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Overview

Syntax, done. Semantics next

Previously, defined which expressions are wffs.

Now, semantics (i.e., true/false) for wffs.

Effective (but not efficient) procedure for determining if a wff is true:

under a particular truth assignment (to sentence symbols)
...under any truth assignment making some other finite set of sentences
true.
Infinite sets? (later...)
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Example

Example

Consider τ = (A → (B ∨ (¬B))).

→

�
��

A
AU

A ∨

�
��

A
AU

B ¬

A
AU

B

Truth assignment: v(A) = T ; v(B) = F
Work truth values up tree, using common semantics of ¬,∧,∨,→,↔.
Say v satisfies τ , since the root of the tree is T .

Truth Assignments and Truth Tables 5/32



Example

Example

Consider τ = (A → (B ∨ (¬B))).

→

�
��

A
AU

A/T ∨

�
��

A
AU

B/F ¬

A
AU

B/F

Truth assignment: v(A) = T ; v(B) = F
Work truth values up tree, using common semantics of ¬,∧,∨,→,↔.

Say v satisfies τ , since the root of the tree is T .

Truth Assignments and Truth Tables 5/32



Example

Example

Consider τ = (A → (B ∨ (¬B))).

→

�
��

A
AU

A/T ∨

�
��

A
AU

B/F ¬/T
A
AU

B/F

Truth assignment: v(A) = T ; v(B) = F
Work truth values up tree, using common semantics of ¬,∧,∨,→,↔.

Say v satisfies τ , since the root of the tree is T .

Truth Assignments and Truth Tables 5/32



Example

Example

Consider τ = (A → (B ∨ (¬B))).

→

�
��

A
AU

A/T ∨/T
�
��

A
AU

B/F ¬/T
A
AU

B/F

Truth assignment: v(A) = T ; v(B) = F
Work truth values up tree, using common semantics of ¬,∧,∨,→,↔.

Say v satisfies τ , since the root of the tree is T .

Truth Assignments and Truth Tables 5/32



Example

Example

Consider τ = (A → (B ∨ (¬B))).

→ /T

�
��

A
AU

A/T ∨/T
�
��

A
AU

B/F ¬/T
A
AU

B/F

Truth assignment: v(A) = T ; v(B) = F
Work truth values up tree, using common semantics of ¬,∧,∨,→,↔.
Say v satisfies τ , since the root of the tree is T .

Truth Assignments and Truth Tables 5/32



Example

Truth Table—One Row

Consider (A → (B ∨ (¬B))).
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A
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B

A B ( A → ( B ∨ ( ¬ B ) ) )

T F
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Example

Truth Table (All Rows)

Consider (A → (B ∨ (¬B))).

A B (A → (B ∨ (¬ B)))
T T
F T
T F
F F

Wff is true for all assignments to relevant sentence symbols. A tautology.
n = 2 sentence symbols and one row for each assignment to all the
sentence symbols.
How can we list all truth assignments systematically? How many are there?
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Example

All Truth Assignments

How can we list all truth assignments on n sentence symbols A1, . . . ,An

systematically? How many are there?

n = 1: Two assignments: v(A) = T and v(A) = F
n > 1

List all assignments to A1, . . . ,An−1, recursively, and also put
v(An) = T in each assignment; then

again list all assignments A1, . . . ,An−1, recursively, but this time also
put v(An) = F in each assignment.

Inductively, there are 2n.

A B
T T
F T
T F
F F
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Example

Tautology and Truth Table Example

Give the truth table (all rows) for (¬(A ∧B))↔ ((¬A) ∨ (¬B)). How
does one confirm that this is a tautology?

A B ( ¬(A ∧ B)) ↔ (( ¬A) ∨ ( ¬B))
T T F T T F F F
F T T F T T T F
T F T F T F T T
F F T F T T T T

The “top level” WFF is T under all truth assignments to the sentence
symbols.
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Example

Note on Implication

α β ( α → β )

T T T
F T T
T F F
F F T

This is our (common) semantics for →. (No objections allowed.)
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Extensions to Truth Assignments

Extensions to Truth Assignments

Let S be a set of sentence symbols and S be wffs constructible from S by
the five rules.

Given truth assignment v ∶ S → {T ,F}, want an extension v ∶ S → {T ,F},
satifying:

0 If A ∈ S , then v(A) = v(A).

1 v((α ∧ β)) = {
T , if v(α) = v(β) = T ;
F , otherwise.

(Similarly for ¬,∨→,↔, using common semantics.)
Extension v gives semantics to all wffs in S .
We say v satisfies ϕ if v(ϕ) = T .
We say ϕ is satisfiable if some v satisfies ϕ.
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Extensions to Truth Assignments

All definitions

α β (¬α) (α ∧ β) (α ∨ β) (α → β) (α↔ β)

T T F T T T T
F T T F T T F
T F F T F F
F F F F T T
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Extensions to Truth Assignments

Well Defined?

Given truth assignment v (to sentence symbols), is there always a v (to
WFFs)? Is it unique?

What if we defined our WFFs without parentheses? v(A ∧B ∨C)?
All is well (for our parenthesized WFFs), but proof will come later.
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Tautological Implication

Tautological Implication

Given Σ (set of wffs intended as hypotheses) and τ (wff intended as a
conclusion):

If every truth assignment that satisfies Σ also satisfies τ , we say Σ
tautologically implies τ , and write Σ ⊧ τ .

If ∅ ⊧ τ , say τ is a tautology and write ⊧ τ .

If {σ} ⊧ τ , write σ ⊧ τ . If also τ ⊧ σ, say that they’re tautologically
equivalent and write σ ⊧â τ .

Note: ⊧ ϕ iff ¬ϕ is not satsifiable.
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Tautological Implication

Tautology Examples

De Morgan:
(¬(A ∧B)) ↔ ((¬A) ∨ (¬B))
(¬(A ∨B)) ↔ ((¬A) ∧ (¬B))

Note:

Since (α ∨ β) ⊧â (¬((¬α) ∧ (¬β))), we don’t need ∨ if we have ∧
and ¬.

There’s a duality between ∨ and ∧.
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Tautological Implication

Tautology Examples

Contrapositive:
((A→ B)↔ ((¬B)→ (¬A))).

Also,
(A→ B) ⊧â ((¬B)→ (¬A)).

Slippery when wet ⊧â dry when tractable.

Double negative
(A↔ (¬(¬A))).
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Tautological Implication

Double Negative

In standard English, a double negative gives a positive. Example?

Not bad!
(“Bad” is semantically negative in English, but is not a syntactic
negation.)
In many English dialects, a double negative intensifies the negative:

You ain’t got nothing...

But in English, double positive never resolves to a negative.

Yeah, yeah.
—Sidney Morgenbesser (feigning impatience or skepticism).

See http://en.wikipedia.org/wiki/Sidney_Morgenbesser for more
Morgenbesserisms.
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Tautological Implication

Truth and Truth Tables

The main concept of “truth” for sentential logic is tautological
implication, Σ ⊧ τ .

Is τ true under any semantics (assignment) making Σ true?
For finite Σ, we can enumerate truth assignments to relevant sentence
symbols and use the truth table method to check tautological implication.
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Tautological Implication

We Seek the Truth

Why investigate Σ ⊧ τ for infinite, non-trivial Σ?
Consider

Tautologies, Σ = ∅. Since τ is finite, check ⊧ τ using truth tables.
Proving ⊧ τ amounts to finding a tautology—doing logic, not math.

Finite Σ = {σ1, σ2, . . . , σn}. Then Σ ⊧ τ iff ⊧ σ1 ∧⋯ ∧ σn → τ .

Suppose, for all i , either Ai ∈ Σ or ¬Ai ∈ Σ, decidably. Then Σ ⊧ τ iff
v satisfies τ for the truth assignment v induced by Σ. Showing Σ ⊧ τ
is showing this one v satisfies τ .

The interesting case: Infinite Σ. Several v ’s satisfy all σ ∈ Σ and several
v ’s do not. Showing Σ ⊧ τ says something (new?) about a large set of v ’s.
What is true in the theory of Σ?
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Tautological Implication

Example—Multiplication

⋯ A4 A0

⋯ A5 A1

⋯ A6 A2

⋯ A7

⋯

⋯ A8 A3

Σ can “say” that the above multiplication computation is correct, e.g.,
A2 ↔ A0 ∧A1, etc, for any factors. (Σ is infinite.)

What about the following τ?

τ = (A0 ↔ A1) ∧ (A4 ↔ A5)→ ¬A8

Σ ⊧ τ implies x2 mod 4 is congruent to 0 or 1. (02 = 22 = 0 and
12 = 32 = 1.)
This is true under any assigment to the sentence symbols making Σ
correct, and interesting. Doing number theory, not logic.
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P v. NP Problem

Outline

1 Overview

2 Example

3 Extensions to Truth Assignments

4 Tautological Implication

5 P v. NP Problem
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P v. NP Problem

Efficiency

If there are n sentence symbols, there are 2n truth assignments.

Can we check Σ ⊧ τ in time less than 2n?

Major open problem—P v. NP problem.

Probably need time 2n.

Clay $1M problem.

At least as hard as thousands of other common problems with no
efficient algorithm. (So many smart people have (implicitly) tried and
failed to solve this problem efficiently.)
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P v. NP Problem

An NP Problem

Graph 3-Colorability: Given a graph G = (V ,E), does there exist a
coloring of vertices by red, blue, and maize, with no monochormatic edge?

i i i
i i i
�
�
��

�
�
��

I.e., can we assign everyone to three committees, respecting stated
conflicts?
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P v. NP Problem

An NP Problem

Graph 3-Colorability: Given a graph G = (V ,E), does there exist a
coloring of vertices by red, blue, and maize, with no monochormatic edge?

i i i
i i i
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�
��
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��

1 2 3

4 5 6

Let C(i , j) (a sentence symbol) represent that vertex i is colored j . Then

L(1) = C(1, red) ∨ C(1,blue) ∨ C(1,maize)

says that vertex 1 gets at least one color.
Exercise: M(1) says that vertex 1 gets at most one color. Finally,

E(1,2, red) = ¬(C(1, red) ∧ C(2, red))

says that vertices 1 and 2 are not both colored red. (Repeat for each edge
and each color.)
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P v. NP Problem

Punchline

Theorem

Let ϕ be the AND of all the constraints (at least one color per vertex, at
most one color per vertex, no monochromatic edges.)
Then G is 3-colorable iff ϕ is satisfiable iff ¬ϕ is not a tautology.

The size of ϕ is comparable to the size of G .

So if we could detect tautologies (equivalently, determine satisfiability)
quickly, we could detect 3-colorability quickly. (Converse is also true!)

No one knows how to solve the 3-colorability problem quickly.

Truth Assignments and Truth Tables 27/32



P v. NP Problem

Punchline

Theorem

Let ϕ be the AND of all the constraints (at least one color per vertex, at
most one color per vertex, no monochromatic edges.)
Then G is 3-colorable iff ϕ is satisfiable iff ¬ϕ is not a tautology.

The size of ϕ is comparable to the size of G .

So if we could detect tautologies (equivalently, determine satisfiability)
quickly, we could detect 3-colorability quickly. (Converse is also true!)

No one knows how to solve the 3-colorability problem quickly.

Truth Assignments and Truth Tables 27/32



P v. NP Problem

Punchline

Theorem

Let ϕ be the AND of all the constraints (at least one color per vertex, at
most one color per vertex, no monochromatic edges.)
Then G is 3-colorable iff ϕ is satisfiable iff ¬ϕ is not a tautology.

The size of ϕ is comparable to the size of G .

So if we could detect tautologies (equivalently, determine satisfiability)
quickly, we could detect 3-colorability quickly. (Converse is also true!)

No one knows how to solve the 3-colorability problem quickly.

Truth Assignments and Truth Tables 27/32



P v. NP Problem

Punchline

Theorem

Let ϕ be the AND of all the constraints (at least one color per vertex, at
most one color per vertex, no monochromatic edges.)
Then G is 3-colorable iff ϕ is satisfiable iff ¬ϕ is not a tautology.

The size of ϕ is comparable to the size of G .

So if we could detect tautologies (equivalently, determine satisfiability)
quickly, we could detect 3-colorability quickly. (Converse is also true!)

No one knows how to solve the 3-colorability problem quickly.

Truth Assignments and Truth Tables 27/32



P v. NP Problem

More NP problems

There’s a short τ that “says” s is the secret key corresponding to a
fixed public key. (Similar to multiplication example.)

There’s τ1 that “says” the first bit of s is 1. Then τ ∧ τ1 is satisfiable
if some setting of other bits gives the secret key; i.e., if first bit is 1.

Similarly, there’s τi that says the i ’th bit of s is 1.

If we could solve satisfiability questions quickly, we could do:

τ ∧ τ1 satisfiable? (Suppose not, so that ⊧ τ ∧ (¬τ1).)

τ ∧ (¬τ1) ∧ τ2 satisfiable? (Suppose yes.)

τ ∧ (¬τ1) ∧ τ2 ∧ τ3 satisfiable?

. . .

Learn secret key, one bit at a time. Trillions of dollars are betting no.
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if some setting of other bits gives the secret key; i.e., if first bit is 1.

Similarly, there’s τi that says the i ’th bit of s is 1.

If we could solve satisfiability questions quickly, we could do:

τ ∧ τ1 satisfiable? (Suppose not, so that ⊧ τ ∧ (¬τ1).)

τ ∧ (¬τ1) ∧ τ2 satisfiable? (Suppose yes.)

τ ∧ (¬τ1) ∧ τ2 ∧ τ3 satisfiable?

. . .

Learn secret key, one bit at a time. Trillions of dollars are betting no.
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Where we Stand

Procedures without proofs

We have procedures for most of the relevant tasks, but no proofs yet.
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Where we Stand

Done

Syntax:

We know the procedure for forming new WFFs from old.

Semantics:

Given one truth assignment v to sentence symbols S , we can evaluate
this on one WFF on S .

We can try all 2n truth assignments to relevant sentence symbols for
one wff.

Check Σ ⊧ τ for finite Σ.

Express basic English(?) concepts in Boolean logic (colorability,
multiplication, ...)
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Where we Stand

To do

Give procedures for the following (generalizes foregoing) and prove:

Syntax:

Given wff ϕ, there is a unique way to it build up.

Given an expression, decide whether it is a WFF.

Semantics:

Given v ∶ S → {T ,F}, extend to v ∶ S → {T ,F} in a unique way,
consistent with intended semantics. (Proves that previous approach is
sensible.)

“Semidecide” Σ ⊧ τ for infinite Σ.

Given (a description of) Σ, rattle off all the τ for which Σ ⊧ τ .
We may not be able to decide, given Σ and τ , whether Σ ⊧ τ .
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