherwise.} \end{cases}$

(Similarly for $\neg, \lor \rightarrow, \leftrightarrow$, using common semantics.) Extension $\overline{\nu}$ gives semantics to all wffs in \overline{S} . We say ν satisfies φ if $\overline{\nu}(\varphi) = T$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Extensions to Truth Assignments

Let S be a set of sentence symbols and \overline{S} be wffs constructible from S by the five rules.

Given truth assignment $v: S \to \{T, F\}$, want an extension $\overline{v}: \overline{S} \to \{T, F\}$, satifying:

• If
$$A \in S$$
, then $\overline{v}(A) = v(A)$.
• $\overline{v}((\alpha \land \beta)) = \begin{cases} T, & \text{if } \overline{v}(\alpha) = \overline{v}(\beta) = T; \\ F, & \text{otherwise.} \end{cases}$

(Similarly for $\neg, \lor \rightarrow, \leftrightarrow$, using common semantics.) Extension \overline{v} gives semantics to all wffs in \overline{S} . We say v satisfies φ if $\overline{v}(\varphi) = T$. We say φ is satisfiable if some v satisfies φ .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

All definitions

α	β	$(\neg \alpha)$	$(\alpha \land \beta)$	$(\alpha \lor \beta)$	$(\alpha \rightarrow \beta)$	$(\alpha \leftrightarrow \beta)$
Т	Т	F	Т	Т	Т	Т
F	Т	T	F	Т	Т	F
Т	F		F	Т	F	F
F	F		F	F	Т	Т

Truth Assignments and Truth Tables

◆□> ◆□> ◆三> ◆三> 三三 のへで

Well Defined?

Given truth assignment v (to sentence symbols), is there always a \overline{v} (to WFFs)? Is it unique?

Well Defined?

Given truth assignment v (to sentence symbols), is there always a \overline{v} (to WFFs)? Is it unique? What if we defined our WFFs without parentheses? $\overline{v}(\mathbf{A} \land \mathbf{B} \lor \mathbf{C})$?

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ● ● ● ●

Well Defined?

Given truth assignment v (to sentence symbols), is there always a \overline{v} (to WFFs)? Is it unique? What if we defined our WFFs without parentheses? $\overline{v}(\mathbf{A} \land \mathbf{B} \lor \mathbf{C})$? All is well (for our parenthesized WFFs), but proof will come later.

Outline

- 2 Example
- 3 Extensions to Truth Assignments
- 4 Tautological Implication
 - 5 P v. NP Problem
 - 6 Where we Stand

Truth Assignments and Truth Tables

Given Σ (set of wffs intended as hypotheses) and τ (wff intended as a conclusion):

Given Σ (set of wffs intended as hypotheses) and τ (wff intended as a conclusion):

If every truth assignment that satisfies Σ also satisfies τ, we say Σ tautologically implies τ, and write Σ ⊨ τ.

Given Σ (set of wffs intended as hypotheses) and τ (wff intended as a conclusion):

- If every truth assignment that satisfies Σ also satisfies τ, we say Σ tautologically implies τ, and write Σ ⊨ τ.
- If $\emptyset \vDash \tau$, say τ is a tautology and write $\vDash \tau$.

Given Σ (set of wffs intended as hypotheses) and τ (wff intended as a conclusion):

- If every truth assignment that satisfies Σ also satisfies τ, we say Σ tautologically implies τ, and write Σ ⊨ τ.
- If $\emptyset \vDash \tau$, say τ is a tautology and write $\vDash \tau$.
- If {σ} ⊨ τ, write σ ⊨ τ. If also τ ⊨ σ, say that they're tautologically equivalent and write σ ⊨ = τ.

<ロ> (四) (四) (三) (三) (三) (三)

Given Σ (set of wffs intended as hypotheses) and τ (wff intended as a conclusion):

- If every truth assignment that satisfies Σ also satisfies τ, we say Σ tautologically implies τ, and write Σ ⊨ τ.
- If $\emptyset \vDash \tau$, say τ is a tautology and write $\vDash \tau$.
- If {σ} ⊨ τ, write σ ⊨ τ. If also τ ⊨ σ, say that they're tautologically equivalent and write σ ⊨ = τ.

Note: $\models \varphi$ iff $\neg \varphi$ is **not** satsifiable.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ○ ○ ○

De Morgan:

$$\begin{array}{rcl} (\neg(\mathbf{A}\wedge\mathbf{B})) & \leftrightarrow & ((\neg\mathbf{A})\vee(\neg\mathbf{B})) \\ (\neg(\mathbf{A}\vee\mathbf{B})) & \leftrightarrow & ((\neg\mathbf{A})\wedge(\neg\mathbf{B})) \end{array}$$

◆□> ◆□> ◆三> ◆三> 三三 のへで

17/32

Truth Assignments and Truth Tables

De Morgan:

$$\begin{array}{rcl} (\neg(A \land B)) & \leftrightarrow & ((\neg A) \lor (\neg B)) \\ (\neg(A \lor B)) & \leftrightarrow & ((\neg A) \land (\neg B)) \end{array}$$

◆□> ◆□> ◆三> ◆三> 三三 のへで

17/32

Note:

Truth Assignments and Truth Tables

De Morgan:

$$\begin{array}{rcl} (\neg(\mathbf{A} \land \mathbf{B})) & \leftrightarrow & ((\neg \mathbf{A}) \lor (\neg \mathbf{B})) \\ (\neg(\mathbf{A} \lor \mathbf{B})) & \leftrightarrow & ((\neg \mathbf{A}) \land (\neg \mathbf{B})) \end{array}$$

Note:

• Since $(\alpha \lor \beta) \models \exists (\neg((\neg \alpha) \land (\neg \beta)))$, we don't need \lor if we have \land and \neg .

De Morgan:

$$\begin{array}{rcl} (\neg(\mathbf{A} \land \mathbf{B})) & \leftrightarrow & ((\neg \mathbf{A}) \lor (\neg \mathbf{B})) \\ (\neg(\mathbf{A} \lor \mathbf{B})) & \leftrightarrow & ((\neg \mathbf{A}) \land (\neg \mathbf{B})) \end{array}$$

Note:

- Since $(\alpha \lor \beta) \models \exists (\neg((\neg \alpha) \land (\neg \beta)))$, we don't need \lor if we have \land and \neg .
- There's a duality between \lor and \land .

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Contrapositive:

$$((\textbf{A} \rightarrow \textbf{B}) \leftrightarrow ((\neg \textbf{B}) \rightarrow (\neg \textbf{A}))).$$

Also,

$$(\textbf{A} \rightarrow \textbf{B}) \vDash ((\neg \textbf{B}) \rightarrow (\neg \textbf{A})).$$

Truth Assignments and Truth Tables

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ の < @

Contrapositive:

$$((\textbf{A} \rightarrow \textbf{B}) \leftrightarrow ((\neg \textbf{B}) \rightarrow (\neg \textbf{A}))).$$

Also,

$$(\textbf{A} \rightarrow \textbf{B}) \vDash ((\neg \textbf{B}) \rightarrow (\neg \textbf{A})).$$

Slippery when wet $\models \exists$ dry when tractable.

Truth Assignments and Truth Tables

◆ロ ▶ ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ の � @

Contrapositive:

$$((\textbf{A} \rightarrow \textbf{B}) \leftrightarrow ((\neg \textbf{B}) \rightarrow (\neg \textbf{A}))).$$

Also,

$$(\textbf{A} \rightarrow \textbf{B}) \vDash ((\neg \textbf{B}) \rightarrow (\neg \textbf{A})).$$

Slippery when wet $\models \exists$ dry when tractable.

Double negative

 $(\textbf{A} \leftrightarrow (\neg (\neg \textbf{A}))).$

Truth Assignments and Truth Tables

In standard English, a double negative gives a positive. Example?

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ の < @

In standard English, a double negative gives a positive. Example? Not bad!

In standard English, a double negative gives a positive. Example? Not bad!

("Bad" is semantically negative in English, but is not a syntactic negation.)

In standard English, a double negative gives a positive. Example? Not bad!

("Bad" is semantically negative in English, but is not a syntactic negation.)

In many English dialects, a double negative intensifies the negative:

In standard English, a double negative gives a positive. Example? Not bad!

("Bad" is semantically negative in English, but is not a syntactic negation.)

In many English dialects, a double negative intensifies the negative:

You ain't got nothing...

In standard English, a double negative gives a positive. Example? Not bad!

("Bad" is semantically negative in English, but is not a syntactic negation.)

In many English dialects, a double negative intensifies the negative:

You ain't got nothing...

But in English, double positive never resolves to a negative.

In standard English, a double negative gives a positive. Example? Not bad!

("Bad" is semantically negative in English, but is not a syntactic negation.)

In many English dialects, a double negative intensifies the negative:

You ain't got nothing...

But in English, double positive never resolves to a negative.

Yeah, yeah.

-Sidney Morgenbesser (feigning impatience or skepticism).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

In standard English, a double negative gives a positive. Example? Not bad!

("Bad" is semantically negative in English, but is not a syntactic negation.)

In many English dialects, a double negative intensifies the negative:

You ain't got nothing...

But in English, double positive never resolves to a negative.

Yeah, yeah.

-Sidney Morgenbesser (feigning impatience or skepticism).

See http://en.wikipedia.org/wiki/Sidney_Morgenbesser for more Morgenbesserisms.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Truth and Truth Tables

The main concept of "truth" for sentential logic is tautological implication, $\Sigma \models \tau$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Truth and Truth Tables

The main concept of "truth" for sentential logic is tautological implication, $\Sigma \models \tau$.

Is au true under any semantics (assignment) making Σ true?

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ● ● ● ●

Truth and Truth Tables

The main concept of "truth" for sentential logic is tautological implication, $\Sigma \models \tau$.

Is au true under any semantics (assignment) making Σ true?

For finite Σ , we can enumerate truth assignments to relevant sentence symbols and use the truth table method to check tautological implication.

Why investigate $\Sigma \vDash \tau$ for infinite, non-trivial Σ ? Consider

Why investigate $\Sigma \vDash \tau$ for infinite, non-trivial Σ ? Consider

Tautologies, Σ = Ø. Since τ is finite, check ⊨ τ using truth tables.
 Proving ⊨ τ amounts to finding a tautology—doing logic, not math.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ● ● ● ●

Why investigate $\Sigma \vDash \tau$ for infinite, non-trivial Σ ? Consider

- Tautologies, Σ = Ø. Since τ is finite, check ⊨ τ using truth tables.
 Proving ⊨ τ amounts to finding a tautology—doing logic, not math.
- Finite $\Sigma = \{\sigma_1, \sigma_2, \dots, \sigma_n\}$. Then $\Sigma \models \tau$ iff $\models \sigma_1 \land \dots \land \sigma_n \rightarrow \tau$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ○ ○ ○

Why investigate $\Sigma \vDash \tau$ for infinite, non-trivial Σ ? Consider

- Tautologies, Σ = Ø. Since τ is finite, check ⊨ τ using truth tables.
 Proving ⊨ τ amounts to finding a tautology—doing logic, not math.
- Finite $\Sigma = \{\sigma_1, \sigma_2, \dots, \sigma_n\}$. Then $\Sigma \models \tau$ iff $\models \sigma_1 \land \dots \land \sigma_n \rightarrow \tau$.
- Suppose, for all *i*, either A_i ∈ Σ or ¬A_i ∈ Σ, decidably. Then Σ ⊨ τ iff v satisfies τ for the truth assignment v induced by Σ. Showing Σ ⊨ τ is showing this one v satisfies τ.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ♪ ♪ ♪

Why investigate $\Sigma \vDash \tau$ for infinite, non-trivial Σ ? Consider

- Tautologies, Σ = Ø. Since τ is finite, check ⊨ τ using truth tables.
 Proving ⊨ τ amounts to finding a tautology—doing logic, not math.
- Finite $\Sigma = \{\sigma_1, \sigma_2, \dots, \sigma_n\}$. Then $\Sigma \models \tau$ iff $\models \sigma_1 \land \dots \land \sigma_n \rightarrow \tau$.
- Suppose, for all *i*, either $\mathbf{A}_i \in \Sigma$ or $\neg \mathbf{A}_i \in \Sigma$, decidably. Then $\Sigma \models \tau$ iff *v* satisfies τ for the truth assignment *v* induced by Σ . Showing $\Sigma \models \tau$ is showing this one *v* satisfies τ .

The interesting case: Infinite Σ . Several *v*'s satisfy all $\sigma \in \Sigma$ and several *v*'s do not. Showing $\Sigma \models \tau$ says something (new?) about a large set of *v*'s.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●
We Seek the Truth

Why investigate $\Sigma \vDash \tau$ for infinite, non-trivial Σ ? Consider

- Tautologies, Σ = Ø. Since τ is finite, check ⊨ τ using truth tables.
 Proving ⊨ τ amounts to finding a tautology—doing logic, not math.
- Finite $\Sigma = \{\sigma_1, \sigma_2, \dots, \sigma_n\}$. Then $\Sigma \models \tau$ iff $\models \sigma_1 \land \dots \land \sigma_n \rightarrow \tau$.
- Suppose, for all *i*, either $\mathbf{A}_i \in \Sigma$ or $\neg \mathbf{A}_i \in \Sigma$, decidably. Then $\Sigma \models \tau$ iff *v* satisfies τ for the truth assignment *v* induced by Σ . Showing $\Sigma \models \tau$ is showing this one *v* satisfies τ .

The interesting case: Infinite Σ . Several v's satisfy all $\sigma \in \Sigma$ and several v's do not. Showing $\Sigma \models \tau$ says something (new?) about a large set of v's. What is true in the theory of Σ ?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

 Σ can "say" that the above multiplication computation is correct, e.g., $\mathbf{A}_2 \leftrightarrow \mathbf{A}_0 \wedge \mathbf{A}_1$, etc, for any factors. (Σ is infinite.)

 Σ can "say" that the above multiplication computation is correct, e.g., $\mathbf{A}_2 \leftrightarrow \mathbf{A}_0 \wedge \mathbf{A}_1$, etc, for any factors. (Σ is infinite.) What about the following τ ?

$$\tau = (\mathbf{A}_0 \leftrightarrow \mathbf{A}_1) \land (\mathbf{A}_4 \leftrightarrow \mathbf{A}_5) \rightarrow \neg \mathbf{A}_8$$

Truth Assignments and Truth Tables

 Σ can "say" that the above multiplication computation is correct, e.g., $\mathbf{A}_2 \leftrightarrow \mathbf{A}_0 \wedge \mathbf{A}_1$, etc, for any factors. (Σ is infinite.) What about the following τ ?

$$\tau = (\mathbf{A}_0 \leftrightarrow \mathbf{A}_1) \land (\mathbf{A}_4 \leftrightarrow \mathbf{A}_5) \rightarrow \neg \mathbf{A}_8$$

 $\Sigma \models \tau$ implies $x^2 \mod 4$ is congruent to 0 or 1. ($0^2 = 2^2 = 0$ and $1^2 = 3^2 = 1$.)

Truth Assignments and Truth Tables

 Σ can "say" that the above multiplication computation is correct, e.g., $\mathbf{A}_2 \leftrightarrow \mathbf{A}_0 \wedge \mathbf{A}_1$, etc, for any factors. (Σ is infinite.) What about the following τ ?

$$\tau = (\mathbf{A}_0 \leftrightarrow \mathbf{A}_1) \land (\mathbf{A}_4 \leftrightarrow \mathbf{A}_5) \rightarrow \neg \mathbf{A}_8$$

 $\Sigma \models \tau$ implies $x^2 \mod 4$ is congruent to 0 or 1. ($0^2 = 2^2 = 0$ and $1^2 = 3^2 = 1$.)

This is true under any assignment to the sentence symbols making Σ correct, and interesting.

Truth Assignments and Truth Tables

 Σ can "say" that the above multiplication computation is correct, e.g., $\mathbf{A}_2 \leftrightarrow \mathbf{A}_0 \wedge \mathbf{A}_1$, etc, for any factors. (Σ is infinite.) What about the following τ ?

$$\tau = (\mathbf{A}_0 \leftrightarrow \mathbf{A}_1) \land (\mathbf{A}_4 \leftrightarrow \mathbf{A}_5) \rightarrow \neg \mathbf{A}_8$$

22/32

 $\Sigma \models \tau$ implies $x^2 \mod 4$ is congruent to 0 or 1. ($0^2 = 2^2 = 0$ and $1^2 = 3^2 = 1$.)

This is true under any assignment to the sentence symbols making Σ correct, and interesting. Doing number theory, not logic.

Outline

- 2 Example
- 3 Extensions to Truth Assignments
- 4 Tautological Implication
- 5 P v. NP Problem
 - 6 Where we Stand

Truth Assignments and Truth Tables

If there are n sentence symbols, there are 2^n truth assignments.

Truth Assignments and Truth Tables

Efficiency

If there are *n* sentence symbols, there are 2^n truth assignments. Can we check $\Sigma \models \tau$ in time less than 2^n ?

Efficiency

If there are *n* sentence symbols, there are 2^n truth assignments. Can we check $\Sigma \models \tau$ in time less than 2^n ?

- Major open problem—P v. NP problem.
- Probably need time 2ⁿ.
- Clay \$1M problem.
- At least as hard as thousands of other common problems with no efficient algorithm. (So many smart people have (implicitly) tried and failed to solve this problem efficiently.)

GRAPH 3-COLORABILITY: Given a graph G = (V, E), does there exist a coloring of vertices by red, blue, and maize, with no monochormatic edge?

臣

GRAPH 3-COLORABILITY: Given a graph G = (V, E), does there exist a coloring of vertices by red, blue, and maize, with no monochormatic edge?

臣

・ロン ・回 と ・ ヨ と ・ ヨ と

GRAPH 3-COLORABILITY: Given a graph G = (V, E), does there exist a coloring of vertices by red, blue, and maize, with no monochormatic edge?

I.e., can we assign everyone to three committees, respecting stated conflicts?

æ

ヘロン 人間と 人間と 人間と

GRAPH 3-COLORABILITY: Given a graph G = (V, E), does there exist a coloring of vertices by red, blue, and maize, with no monochormatic edge?

臣

GRAPH 3-COLORABILITY: Given a graph G = (V, E), does there exist a coloring of vertices by red, blue, and maize, with no monochormatic edge?

$$L(1) = C(1, red) \lor C(1, blue) \lor C(1, maize)$$

says that vertex 1 gets at least one color.

Truth Assignments and Truth Tables

GRAPH 3-COLORABILITY: Given a graph G = (V, E), does there exist a coloring of vertices by red, blue, and maize, with no monochormatic edge?

$$L(1) = C(1, \text{red}) \lor C(1, \text{blue}) \lor C(1, \text{maize})$$

says that vertex 1 gets at least one color. Exercise: M(1) says that vertex 1 gets at most one color.

GRAPH 3-COLORABILITY: Given a graph G = (V, E), does there exist a coloring of vertices by red, blue, and maize, with no monochormatic edge?

$$L(1) = C(1, \text{red}) \lor C(1, \text{blue}) \lor C(1, \text{maize})$$

says that vertex 1 gets at least one color. Exercise: M(1) says that vertex 1 gets at most one color. Finally,

$$E(1,2,\mathsf{red}) = \neg(C(1,\mathsf{red}) \land C(2,\mathsf{red}))$$

says that vertices 1 and 2 are not both colored red. (Repeat for each edge and each color.)

Truth Assignments and Truth Tables

Theorem

Let φ be the AND of all the constraints (at least one color per vertex, at most one color per vertex, no monochromatic edges.) Then G is 3-colorable iff φ is satisfiable iff $\neg \varphi$ is not a tautology.

・ロン ・回 と ・ ヨ と ・ ヨ と

Theorem

Let φ be the AND of all the constraints (at least one color per vertex, at most one color per vertex, no monochromatic edges.) Then G is 3-colorable iff φ is satisfiable iff $\neg \varphi$ is not a tautology.

• The size of φ is comparable to the size of G.

・ロン ・回 と ・ ヨ と ・ ヨ と

Theorem

Let φ be the AND of all the constraints (at least one color per vertex, at most one color per vertex, no monochromatic edges.) Then G is 3-colorable iff φ is satisfiable iff $\neg \varphi$ is not a tautology.

- The size of φ is comparable to the size of G.
- So if we could detect tautologies (equivalently, determine satisfiability) quickly, we could detect 3-colorability quickly. (Converse is also true!)

Theorem

Let φ be the AND of all the constraints (at least one color per vertex, at most one color per vertex, no monochromatic edges.) Then G is 3-colorable iff φ is satisfiable iff $\neg \varphi$ is not a tautology.

- The size of φ is comparable to the size of G.
- So if we could detect tautologies (equivalently, determine satisfiability) quickly, we could detect 3-colorability quickly. (Converse is also true!)
- No one knows how to solve the 3-colorability problem quickly.

イロト イポト イヨト

• There's a short τ that "says" *s* is the secret key corresponding to a fixed public key. (Similar to multiplication example.)

- There's a short τ that "says" *s* is the secret key corresponding to a fixed public key. (Similar to multiplication example.)
- There's τ_1 that "says" the first bit of s is 1.

- There's a short τ that "says" *s* is the secret key corresponding to a fixed public key. (Similar to multiplication example.)
- There's τ₁ that "says" the first bit of s is 1. Then τ ∧ τ₁ is satisfiable if some setting of other bits gives the secret key; i.e., if first bit is 1.

- There's a short τ that "says" *s* is the secret key corresponding to a fixed public key. (Similar to multiplication example.)
- There's τ₁ that "says" the first bit of s is 1. Then τ ∧ τ₁ is satisfiable if some setting of other bits gives the secret key; i.e., if first bit is 1.
- Similarly, there's τ_i that says the *i*'th bit of *s* is 1.

If we could solve satisfiability questions quickly, we could do:

<ロ> (四) (四) (三) (三) (三) (三)

- There's a short τ that "says" *s* is the secret key corresponding to a fixed public key. (Similar to multiplication example.)
- There's τ₁ that "says" the first bit of s is 1. Then τ ∧ τ₁ is satisfiable if some setting of other bits gives the secret key; i.e., if first bit is 1.
- Similarly, there's τ_i that says the *i*'th bit of *s* is 1.

If we could solve satisfiability questions quickly, we could do:

• $\tau \wedge \tau_1$ satisfiable? (Suppose not, so that $\models \tau \wedge (\neg \tau_1)$.)

- There's a short τ that "says" *s* is the secret key corresponding to a fixed public key. (Similar to multiplication example.)
- There's τ₁ that "says" the first bit of s is 1. Then τ ∧ τ₁ is satisfiable if some setting of other bits gives the secret key; i.e., if first bit is 1.
- Similarly, there's τ_i that says the *i*'th bit of *s* is 1.

If we could solve satisfiability questions quickly, we could do:

- $\tau \wedge \tau_1$ satisfiable? (Suppose not, so that $\vDash \tau \wedge (\neg \tau_1)$.)
- $\tau \land (\neg \tau_1) \land \tau_2$ satisfiable? (Suppose yes.)

- There's a short τ that "says" *s* is the secret key corresponding to a fixed public key. (Similar to multiplication example.)
- There's τ₁ that "says" the first bit of s is 1. Then τ ∧ τ₁ is satisfiable if some setting of other bits gives the secret key; i.e., if first bit is 1.
- Similarly, there's τ_i that says the *i*'th bit of *s* is 1.

If we could solve satisfiability questions quickly, we could do:

- $\tau \wedge \tau_1$ satisfiable? (Suppose not, so that $\vDash \tau \wedge (\neg \tau_1)$.)
- $\tau \land (\neg \tau_1) \land \tau_2$ satisfiable? (Suppose yes.)
- $\tau \wedge (\neg \tau_1) \wedge \tau_2 \wedge \tau_3$ satisfiable?

- There's a short τ that "says" *s* is the secret key corresponding to a fixed public key. (Similar to multiplication example.)
- There's τ₁ that "says" the first bit of s is 1. Then τ ∧ τ₁ is satisfiable if some setting of other bits gives the secret key; i.e., if first bit is 1.
- Similarly, there's τ_i that says the *i*'th bit of *s* is 1.

If we could solve satisfiability questions quickly, we could do:

- $\tau \wedge \tau_1$ satisfiable? (Suppose not, so that $\vDash \tau \wedge (\neg \tau_1)$.)
- $\tau \land (\neg \tau_1) \land \tau_2$ satisfiable? (Suppose yes.)
- $\tau \land (\neg \tau_1) \land \tau_2 \land \tau_3$ satisfiable?

• . . .

- There's a short au that "says" *s* is the secret key corresponding to a fixed public key. (Similar to multiplication example.)
- There's τ₁ that "says" the first bit of s is 1. Then τ ∧ τ₁ is satisfiable if some setting of other bits gives the secret key; i.e., if first bit is 1.
- Similarly, there's τ_i that says the *i*'th bit of *s* is 1.

If we could solve satisfiability questions quickly, we could do:

- $\tau \wedge \tau_1$ satisfiable? (Suppose not, so that $\vDash \tau \wedge (\neg \tau_1)$.)
- $\tau \land (\neg \tau_1) \land \tau_2$ satisfiable? (Suppose yes.)
- $\tau \wedge (\neg \tau_1) \wedge \tau_2 \wedge \tau_3$ satisfiable?

• . . .

Learn secret key, one bit at a time. Trillions of dollars are betting no.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Outline

- 2 Example
- 3 Extensions to Truth Assignments
- 4 Tautological Implication
- 5 P v. NP Problem

Truth Assignments and Truth Tables

Procedures without proofs

We have procedures for most of the relevant tasks, but no proofs yet.

Syntax:

Truth Assignments and Truth Tables

Done

Syntax:

• We know the procedure for forming new WFFs from old.

Done

Syntax:

• We know the procedure for forming new WFFs from old. Semantics:

Done

Syntax:

• We know the procedure for forming new WFFs from old.

Semantics:

• Given one truth assignment v to sentence symbols S, we can evaluate this on one WFF on S.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで
Done

Syntax:

• We know the procedure for forming new WFFs from old.

Semantics:

- Given one truth assignment v to sentence symbols S, we can evaluate this on one WFF on S.
- We can try all 2ⁿ truth assignments to relevant sentence symbols for one wff.

Done

Syntax:

• We know the procedure for forming new WFFs from old.

Semantics:

- Given one truth assignment v to sentence symbols S, we can evaluate this on one WFF on S.
- We can try all 2ⁿ truth assignments to relevant sentence symbols for one wff.
- Check $\Sigma \vDash \tau$ for finite Σ .

Done

Syntax:

• We know the procedure for forming new WFFs from old.

Semantics:

- Given one truth assignment v to sentence symbols S, we can evaluate this on one WFF on S.
- We can try all 2ⁿ truth assignments to relevant sentence symbols for one wff.
- Check $\Sigma \vDash \tau$ for finite Σ .
- Express basic English(?) concepts in Boolean logic (colorability, multiplication, ...)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ○ ○ ○

Give procedures for the following (generalizes foregoing) and prove:

Give procedures for the following (generalizes foregoing) and prove: Syntax:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Give procedures for the following (generalizes foregoing) and prove: Syntax:

• Given wff φ , there is a unique way to it build up.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ● ● ● ●

Give procedures for the following (generalizes foregoing) and prove: Syntax:

- Given wff φ , there is a unique way to it build up.
- Given an expression, decide whether it is a WFF.

Give procedures for the following (generalizes foregoing) and prove: Syntax:

- Given wff φ , there is a unique way to it build up.
- Given an expression, decide whether it is a WFF.

Semantics:

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ● ● ● ●

Give procedures for the following (generalizes foregoing) and prove: Syntax:

- Given wff φ , there is a unique way to it build up.
- Given an expression, decide whether it is a WFF.

Semantics:

• Given $v: S \to \{T, F\}$, extend to $\overline{v}: \overline{S} \to \{T, F\}$ in a unique way, consistent with intended semantics.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ○ ○ ○

Give procedures for the following (generalizes foregoing) and prove: Syntax:

- Given wff φ , there is a unique way to it build up.
- Given an expression, decide whether it is a WFF.

Semantics:

Given v: S → {T, F}, extend to v: S → {T, F} in a unique way, consistent with intended semantics. (Proves that previous approach is sensible.)

Give procedures for the following (generalizes foregoing) and prove: Syntax:

- Given wff φ , there is a unique way to it build up.
- Given an expression, decide whether it is a WFF.

Semantics:

- Given v: S → {T, F}, extend to v: S → {T, F} in a unique way, consistent with intended semantics. (Proves that previous approach is sensible.)
- "Semidecide" $\Sigma \vDash \tau$ for infinite Σ .

Give procedures for the following (generalizes foregoing) and prove: Syntax:

- Given wff φ , there is a unique way to it build up.
- Given an expression, decide whether it is a WFF.

Semantics:

- Given v: S → {T, F}, extend to v: S → {T, F} in a unique way, consistent with intended semantics. (Proves that previous approach is sensible.)
- "Semidecide" $\Sigma \vDash \tau$ for infinite Σ .
 - Given (a description of) Σ , rattle off all the τ for which $\Sigma \vDash \tau$.
 - We may not be able to decide, given Σ and τ , whether $\Sigma \vDash \tau$.

イロト (部) (日) (日) (日) (日)